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Sylow Theorems and The General Linear Group

Theorem 1 (First Sylow Theorem) Let G be a group of order n with p|n. Write n =
pam where p does not divide m. Then G has a subgroup S of order pa, called a Sylow
p-subgroup of G.

Recall from our last discussion that |GLn(Fq)| =
∏n−1

k=0(q
n− qk) = qn(n−1)/2

∏n
k=1(q

k− 1).
If q = pr, the First Sylow Theorem tells us that GLn(Fq) has a Sylow p-subgroup of order
qn(n−1)/2. Now I’ll describe one such group.

Proposition 1 Let q = pr; let MTn(Fq) be the group of upper triangular matrices with 1’s
along the diagonal. Then MTn(Fq) is a Sylow p-subgroup of GLn(Fq).

Proof: It’s clear that MTn(Fq) is a subgroup of GLn(Fq), so it suffices to show that MTn(Fq)
has order qn(n−1)/2. This follows simply; each of the n(n − 1)/2 entries strictly above the
diagonal can be any element of Fq, for a total of qn(n−1)/2 elements.

Now for a bit of a diversion. Let V be an n-dimensional vector space over Fq. We
define GL(V ) to be the group of invertible linear transformations from V to itself. There
is a natural isomorphism between GL(V ) and GLn(Fq); fix a basis for V and consider the
matrices of the linear transformations in GL(V ) with respect to that basis. By picking two
different bases, B1 and B2, we can compose the isomorphisms obtained from each choice of
basis to get an isomorphism ψ from GLn(Fq) to itself as follows:

GLn(Fq)
ψ //

φ1 %%LLLLLLLLLL
GLn(Fq)

GL(V )

φ2
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Let’s consider an example. Let A = ( 1 2
0 1 ) ∈ GL2(F5). Let V be a two-dimensional vector

space over F5; let e1 = (1, 0) and e2 = (0, 1). Then by considering A as the matrix of some
linear transformation T with respect to the standard basis of V (i.e., the basis (e1, e2)), we
can map A to T by requiring that T (e1) = e1 and T (e2) = 2e1 + e2; this fully determines
T ∈ GL(V ). Now we fix a new basis, say, (e1 + e2, e1 − e2). Since T (e1 + e2) = 3e1 + e2 =
2(e1 + e2) + (e1 − e2) and T (e1 − e2) = −e1 + e2 = −(e1 − e2), the matrix of T with respect
to this new basis is ( 2 −1

1 0 ). So in our isomorphism ψ, the matrix ( 1 2
0 1 ) is mapped to ( 3 −1

1 1 ).
Now, let’s consider the subgroup H = ψ(MTn(Fq)) of GLn(Fq). H is, of course, also a

Sylow p-subgroup of GLn(Fq). By considering several changes of basis, we can find several
subgroups H1, H2, etc., all isomorphic to MTn(Fq). Two natural questions arise. The first
is whether all Sylow p-subgroups are isomorphic by a change-of-basis isomorphism. The
second is whether there’s an easier way to describe the relationship between these Sylow
p-subgroups. Thankfully, the answer to both questions is yes.
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Proposition 2 Let T be a linear transformation from V to itself, and let A be the matrix
of T with respect to a particular basis B. Then the matrices A′ that represent T with respect
to different bases are of the form

A′ = PAP−1

for P ∈ GLn(Fq).

I’m not going to prove this proposition, but you can find a proof in Artin’s Algebra on
pages 115 and 116, or in many other places, I’m sure. This proposition tells us that A and
ψ(A) are conjugate (or in the language of linear algebra, similar), for any change-of-basis
isomorphism ψ. Thus, the Sylow p-subgroups MTn(Fq) and ψ(MTn(Fq)) are conjugate as
well. As it turns out, all of the Sylow p-subgroups of a group G are conjugate; this is Sylow’s
second theorem.

Theorem 2 (Second Sylow Theorem) The Sylow p-subgroups of a group G are conju-
gate.

Finally, let us turn to the third Sylow theorem.

Theorem 3 (Third Sylow Theorem) Let s be the number of Sylow p-subgroups of G; let
|G| = pam where p does not divide m. Then s divides m and s is congruent to 1 (mod p).

We’ve seen already that we get one Sylow p-subgroup of GLn(Fq) by taking the group of
upper triangular matrices with 1’s along the diagonal. In similar fashion, the group of lower
triangular matrices with 1’s along the diagonal is a Sylow p-subgroup. Since for n ≥ 2 these
two groups aren’t the same (and when n = 1, p doesn’t divide the order of GLn(Fq)), the
number of Sylow p-subgroups of GLn(Fq) is greater than 1, so it is at least p+ 1. We notice
that p+ 1 divides q2 − 1, so it is an allowable number of Sylow p-subgroups. Unfortunately,
even for small q and n, GLn(Fq) is large and there are a lot of choices of s that fulfill the
requirements of the third Sylow theorem. In principle, it shouldn’t be difficult to find s; we
know one easily described Sylow p-subgroup, and we just need to conjugate it to find all
the others. This is tedious, but I don’t know of a better way to count the Sylow p-subgroups.

Addendum: We discussed in class how to count the number of Sylow p-subgroups of
GLn(Fq). Let X be the set of Sylow p-subgroups. The second Sylow theorem tells us that
if we let GLn(Fq) act on X by conjugation, the action is transitive. Let H = MTn(Fq); let
N be the normalizer of H (that is, the set of g ∈ GLn(Fq) such that gHg−1 = H). Then, by
the counting formula,

|GLn(Fq)| = |N | · |X|

So if we can find the normalizer of H and count the elements of it, we can find the number
of Sylow p-subgroups, s. (Note that this argument holds for any finite group G; indeed,
it is the basis on which the third Sylow theorem is proved.) Without getting into details,
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it turns out that the normalizer of H is the group of upper triangular matrices, which has
(q − 1)nqn(n−1)/2 elements. Therefore,

s =
qn(n−1)/2

∏n
k=1(q

k − 1)

qn(n−1)/2(q − 1)n

=
1

(q − 1)n

n∏
k=1

(qk − 1)

=
n∏
k=1

qk − 1

q − 1

=
n∏
k=1

(qk−1 + qk−1 + · · · + 1)

= [n!]q


