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Maximal parabolic subgroups of symplectic groups

These notes are intended as an outline for a long presentation to be made early
in April. They describe certain particularly interesting subgroups of a symplectic
group, and some of the related geometry of symplectic group actions. My hope is
that some of you will make parallel presentations for each of the other families of
classical groups.

I am going to follow fairly closely the notes “symplectic.pdf” for my March 14
presentation; a lot of that corresponds to the case k = 1 in what follows.

The general setting is

(1)(a) V = 2n-dimensional vector space over a field F ,

(1)(b) B = non-degenerate symplectic form on V .

(1)(c) Sp(V ) = {g ∈ GL(V ) | B(gv, gw) = B(v, w) (v, w ∈ V )}.

This is the symplectic group of the form B.
The goal is to work out the structure of what are called maximal parabolic sub-

groups of Sp(V ), and to look at the corresponding geometry.

Definition 2. An isotropic subspace of V is a vector subspace S ⊂ V with the
property that

B(v, w) = 0 (v, w ∈ S).

The corresponding maximal parabolic subgroup of Sp(V ) is the stabilizer of S in
Sp(V ):

P (S) = {g ∈ Sp(V )|g · S = S}.

Definition 3. Suppose k ≥ 0. The isotropic Grassmannian of V is the collection
of all k-dimensional isotropic subspaces of V :

IG(k, V ) = {S ⊂ V | dim S = k and S is isotropic}.

This is a subset of the Grassmann variety G(k, V ) of all k-dimensional subspaces
of V .

The notes on Grassmann varieties worked exclusively with V = F n, and called
them G(k, n)(F ). Choosing a basis of V identifies G(k, V ) with G(k, 2n)(F ).

Proposition 4 (Witt). Suppose that S and S ′ are k-dimensional isotropic sub-
spaces of the symplectic vector space V . Then there is an element g ∈ Sp(V ) such
that g · S = S′.

This is a version of Witt’s Extension Theorem, proved in the text for quadratic
forms on page 41.

Proof. Choose a basis

(5)(a) {e1, . . . , ek} ⊂ S
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for S. Because U is isotropic,

(5)(b) B(ei, ej) = 0, (1 ≤ i, j ≤ k).

Because the ui are linearly independent, we can find a linear function λ1 on V with
the property that

λ1(e1) = 1, λ1(ei) = 0 (2 ≤ i ≤ k).

By Corollary 2.2 in the text, there is an element f1 ∈ V such that

λ1(x) = B(x, f1) (x ∈ V ).

That is,

(5)(c) B(e1, f1) = 1, B(ei, f1) = 0 (2 ≤ i ≤ k).

Now equations (5)(b) and (5)(c) guarantee that f1 does not belong to S; so the
k + 1 vectors {e1, . . . , ek, f1} are linearly independent. We may therefore (as long
as k ≥ 2) find a linear function λ2 on V with the property that

λ2(e1) = λ2(f1) = 0, λ2(e2) = 1, λ2(ei) = 0 (3 ≤ i ≤ k).

By Corollary 2.2 in the text, there is an element f2 ∈ V such that

λ2(x) = B(x, f2) (x ∈ V ).

That is,

(5)(d) B(e1, f2) = B(f1, f2) = 0, B(e2, f2) = 1, B(ei, f2) = 0 (3 ≤ i ≤ k).

Now equations (5)(b), (5)(c), and (5)(d) guarantee that f2 does not belong to
the span of {e1, . . . , ek, f1}; so we may continue in the same way. In the end we
find k vectors {f1, . . . , fk} so that

(5)(e) B(ei, ej) = B(fi, fj) = 0, B(ei, fj) = δij (1 ≤ i, j ≤ k).

(Here δij is the Kronecker delta, equal to 1 if i = j and to zero if 0 if i 6= j.) These
equations force the 2k vectors {e1, . . . , fk} to be linearly independent. Write

(5)(f) T = span(f1, . . . , fk).

The matrix of the symplectic form B on the 2k-dimensional subspace S ⊕ T is
(writing Ik for the k×k identity matrix, and 0k for the corresponding zero matrix)

(

0k −Ik

Ik 0k.

)

This is invertible, so the restriction of B to S ⊕ T is non-degenerate. Define

W = (S ⊕ T )⊥ = {w ∈ V | B(w, ei) = B(w, fi) = 0 (1 ≤ i ≤ k)}.
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By Proposition 2.9, we have an orthogonal direct sum decomposition

(5)(g) V = (S ⊕ T ) ⊕ W,

and the form BW on W is also non-degenerate. Therefore W is a symplectic vector
space of dimension 2n − 2k.

We can repeat all of these constructions for S ′, obtaining

V = (S′ ⊕ T ′) ⊕ W ′

along with special bases {e′i} for S′ and {f ′

j} for T ′. Because W and W ′ are
symplectic vector spaces of the same dimension, there is a symplectic isomorphism

g0: W → W ′

(text, page 19). We define a linear isomorphism g from V to V by

g(ei) = e′i, g(fj) = f ′

j , g(w) = g0(w) (w ∈ W ).

From (5)(e) and 5(g), we see that g is a symplectic map, and by construction
g(S) = S′. �

Corollary 6. The isotropic Grassmannian IG(k, V ) is non-zero if and only if
k ≤ n. In that case the action of Sp(V ) on IG(k, V ) is transitive.

Proof. The decomposition (5)(g) obtained in the proof of Proposition 4 shows that
2k ≤ 2n whenever there is a k-dimensional isotropic subspace. Conversely, Theo-
rem 2.10 in the text shows that V has a basis {u1, . . . , un, v1, . . . , vn} such that
B(ui, uj) = 0 for all i and j. Therefore the span of any k-element subset of the
{ui} is a k-dimensional isotropic subspace of V . The transitivity is the content of
Proposition 4. �

Our next task is to work out the structure of the stabilizer group P (S) for a
k-dimensional isotropic subspace S. Just as in the case k = 1 treated in the earlier
notes, the main step is to write down some interesting elements of P (S). We’ll use
the basis {ei} of S to identify

(7)(a) S ' F k,

and similarly the basis {fj} of T to identify

(7)(b) T ' F k.

Using these identifications and (5)(g), a typical element v ∈ V may be written as a
triple

(7)(c) v = (s, t, w) (s ∈ F k, t ∈ F k, w ∈ W )

In this picture, (5)(e) and the definition of W show that the symplectic form is

(7)(d) B((s1, t1, w1), (s2, t2, w2)) = tt2s1 − tt1s2 + B(w1, w2).
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Here tt2 denotes the transpose of the k × 1 column vector t2; therefore the matrix
product tt2s1 is a scalar.

We will describe an element of P (S) by saying first what it does to elements of S
(often identified as in (7)(a)), then to elements of T (often identified as in (7)(b)),
and finally to elements of W = (S ⊕ T )⊥. We can then use the formula in (7)(d)
to test whether the element so defined respects the symplectic form B.

Here is a first example. Suppose D ∈ GL(k, F ) is an invertible k × k matrix.
Define a linear transformation ag of V by

(8)(a) aD(s, t, w) = (D · s, (D−1)t · t, w)

Using the formula (7)(d), we compute

B(aD(s1, t1, w1), aD(s2, t2, w2)) = B((Ds1, (D
−1)tt1, w1), (Ds2, (D

−1)tt2, w2)

= (tt2D
−1)(Ds1) − (tt1D

−1)(Ds2) + B(w1, w2)

= tt2s1 − tt1s2 + B(w1, w2)

= B((s1, t1, w1), (s2, t2, w2)).

Therefore aD ∈ Sp(V ). Since aD obviously preserves the subspace S, we have
aD P (S).

Next, suppose R ∈ Sp(W ). Define a linear transformation mr of V by

(8)(b) mR(s, t, w) = (s, t, R · w).

(That is, we extend R to V by making it act as the identity on W⊥ = S ⊕ T .)
This time the calculation showing that mR ∈ P (S) is much simpler, and we omit
it. Composition of the first two classes of elements is easy:

(8)(c) aDmRaD′mR′ = agg′mrr′ .

For the next class of elements in P (S), we begin with a symmetric k × k matrix
E, and define

(8)(d) zE(s, t, w) = (s + Et, t, w).

That zE preserves S is clear. To check that zE is symplectic, we compute

B(zE(s1, t1, w1), zE(s2, t2, w2)) = B((s1 + Et1, t1, w1), (s2 + Et2, t2, w2))

= tt2(s1 + Et1) − tt1(s2 + Et2) + B(w1, w2)

= tt2s1 − tt1s2 + B(w1, w2) + tt2Et1 − tt1Et2.

The last two terms are transposes of each other (since Et = E) and therefore cancel
(since they are 1× 1). The first three terms are B((s1, t1, w1), (s2, t2, w2)), proving
that zE is symplectic. These elements generalize the elements Zx of the symplectic
notes. The collection

(8)(e) Z = {zE | E symmetric k × k}
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is a subgroup of P (S), with group law given by addition of symmetric matrices.
The last class of elements in P (S) are analogous to the elements Nw in the

symplectic notes, and also to the maps ρu,y from chapter 6 of the text and from
the notes on Ω. In this setting, the datum is a linear map

(9)(a) A: T → W.

We will write the corresponding symplectic transformations as nA ∈ P (S). The
first requirement on nA is

(9)(b) nA(s) = s (s ∈ S).

We would like to define nA(t) = t − A(t) for t ∈ T . Unfortunately the resulting
subspace nA(T ) is no longer isotropic, so this definition cannot be part of a sym-
plectic transformation. We need to add a correction in S. That is, we are going to
define a linear map

(9)(c) Q: T → S,

(depending on A) and then define

(9)(d) nA(t) = t + A(t) + Q(t).

Now the linear map Q is just a k × k matrix (if we use the identifications S ' F k

and T ' F k of (7)(a) and (7)(b)). The requirement that the vectors in (9)(d) span
an isotropic subspace can be written (using (7)(d)) as

(9)(e) tt2Qt1 − tt1Qt2 = BW (At1, At2).

That is,
tt2(Q − Qt)t1 = BW (At1, At2) (ti ∈ T ).

We now define Q to be the unique strictly upper triangular k× k matrix satisfying
(9)(e). A little more explicitly, the (i, j)-entry of Q is

(9)(f) Qij = BW (Afj , Afi) (1 ≤ i < j ≤ k).

Finally, we need to define nA on W . Roughly speaking we would like nA to be
the identity on W . The difficulty is that W is not orthogonal (in the symplectic
form) to nA(T ). We therefore need to add another correction in S. That is, we are
going to define a linear map

(9)(g) C: W → S,

(depending on A) and then define

(9)(h) nA(w) = w + C(w).

The requirement that nA(W ) be orthogonal to nA(T ) can be written (again using
(7)(d)) as

(9)(i) ttC(w) = BW (A(t), w) (t ∈ T, w ∈ W )
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This requirement defines C completely in terms of A. Here is how. The linear map
A is determined by the k vectors A(ei) = wi ∈ W . Each of these vectors wi defines
a linear functional λi on W , by the rule

λi(w) = BW (wi, w).

The k linear functionals λi are the k coordinates of the map C from W to S ' F k.
Explicitly,

(9)(j) C(w) =







BW (A(e1), w)
...

BW (A(ek), w)






.

(It is reasonable to call the map C the “transpose” of A, but I will not introduce
the formal language to justify that.)

Having defined Q: T → S and C: W → S, we can now define

(9)(k) nA(s, t, w) = (s + C(w) + Q(t), t, w + A(t))

Verification that nA is a symplectic map (using (7)(d), (9)(e), and (9)(i)) is straight-
forward; I’ll omit it.

Lemma 10. The collection

N = {NAZE | A ∈ Hom(T, W ), E a k × k symmetric matrix}

of elements of P (S) is a subgroup. The expression of each element of N as NAZE

is unique. The group law is

NAZENBZF = NA+BZE+F+(complicated bits).

Proof. Well, sometime. �

Proposition 11. Suppose S is a k-dimensional isotropic subspace of the symplectic
space V . Arrange notation as in equations (5) above, and define elements of the sta-
bilizer P (S) as in equations (8) and (9). Then Every element of g ∈ StabSp(V )([u])
has a unique representation as a product

g = mRADnAZE (R ∈ Sp(W ), A ∈ GL(k, F ), A ∈ Hom(T, W ), E symmetric).

The subgroups N (Lemma 10) and Z are normal in P (S). The quotient group
P (S)/N is isomorphic to the product L = GL(k, F ) × Sp(W ).

In the case of finite fields, this description allows us to count elements of P (S),
at least if we know how to count elements of Sp(W ).


