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Abstract. Spheres can be written as homogeneous spaces G/H for compact

Lie groups in a small number of ways. In each case, the decomposition of
L2(G/H) into irreducible representations of G contains interesting informa-

tion. We recall these decompositions, and see what they can reveal about the

analogous problem for noncompact real forms of G and H.

1. Introduction

The sphere has a Riemannian metric, unique up to a positive scale, that is
preserved by the action of the orthogonal group. Computing the spectrum of the
Laplace operator is a standard and beautiful application of representation theory.
These notes will look at some variants of this computation, related to interesting
subgroups of the orthogonal group.

The four variants presented in Sections 2, 3, 4, and 5 correspond to the following
very general fact, due to Élie Cartan: if G/K is an irreducible compact Riemannian
symmetric space of real rank 1, thenK is transitive on the unit sphere in TeK(G/K).
(The only caveat is in the case of the one-dimensional symmetric space S1. In
this case one needs to use the full isometry group O(2) rather than its identity
component to get the transitivity.) The isotropy group of a point on the sphere is
often called M in the theory; so the conclusion is that

sphere of dimension (dimG/K − 1) ' K/M (1.1)

The calculations we do correspond to the rank one symmetric spaces

O(n+ 1)/O(n), Sn−1 ' O(n)/O(n− 1) (Section 2),

SU(n+ 1)/U(n), S2n−1 ' U(n)/U(n− 1) (Section 3),

Sp(n+ 1)/[Sp(n)× Sp(1)],
S4n−1 ' [Sp(n)× Sp(1)]/

[Sp(n− 1)× Sp(1)∆]
(Section 4), and

F4/ Spin(9) S15 ' Spin(9)/ Spin(7)′ (Section 5).

The representations of O(n), U(n), Sp(n) × Sp(1), and Spin(9) that we are
computing are exactly the K-types of the spherical principal series representations
for the noncompact forms of the symmetric spaces.

Rank one symmetric spaces provide three infinite families (and one exceptional
example) of realizations of spheres as homogeneous spaces (for compact Lie groups).
A theorem due to Montgomery-Samelson and Borel ([13] and [3]; there is a nice
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account in [25, (11.3.17)]) classifies all such realizations. In addition to some minor
variants on those above, like

S2n−1 ' SU(n)/SU(n− 1), S4n−1 ' Sp(n)/Sp(n− 1),

the only remaining possibilities are

S6 ' G2,c/SU(3) (Section 6), and

S7 ' Spin(7)/G2,c (Section 7).

After recalling in Sections 2–7 the classical harmonic analysis related to these
various realizations of spheres, we will examine in Sections 8–10 what these classical
results say about invariant differential operators.

In Sections 11–16 we examine what this information about harmonic analysis
on spheres can tell us about harmonic analysis hyperboloids. With n = p + q the
symmetric spaces

Hp,q = O(p, q)/O(p− 1, q), (0 ≤ q ≤ n)

are said to be real forms of each other (and thus in particular of

Sn−1 = O(n)/O(n− 1) = Hn,0).

Similarly, each of the realizations listed above of Sn−1 as a non-symmetric homo-
geneous space for a subgroup of O(n) corresponds to one or more noncompact real
forms, realizing some of the Hp,q as non-symmetric homogeneous spaces for sub-
groups of O(p, q). These realizations exhibit the hyperbolic spaces as examples of
real spherical spaces of rank one, and as such our interest is primarily with their
discrete series. Some of these spaces have previously been studied by T. Kobayashi
(see [10]). In Sections 12–13 we briefly recall his results, and in Sections 14–16 we
investigate some of the remaining cases. In particular, we obtain some interest-
ing discrete series representations for small parameter values for the real forms of
S6 ' G2,c/SU(3).

For information about real spherical spaces and their discrete series in general we
refer to [12]; this paper was intended in part to examine some interesting examples
of those results. In particular, we are interested in formulating the parametrization
of discrete series in a way that may generalize as much as possible. We are very
grateful to Job Kuit for extensive discussions of this parametrization problem.

One such formulation involves the “method of coadjoint orbits:” representations
of G are parametrized by certain orbits G · λ of G on the real dual vector space

g∗0 =def HomR(Lie(G),R) (1.2a)

(often together with additional data). The orbits corresponding to representations
appearing in G/H typically have representatives

λ ∈ [g0/h0]∗. (1.2b)

We mention this at the beginning of the paper because this coadjoint orbit parametriza-
tion is often not a familiar one (like that of representations of compact groups by
highest weights). We will write something like

π(orbit λ,Λ) (1.2c)

for the representation of G parametrized by G · λ (and sometimes additional data
Λ). If G is an equal-rank reductive group and λ ∈ g∗0 is a regular elliptic element
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(never mind exactly what these terms mean), then

π(orbit λ) = discrete series with Harish-Chandra parameter iλ; (1.2d)

so this looks like a moderately familiar parametrization. (Here “discrete series
representation” has the classical meaning of an irreducible summand of L2(G).
Soon we will use the term more generally to refer to summands of L2(G/H).) But
notice that (1.2d) includes the case of G compact. In that case λ is not the highest
weight, but rather an exponent in the Weyl character formula.

Here is how most of our discrete series will arise. Still for G reductive, if λ is
elliptic but possibly singular, define

Gλ = L, q = l + u (1.2e)

to be the θ-stable parabolic subalgebra defined by the requirement that

iλ(α∨) > 0, (α ∈ ∆(u, h)). (1.2f)

The “additional data” that we sometimes need is a one-dimensional character

Λ: L→ C×, dΛ = iλ+ ρ(u). (1.2g)

(If Gλ is connected, which is automatic if G is connected and λ is elliptic, then Λ
is uniquely determined by λ; the existence of Λ is an integrality constraint on λ.)
Attached to (λ,Λ) is a cohomologically induced unitary representation π(orbit λ,Λ)
satisfying

infinitesimal character = iλ− ρL = dΛ− ρ.

lowest K-type = Λ− 2ρ(u ∩ k)

= iλ− ρ(u ∩ p) + ρ(u ∩ k).

(1.2h)

If λ is small, the formula for the lowest K-type can fail: one thing that is true is
that this representation of K appears if the weight is dominant for K.

In [23], the representation π(orbit λ,Λ) was called Aq(Λ− 2ρ(u)).
If G = K is compact, then

π(orbit λ) = repn of highest weight iλ+ ρ(u). (1.2i)

If this weight fails to be dominant, then (still in the compact case) π(orbit λ,Λ) = 0.
A confusing but important aspect of this construction is that the same represen-
tation of G may be attached to several different coadjoint orbits. Still for G = K
compact, the trivial representation is attached to the orbit of iρ(u) for each of the
(2semisimple rank(K)) different K conjugacy classes of parabolic subalgebras q. If we
are looking at the trivial representation inside functions on a homogeneous space
G/H, then the requirement (1.2b) will “prefer” only some of these orbits: different
orbits for different H.

Notational convention. If (π, Vπ) is a representation of a group G, and H ⊂ G
is a subgroup, we write

(πH , V Hπ ), (1.3a)

or often just πH for the subspace of H-fixed vectors in Vπ. If T ∈ End(Vπ) preserves
V Hπ , then we will write

πH(T ) =def T |V Hπ (1.3b)

for the restriction of T to the invariant vectors. This notation may be confusing
because we often write a family of representations of G as something like

{πGs | s ∈ S}; (1.3c)
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then in the notation [πGs ]H , the superscripts G and H have entirely different mean-
ings. We hope that no essential ambiguity arises in this way.

2. The classical calculation

Suppose n ≥ 1 is an integer. Write O(n) for the orthogonal group of the standard
inner product on Rn, and

Sn−1 = {v ∈ Rn | 〈v, v〉 = 1} (2.1a)

for the (n− 1)-dimensional sphere. We choose as a base point

e1 = (1, 0, . . . , 0) ∈ Sn−1, (2.1b)

which makes sense by our assumption that n ≥ 1. Then O(n) acts transitively on
Sn−1, and the isotropy group at e1 is

O(n)e1 ' O(n− 1); (2.1c)

we embed O(n− 1) in O(n) by acting on the last n− 1 coordinates. This shows

Sn−1 ' O(n)/O(n− 1). (2.1d)

Now Frobenius reciprocity guarantees that if H ⊂ G are compact groups, then

L2(G/H) '
∑

(π,Vπ)∈Ĝ

Vπ ⊗ (V ∗π )H . (2.2)

In words, the multiplicity of an irreducible representation π of G in L2(G/H) is
equal to the dimension of the space of H-fixed vectors in π∗. So understanding
functions on G/H amounts to understanding representations of G/H admitting an
H-fixed vector. All of the compact homogeneous spaces G/H that we will consider

are Gelfand pairs, meaning that dim(Vπ∗)
H ≤ 1 for every π ∈ Ĝ.

Here’s how that looks for our example. We omit the cases n = 1 and n = 2,
which are degenerate versions of the same thing; so assume n ≥ 3. A maximal
torus in O(n) is

T = SO(2)[n/2], (2.3a)

so a weight is an [n/2]-tuple of integers. For every integer a ≥ 0 there is an

irreducible representation π
O(n)
a of highest weight

(a, 0, . . . , 0), dimπO(n)
a =

(a+ n/2− 1)
∏n−3
j=1 (a+ j)

(n/2− 1) · (n− 3)!
. (2.3b)

Notice that the polynomial giving the dimension has degree n − 2. One natural

description of π
O(n)
a is

πO(n)
a = Sa(Cn)/r2Sa−2(Cn); (2.3c)

what we divide by is zero if a < 2. We will be interested in the infinitesimal

characters of the representations π
O(n)
a ; that is, the scalars by which elements of

Z(o(n)) =def U(o(n)C)O(n) (2.3d)

act on π
O(n)
a . According to Harish-Chandra’s theorem, infinitesimal characters

may be identified with Weyl group orbits of complexified weights. The infinitesimal
character of a finite-dimensional representation of highest weight λ is given by λ+ρ,
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with ρ half the sum of the positive roots. Using the calculation of ρ given in (2.8a),
we get

infinitesimal character(πO(n)
a ) = (a+ (n− 2)/2, (n− 4)/2, (n− 6)/2, · · · ). (2.3e)

The key fact (in the notation explained in (1.3)) is that

dim[πO(n)
a ]O(n−1) = 1 (a ≥ 0), dimπO(n−1) = 0 (π 6' πO(n)

a ). (2.3f)

Therefore

L2(Sn−1) '
∞∑
a=0

πO(n)
a (2.3g)

as representations of O(n).

If n = 1, the definition (2.3c) of π
O(1)
a is still reasonable. Then π

O(1)
a is one-

dimensional if a = 0 or 1, and zero for a ≥ 2. The formula (2.3g) is still valid.

If n = 2, the definition (2.3c) of π
O(2)
a is still reasonable, and (2.3g) is still valid.

Then π
O(2)
a is one-dimensional if a = 0, and two-dimensional for a ≥ 1.

Here is the orbit method perspective. The Lie algebra g0 consists of n×n skew-
symmetric matrices; h0 is the subalgebra in which the first row and column are
zero. We can identify g∗0 with g0 using the invariant bilinear form

B(X,Y ) = tr(XY ).

Doing that, define

aorbit = a+ (n− 2)/2 (2.4a)

λ(aorbit) =



0 aorbit/2 0 . . . 0
−aorbit/2 0 0 . . . 0

0 0
...

... 0(n−2)×(n−2)

0 0


∈ (g0/h0)∗. (2.4b)

The isotropy group for λ(aorbit) is

O(n)λ(aorbit) = SO(2)×O(n− 2) =def L. (2.4c)

With this notation,

πO(n)
a = π(orbit λ(aorbit)). (2.4d)

The reason this is true is that the infinitesimal character of the orbit method rep-
resentation on the right is (by (1.2h))

λ(aorbit)− ρL = (a+ (n− 2)/2,−(n− 4)/2,−(n− 6)/2, · · · )

= infinitesimal character of πO(n)
a .

(2.4e)

An aspect of the orbit method perspective is that the “natural” dominance
condition is no longer a ≥ 0 but rather

aorbit > 0 ⇐⇒ a > −(n− 2)/2. (2.4f)

For the compact group O(n) we have

π(orbit λ(aorbit)) = 0, 0 > a > −(n− 2)/2, (2.4g)
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(for example because the infinitesimal characters of these representations are sin-
gular) so the difference is not important. But matters will be more interesting in
the noncompact case (Section 11).

Back in the general world of a homogeneous space G/H for compact groups, fix
a (positive) G-invariant metric on g0 = Lie(G), and write

ΩG = −(sum of squares of an orthonormal basis). (2.5)

for the corresponding Casimir operator. (We use a minus sign because natural
choices for the metric are negative definite rather than positive definite.) The G-
invariant metric on g0 defines an H-invariant metric on g0/h0 ' Te(G/H), and
therefore a G-invariant Riemannian structure on G/H. Write

L = negative of Laplace-Beltrami operator on G/H, (2.6)

a G-invariant differential operator. According to [7, Exercise II.A4], the action
of ΩG on functions on G/H is equal to the action of L. (The Exercise is stated
for symmetric spaces, but the proof on page 568 works in the present setting.)
Consequently

on an irreducible G-representation π ⊂ C∞(G/H),
L acts by the scalar π(ΩG).

So we need to be able to calculate these scalars. If T is a maximal torus in G,
and π has highest weight λ ∈ t∗, then

π(ΩG) = 〈λ+ 2ρ, λ〉 = 〈λ+ ρ, λ+ ρ〉 − 〈ρ, ρ〉. (2.7)

Here 2ρ ∈ t∗ is the sum of the positive roots. (The second formula relates this
scalar to the infinitesimal character written in (2.3e) above.)

Now we’re ready to calculate the spectrum of the spherical Laplace operator L.

We need to calculate π
O(n)
a (ΩO(n)). The sum of the positive roots is

2ρ(O(n)) = (n− 2, n− 4, · · · , n− 2[n/2]). (2.8a)

(Recall that we have identified weights of T = SO(2)[n/2] with [n/2]-tuples of
integers.) Because our highest weight is

λ = (a, 0, . . . , 0), (2.8b)

we find

πO(n)
a (ΩO(n)) = a2 + (n− 2)a = a2

orbit − (n− 2)2/4. (2.8c)

Theorem 2.9. Suppose n ≥ 3. The eigenvalues of the (negative) Laplace-Beltrami
operator L on Sn−1 are a2 + (n− 2)a, for all non-negative integers a. The multi-
plicity of this eigenvalue is

(a+ n/2− 1)
∏n−3
j=1 (a+ j)

(n/2− 1) · (n− 3)!
,

a polynomial in a of degree n− 2.

In Sections 3–5 we’ll repeat this calculation using other groups.
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3. The complex calculation

Suppose n ≥ 1 is an integer. Write U(n) for the unitary group of the standard
Hermitian inner product on Cn, and

S2n−1 = {v ∈ Cn | 〈v, v〉 = 1} (3.1a)

for the (2n− 1)-dimensional sphere. We choose as a base point

e1 = (1, 0, . . . , 0) ∈ S2n−1, (3.1b)

which makes sense by our assumption that n ≥ 1. Then U(n) acts transitively on
S2n−1, and the isotropy group at e1 is

U(n)e1 ' U(n− 1); (3.1c)

we embed U(n− 1) in U(n) by acting on the last n− 1 coordinates. This shows

S2n−1 ' U(n)/U(n− 1). (3.1d)

Here is the representation theory. We omit the case n = 1, which is a degenerate
version of the same thing; so assume n ≥ 2. A maximal torus in U(n) is

T = U(1)n (3.2a)

so a weight is an n-tuple of integers. For all integers b ≥ 0 and c ≥ 0 there is an

irreducible representation π
U(n)
b,c (n) of highest weight

(b, 0, . . . , 0,−c), dimπ
U(n)
b,c =

(b+ c+ n− 1)
∏n−2
j=1 (b+ j)(c+ j)

(n− 1) · [(n− 2)!]2
. (3.2b)

Notice that the polynomial giving the dimension has degree 2n− 3 in the variables
b and c. A natural description of the representation is

π
U(n)
b,c ' Sb(Cn)⊗ Sc(Cn)/r2Sb−1(Cn)⊗ Sc−1(Cn); (3.2c)

what we divide by is zero if b or c is zero. The space is (a quotient of) polynomial
functions on Cn, homogeneous of degree b in the holomorphic coordinates and
homogeneous of degree c in the antiholomorphic coordinates.

Using the calculation of ρ given in (3.4a) below, we find

infl. char.
(
π
U(n)
b,c

)
= (b+ (n− 1)/2, (n− 3)/2, · · · ,−(n− 3)/2,−(c+ (n− 1)/2). (3.2d)

The key fact (again in the notation of (1.3)) is that

dim[π
U(n)
b,c ]U(n−1) = 1 (b ≥ 0, c ≥ 0), dimπU(n−1) = 0 (π 6' πU(n)

b,c ). (3.2e)

Therefore

L2(S2n−1) '
∑

b≥0, c≥0

π
U(n)
b,c (3.2f)

as representations of U(n).
We add one more piece of representation-theoretic information, without explain-

ing yet why it is useful. If we write U(1) for the multiplication by unit scalars in
the first coordinate, then U(1) commutes with U(n − 1). In any representation of
U(n), U(1) therefore preserves the U(n− 1)-fixed vectors. The last fact is

U(1) acts on [π
U(n)
b,c ]U(n−1) by the weight b− c. (3.2g)
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Here is the orbit method perspective. The Lie algebra g0 consists of n×n skew-
hermitian matrices; h0 is the subalgebra in which the last row and column are zero.
We can identify g∗0 with g0 using the invariant bilinear form

B(X,Y ) = tr(XY ).

Doing that, define

borbit = b+ (n− 1)/2, corbit = c+ (n− 1)/2. (3.3a)

We need also an auxiliary parameter

rorbit = (borbitcorbit)
1/2. (3.3b)

Now define a linear functional

λ(borbit, corbit) =



i(borbit − corbit) rorbit 0 . . . 0
−rorbit 0 0 . . . 0

0 0
...

... 0(n−2)×(n−2)

0 0


∈ (g0/h0)∗.

(3.3c)

This skew-hermitian matrix has been constructed to be orthogonal to h0, and to
have eigenvalues iborbit, −icorbit, and n− 2 zeros. Its isotropy group is (as long as
rorbit 6= 0)

U(n)λ(borbit,corbit) = U(1)× U(n− 2)× U(1) =def L; (3.3d)

the first and last U(1) factors are not the usual “coordinate” U(1) factors, but
rather correspond to the iborbit and −icorbit eigenspaces respectively. With this

notation,

π
U(n)
b,c = π(orbit λ(borbit, corbit)). (3.3e)

An aspect of the orbit method perspective is that the “natural” dominance condi-
tion is no longer b, c ≥ 0 but rather

borbit > 0 ⇐⇒ b > −(n− 1)/2, corbit > 0 ⇐⇒ c > −(n− 1)/2. (3.3f)

For the compact group U(n) we have

π(orbit λ(borbit, corbit)) = 0 if 0 > b > −(n− 1)/2

or 0 > c > −(n− 1)/2,
(3.3g)

so the difference is not important. But matters will be more interesting in the
noncompact case (Section 12).

Now we’re ready for spectral theory. We need to calculate π
U(n)
b,c (ΩU(n)). The

sum of the positive roots is

2ρ(U(n)) = (n− 1, n− 3, · · · ,−(n− 1)). (3.4a)

(Recall that we have identified weights of T = U(1)n with n-tuples of integers.)
Because our highest weight is

λ = (b, 0, . . . ,−c), (3.4b)
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Table 1. Casimir eigenvalues and multiplicities on S3

b c π
U(n)
b,c (ΩU(2)) [π

U(n)
b,c ]U(1)(2ΩU(2) − ΩU(1)) dim a π

O(4)
a (ΩO(4)) dim

0 0 0 0 1 0 0 1
0 1 2 3 2 1 3 4
1 0 2 3 2
0 2 6 8 3 2 8 9
1 1 4 8 3
2 0 6 8 3
0 3 12 15 4 3 15 16
1 2 8 15 4
2 1 8 15 4
3 0 12 15 4

we find

π
U(n)
b,c (ΩU(n)) = b2 + c2 + (n− 1)(b+ c)

= b2orbit + c2orbit − (n− 1)2/2.
(3.4c)

Just as for the representation theory above, we’ll add one more piece of infor-
mation without explaining why it will be useful:

[π
U(n)
b,c ]U(n−1)(ΩU(1)) = (b− c)2 = b2 + c2 − 2bc. (3.4d)

Combining the last two equations gives

[π
U(n)
b,c ]U(n−1)(2ΩU(n) − ΩU(1)) = (b+ c)2 + (2n− 2)(b+ c). (3.4e)

Theorem 3.5. Suppose n ≥ 2. The eigenvalues of the (negative) Laplace-Beltrami
operator LU on S2n−1 are b2 + c2 + (n − 1)(b + c), for all non-negative integers b
and c. The multiplicity of this eigenvalue is

(b+ c+ n− 1)
∏n−2
j=1 (b+ j)

∏n−2
k=1(c+ k)

(n− 1) · (n− 2)! · (n− 2)!

a polynomial in b and c of total degree 2n− 3.
A little more precisely, the multiplicity of an eigenvalue λ is the sum over all

expressions

λ = b2 + c2 + (n− 1)(b+ c)

(with b and c nonnegative integers) of the indicated polynomial in b and c.

Let us compute the first few eigenvalues when n = 2, so that we are looking at S3.
Some numbers are in Table 3. We have also included eigenvalues and multiplicities
from the calculation with O(4) acting on S3, and the peculiar added calculations
from (3.2g) and (3.4e).

Since each half (left and the right) of the table concerns S3, there should be some
relationship between them. There are indeed relationships, but they are not nearly
as close as one might expect. What is being calculated in each case is the spectrum
of a Laplace-Beltrami operator. It is rather clear that the spectra are quite different:
the multiplicities calculated with U(2) are smaller than the multiplicities calculated
with O(4), and the actual eigenvalues are smaller for U(2) as well.



10 HENRIK SCHLICHTKRULL, PETER TRAPA, AND DAVID A. VOGAN, JR.

The reason for this is that metric gO that we used in the O(2n) calculation is
not the same as the metric gU that we used in the U(n) calculation. There are two
aspects to the difference. Recall that

Te1(Sn−1) = {(0, v2, · · · , vn) | vj ∈ R} ' Rn−1. (3.6)

In this picture, we will see that gO is the usual inner product on Rn−1. In the U(n)
picture,

Te1(S2n−1) = {(it1, z2, · · · , zn) | t ∈ R, zj ∈ C} ' R + Cn−1. (3.7)

In this picture, gU is actually twice the usual inner product on Cn−1:

|(0, x2 + iy2, · · · , xn + iyn)|2gU = 2|(0, 0, x2, y2, · · · , xn, yn)|2gO . (3.8)

Here is how to see this factor of two. The Riemannian structure gO for O(n) is
related to the invariant bilinear form on o(n)

〈X,Y 〉O(n) = (1/2) tr(XY ). (3.9)

The reason for the factor of 1/2 is so that the form restricts to (minus) the “stan-
dard” inner product on the Cartan subalgebra so(2)[n/2] ' R[n/2]. Now suppose
that

v ∈ Rn−1 ' Te1(Sn−1).

The tangent vector v is given by the n× n skew-symmetric matrix A(v) with first
row (0, v), first column (0,−v)t, and all other entries zero. Then

|v|2gO = −〈A(v), A(v)〉O(n) = −(1/2)(tr(A(v)A(v))) = |v|2, (3.10)

proving the statement after (3.6) about g0.
For similar reasons, gU is related to the invariant form on u(n)

〈Z,W 〉U(n) = Re tr(ZW ) = (1/2)(tr(ZW ) + tr(ZW )). (3.11)

If z ∈ Cn−1 ⊂ Te1(S2n−1), then the tangent vector z is given by the n × n skew-
Hermitian matrix B(z) with first row (0, z), first column (0,−z)t, and all other
entries zero. Therefore

|z|2gU = −〈B(z), B(z)〉U(n) = −Re(tr(B(z)B(z)) = 2|z|2. (3.12)

Now equations (3.10) and (3.12) prove (3.8)
Doubling the Riemannian metric has the effect of dividing the Laplace operator

by two, and so dividing the eigenvalues by two. For this reason, the eigenvalues
computed using U(n) ought to be half of those computed using O(2n).

But that is still not what the table says. The reason is that in the U(n) picture,
there is a “preferred” line in each tangent space, corresponding to the fibration

S1 → S2n−1 → CPn−1.

In our coordinates in (3.7), it is the coordinate t1. The skew-Hermitian matrix
C(it1) involved has it1 in the first diagonal entry, and all other entries zero.

|(it1, 0, · · · , 0)|2gU = −〈C(it1), C(it1)〉U(n) = t21 = |(0, t1, 0, 0, · · · , 0, 0)|2gO : (3.13)

no factor of two. So the metric attached to the U(n) action is fundamentally
different from the metric attached to the O(2n) action. In the U(n) case, there is a
new (non-elliptic) Laplacian LU(1) acting in the direction of the S1 fibration only.
The remarks about metrics above say that

LO = 2LU − LU(1). (3.14)
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(The reason is that the sum of squares of derivatives in LO is almost exactly twice
the sum of squares LU ; except that this factor of two is not needed in the direction
of the U(1) fibration.) The “extra” calculations (3.2g) and (3.4e) are calculating
the spectrum of LU(1) representation-theoretically; so the column

[π
U(n)
b,c ]U(1)(2ΩU(2) − ΩU(1))

in the table above is calculating the spectrum of the classical Laplacian LO.
Here is a final representation-theoretic statement, explaining how the U(n) and

O(2n) calculations fit together.

Theorem 3.15. Suppose n ≥ 2, and a is a non-negative integer. Using the inclu-
sion U(n) ⊂ O(2n), we have

πO(2n)
a |U(n) =

∑
0≤b,c
b+c=a

π
U(n)
b,c .

The contribution of these representations to the spectrum of the O(2n)-invariant
Laplacian LO is

πO(2n)
a (ΩO(2n)) = a2 + (2n− 2)a

= (b+ c)2 + 2(n− 1)(b+ c)

= [π
U(n)
b,c ]U(n−1)(2ΩU(n) − ΩU(1)).

4. The quaternionic calculation

Suppose n ≥ 1 is an integer. Write Sp(n) for the unitary group of the standard
Hermitian inner product on Hn. This is a group of H-linear transformations; that
is, R-linear transformations commuting with scalar multiplication by H. Because H
is noncommutative, these scalar multiplications do not commute with each other,
and so are not linear. It is therefore possible and convenient to enlarge Sp(n) to

Sp(n)× Sp(1) = Sp(n)linear × Sp(1)scalar; (4.1a)

the second factor is scalar multiplication by unit quaternions. This enlarged group
acts on Hn, by the formula

(glinear, zscalar) · v = gvz−1; (4.1b)

we need the inverse to make the right action of scalar multiplication into a left
action. The action preserves length, and so can be restricted to the (4n − 1)-
dimensional sphere

S4n−1 = {v ∈ Hn | 〈v, v〉 = 1} (4.1c)

We choose as a base point

e1 = (1, 0, . . . , 0) ∈ S4n−1, (4.1d)

which makes sense by our assumption that n ≥ 1. Then Sp(n) × Sp(1) acts tran-
sitively on S2n−1, and the isotropy group at e1 is

[Sp(n)× Sp(1)]e1 ' Sp(n− 1)× Sp(1)∆. (4.1e)

Here we embed Sp(n− 1) in Sp(n) by acting on the last n− 1 coordinates, and the
last factor is the diagonal subgroup in Sp(1)linear (acting on the first coordinate)
and Sp(1)scalar. This shows

S4n−1 ' [Sp(n)× Sp(1)]/[Sp(n− 1)× Sp(1)∆]. (4.1f)



12 HENRIK SCHLICHTKRULL, PETER TRAPA, AND DAVID A. VOGAN, JR.

Here is the representation theory. We omit the case n = 1, which is a degenerate
version of the same thing; so assume n ≥ 2. A maximal torus in Sp(n) is

T = U(1)n, (4.2a)

n copies of the unit complex numbers acting diagonally on Hn. A weight is there-
fore an n-tuple of integers. For all integers d ≥ e ≥ 0 there is an irreducible
representation

π
Sp(n)
d,e of highest weight (d, e, 0, . . . , 0, 0),

dimπ
Sp(n)
d,e =

(d+ e+ 2n− 1)(d− e+ 1)
∏2n−3
j=1 (d+ j + 1)(e+ j)

(2n− 1)(2n− 2) · [(2n− 3)!]2
.

(4.2b)

A maximal torus in Sp(1) is U(1), and a weight is an integer. For each integer
f ≥ 0 there is an irreducible representation

π
Sp(1)
f of highest weight f, dimπ

Sp(1)
f = f + 1. (4.2c)

We are interested in the representations (for d ≥ e ≥ 0)

π
Sp(n)×Sp(1)
d,e = π

Sp(n)
d,e ⊗ πSp(1)

d−e

dimπ
Sp(n)×Sp(1)
d,e =

(d+ e+ 2n− 1)(d− e+ 1)2
∏2n−3

j=1 (d+ j + 1)(e+ j)

(2n− 1)(2n− 2) · [(2n− 3)!]2
.

(4.2d)

Notice that the polynomial giving the dimension has degree 4n− 3.
Using the calculation of ρ given in (4.4a) below, we find

infl. char.(π
Sp(n)×Sp(1)
d,e ) = (d+ n, e+ (n− 1), n− 2, · · · , 1)(d− e+ 1). (4.2e)

The key fact is that

dim[π
Sp(n)×Sp(1)
d,e ]Sp(n−1)×Sp(1)∆ = 1 (d ≥ e ≥ 0),

dimπSp(n−1)×Sp(1)∆ = 0 (π 6' πSp(n)×Sp(1)
d,e ).

(4.2f)

Therefore

L2(S4n−1) '
∑
d≥e≥0

π
Sp(n)×Sp(1)
d,e (4.2g)

as representations of Sp(n)× Sp(1).
Here is one more piece of representation-theoretic information. We saw that

Sp(n − 1) × Sp(1)∆ ⊂ Sp(n − 1) × Sp(1) × Sp(1) ⊂ Sp(n) × Sp(1); so inside any
representation of Sp(n) × Sp(1) we get a natural representation of Sp(1) × Sp(1)
generated by the Sp(n− 1)× Sp(1)∆ fixed vectors. The last fact is

[Sp(1)× Sp(1)] · [πSp(n)×Sp(1)
d,e ]Sp(n−1)×Sp(1)∆

= irr of highest weight (d− e, d− e).
(4.2h)

This representation has infinitesimal character

infl. char.
(
[Sp(1)× Sp(1)] · [πSp(n)×Sp(1)

d,e ]Sp(n−1)×Sp(1)∆
)

= (d− e+ 1, d− e+ 1).
(4.2i)

Here is the orbit method perspective. (To simplify the notation, we will discuss
only G = Sp(n) rather than Sp(n) × Sp(1).) The Lie algebra g0 consists of n × n
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skew-hermitian quaternionic matrices; h0 is the subalgebra in which the last row
and column are zero. Define

dorbit = d+ (n− 1), eorbit = e+ (n− 2). (4.3a)

We need also an auxiliary parameter

rorbit = (dorbiteorbit)
1/2. (4.3b)

Now define a linear functional

λ(dorbit, eorbit) =



i(dorbit + eorbit) rorbit 0 . . . 0
−rorbit 0 0 . . . 0

0 0
...

... 0(n−2)×(n−2)

0 0


∈ (g0/h0)∗.

(4.3c)

This skew-hermitian matrix has been constructed to be orthogonal to h0, and to
be conjugate by G to

idorbit 0 0 . . . 0
0 ieorbit 0 . . . 0

0 0
...

... 0(n−2)×(n−2)

0 0

 (4.3d)

With this notation,

π
Sp(n)
d,e = π(orbit λ(dorbit, eorbit)). (4.3e)

An aspect of the orbit method perspective is that the “natural” dominance condi-
tion is no longer d ≥ e ≥ 0 but rather

dorbit > eorbit > 0 ⇐⇒ d+ 1 > e > −(n− 1). (4.3f)

For the compact group Sp(n) we have

π(orbit λ(dorbit, eorbit)) = 0 if 0 > e > −(n− 1) (4.3g)

so the difference is not important. But matters will be more interesting in the
noncompact case (Section 13).

Now we’re ready for spectral theory. Because the group is a product, it is natural
to calculate the eigenvalues of the Casimir operators from the two factors separately.

We calculate first π
Sp(n)×Sp(1))
d,e (ΩSp(n)). The sum of the positive roots is

2ρ(Sp(n)) = (2n, 2n− 2, · · · , 2). (4.4a)

Because our highest weight for Sp(n) is

λ = (d, e, 0, . . . , 0), (4.4b)

we find
π
Sp(n)
d,e (ΩSp(n)) = d2 + e2 + 2nd+ 2(n− 1)e

= d2
orbit + e2

orbit − n2 − (n− 1)2.
(4.4c)
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Similarly

π
Sp(n)×Sp(1)
d,e (ΩSp(1)) = (d− e)2 + 2(d− e) = d2 + e2 − 2de+ 2(d− e). (4.4d)

Combining the last two equations gives

π
Sp(n)×Sp(1)
d,e (2ΩSp(n) − ΩSp(1)) = (d+ e)2 + (4n− 2)(d+ e)

= π
O(4n)
d+e (ΩO(4n)).

(4.4e)

This formula is first of all just an algebraic identity, obtained by plugging in a = d+e
and 4n in the formula (2.8c). But it has a more serious meaning. Let us directly
compare the metrics gO and gSp on S4n−1, as we did for gU in Section 3. We
find that on a (4n − 4)-dimensional subspace of the tangent space, gO is some
multiple x·gSp; and on the orthogonal 3-dimensional subspace (corresponding to the
Sp(1) ' S3 fibers of the bundle S4n−1 → Pn−1(H)) there is a different relationship
gO = y · gSp. (It is not difficult to check by more careful calculation that x = 2 and
y = 1, but we are looking here for what is obvious.) It follows that

LO = xLSp − zLSp(1),

exactly as in (3.14). If now

π
Sp(n)×Sp(1)
d,e ⊂ πO(4n)

a ,

then we conclude (by computing the Laplacian separately in these two representa-
tions) that there is (for all integers d ≥ e ≥ 0) an algebraic identity

x(d2 + e2 + 2nd+ 2(n− 1)e)− z((d− e)2 + 2(d− e)) = a2 + (4n− 2)a;

here a ≥ 0 is some integer depending on d and e. Since every integer a ≥ 0 must
appear in such an identity, it follows easily that x = 2 and z = 1, and that a = d+e.
In particular,

LO = 2LSp − LSp(1). (4.4f)

This means that the equation (4.4e) is describing two calculations of LO, in the
subrepresentation

π
Sp(n)×Sp(1)
d,e ⊂ πO(4n)

d+e . (4.4g)

Here is what we have proven about how the Sp(n) and O(4n) calculations fit
together.

Theorem 4.5. Suppose n ≥ 2, and a is a non-negative integer. Using the map
Sp(n)× Sp(1)→ O(4n), we have

πO(4n)
a |Sp(n)×Sp(1) =

∑
d≥e≥0
d+e=a

π
Sp(n)×Sp(1)
d,e .

The contribution of these representations to the spectrum of the O(4n)-invariant
Laplacian LO is

πO(4n)
a (ΩO(4n)) = a2 + (4n− 2)a

= (d+ e)2 + (4n− 2)(d+ e)

= π
Sp(n)×Sp(1)
d,e (2ΩSp(n) − ΩSp(1)).
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5. The octonionic calculation

We will make no explicit discussion of octonions, except to say that F4 is re-
lated; and that the non-associativity of octonions makes it impossible to define a
“projective space” except in octonionic dimension one. That is why this example
is not part of an infinite family like the real, complex, and quaternionic ones.

Write Spin(9) for the compact spin double cover of SO(9). This group can be
defined using a spin representation σ, which has dimension 2(9−1)/2 = 16. The
representation is real, so we fix a realization (σR, VR) on a sixteen-dimensional real
vector space. Of course the compact group Spin(9) preserves a positive definite
inner product on VR, and

S15 = {v ∈ VR | 〈v, v〉 = 1} (5.1a)

We choose as a base point
v1 ∈ S15, (5.1b)

Then Spin(9) acts transitively on S15. (Once one knows that F4,c/Spin(9) is a
(sixteen-dimensional) rank one Riemannian symmetric space, and that the action
of Spin(9) on the tangent space at the base point is the spin representation, then
this is Cartan’s result (1.1).) The isotropy group at v1 is

Spin(9)v1 ' Spin(7)′. (5.1c)

The embedding of Spin(9)v1 in Spin(9) can be described as follows. First, we write

Spin(8) ⊂ Spin(9) (5.1d)

for the double cover of SO(8) ⊂ SO(9). Next, we embed

Spin(7)′
spin−→ Spin(8). (5.1e)

(We use the prime to distinguish this subgroup from the double cover of SO(7) ⊂
SO(8), which we will call Spin(7) ⊂ Spin(8).) The way this works is that the
spin representation of Spin′(7) has dimension 2(7−1)/2 = 8, is real, and preserves
a quadratic form, so Spin′(7) ⊂ SO(8). (Another explanation appears in (7.1)
below.) Now take the double cover of this inclusion. This shows

S15 ' Spin(9)/ Spin(7)′. (5.1f)

Here is the representation theory. A maximal torus in Spin(9) is a double cover
of SO(2)4 ⊂ SO(9). A weight is either a 4-tuple of integers (the weights factoring
to SO(2)4) or a 4-tuple from Z + 1/2. For all integers x ≥ 0 and y ≥ 0 there is an
irreducible representation

πSpin(9)
x,y of highest weight (y/2 + x, y/2, y/2, y/2),

dimπSpin(9)
x,y =

(2x+ y + 7)
∏3

j=1(x+ j)(y + j + 1)(y + 2j − 1)(x+ y + j + 3)

7! · 6! · (1/2)

(5.2a)

Notice that the polynomial giving the dimension has degree 13.
Using the calculation of ρ given in (5.4a) below, we find

infl. char.(πSpin(9)
x,y ) = ((2x+ y + 7)/2, (y + 5)/2, (y + 3)/2, (y + 1)/2). (5.2b)

The key fact is that

dim[πSpin(9)
x,y ]Spin(7)′ = 1 (x ≥ 0, y ≥ 0),

dimπSpin(7)′ = 0 (π 6' πSpin(9)
x,y ).

(5.2c)
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Therefore

L2(S15) '
∑

x≥0, y≥0

πSpin(9)
x,y (5.2d)

as representations of Spin(9).
Here is one more piece of representation-theoretic information. We saw that

Spin(7)′ ⊂ Spin(8) ⊂ Spin(9); so inside any representation of Spin(9) we get a
natural representation of Spin(8) generated by the Spin(7)′ fixed vectors. The last
fact is

Spin(8) · [πSpin(9)
x,y ]Spin(7)

′
= irr of highest weight (y/2, y/2, y/2, y/2). (5.2e)

This representation has infinitesimal character

infl. char.
(

Spin(8) · [πSpin(9)
x,y ]Spin(7)

′)
= ((y + 6)/2, (y + 4)/2, (y + 2)/2, y/2). (5.2f)

Here is why this is true. Helgason’s theorem about symmetric spaces says that the
representations of Spin(8) of highest weights

(y/2, y/2, y/2, y/2) (5.2g)

are precisely the ones having a Spin(7)′-fixed vector, and furthermore this fixed
vector is unique. The corresponding statement for Spin(8)/ Spin(7) is the case
n = 8 of Theorem 2.9. In that case the highest weights for Spin(8) appear-
ing are the multiples of the fundamental weight (1, 0, 0, 0) (corresponding to the
simple root at the end of the “long” leg of the Dynkin diagram of D4. For
Spin(8)/ Spin(7)′, the weights appearing must therefore be multiples of the fun-
damental weight (1/2, 1/2, 1/2, 1/2) for a simple root on one of the “short” legs of
the Dynkin diagram, proving (5.2g).

To complete the proof of (5.2c) using (5.2g) we need only the classical branching
theorem for Spin(8) ⊂ Spin(9) (see for example [8, Theorem 9.16]).

Here is the orbit method perspective. Define

xorbit = x+ 2, yorbit = y + 3. (5.3a)

Then it turns out that there is a 9× 9 real skew-symmetric matrix λ(xorbit, yorbit)
(which we will not attempt to write down) with the properties

λ(xorbit, yorbit) ∈ (g0/h0)∗

λ(xorbit, yorbit) has eigenvalues

±i(xorbit/2 + yorbit/4) and ±i(yorbit/4) (three times).

(5.3b)

Consequently

πSpin(9)
x,y = π(orbit λ(xorbit, yorbit)). (5.3c)

An aspect of the orbit method perspective is that the “natural” dominance condi-
tion is no longer x, y ≥ 0 and but rather

xorbit, yorbit > 0 ⇐⇒ x > −2, y > −3. (5.3d)

For the compact group Spin(9) we have

π(orbit λ(xorbit, yorbit)) = 0 if 0 > x > −2 or 0 > y > −3; (5.3e)

so the difference is not important. But matters will be more interesting in the
noncompact case (Section 14).
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Now we’re ready for spectral theory. We need to calculate π
Spin(9)
x,y (ΩSpin(9)).

The sum of the positive roots is

2ρ(Spin(9)) = (7, 5, 3, 1). (5.4a)

Because our highest weight is

λ = (y/2 + x, y/2, y/2, y/2), (5.4b)

we find
πSpin(9)
x,y (ΩSpin(9)) = x2 + y2 + xy + 8y + 7x. (5.4c)

Just as for the representation theory above, we’ll add one more piece of infor-
mation without explaining why it will be useful:(

Spin(8) · [πSpin(9)
x,y ]Spin(7)′

)
(ΩSpin(8)) = y2 + 6y (5.4d)

Combining the last two equations gives(
Spin(8) · [πSpin(9)

x,y ]Spin(7)′
)

(4ΩSpin(9) − 3ΩSpin(8)) = (2x+ y)2 + 14(2x+ y)

= π
O(16)
2x+y (ΩO(16)).

(5.4e)
The last equality can be established exactly as in (4.4e).

Here is how the Spin(9) and O(16) calculations fit together.

Theorem 5.5. Using the inclusion Spin(9) ⊂ O(16) given by the spin representa-
tion, we have

πO(16)
a |Spin(9) =

∑
x≥0, y≥0
2x+y=a

πSpin(9)
x,y .

The contribution of these representations to the spectrum of the O(16)-invariant
Laplacian LO is

πO(16)
a (ΩO(16)) = a2 + (16− 2)a

= (2x+ y)2 + 14(2x+ y)

=
(

Spin(8) · [πSpin(9)
x,y ]Spin(7)′ ]

)
(4ΩSpin(9) − 3ΩSpin(8)).

6. The small G2 calculation

Write G2,c for the 14-dimensional compact connected Lie group of type G2.
There is a 7-dimensional real representation (τR,WR) of G2,c, whose (complexified)
weights are zero and the six short roots. The representation τR preserves a positive
definite inner product, and so defines inclusions

G2,c ↪→ SO(WR), G2,c ↪→ Spin(WR). (6.1a)

The corresponding action of G2,c on S6 is transitive. An isotropy group is isomor-
phic to SU(3); this is a subgroup generated by a maximal torus and the long root
SU(2)s. Therefore

S6 = {w ∈WR | 〈v, v〉 = 1} ' G2,c/SU(3). (6.1b)

Here is the representation theory. Having identified a subgroup of G2,c with
SU(3), we may as well take for our maximal torus in G2,c the diagonal torus

T = S(U(1)3) ⊂ SU(3). (6.2a)
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The weights of T are therefore

X∗(T ) = {λ = (λ1, λ2, λ3) | λi − λj ∈ Z, λ1 + λ2 + λ3 = 0}. (6.2b)

For each integer a ≥ 0 there is an irreducible representation

πa highest wt (2a/3,−a/3,−a/3), dimπa =
(2a+ 5)

∏4
j=1(a+ j)

5!
(6.2c)

Notice that the polynomial giving the dimension has degree 5. In fact it is exactly

the polynomial of (2.3b) giving the dimension of π
O(7)
a .

Using the calculation of ρ given in (6.4a) below, we find

infinitesimal character of πa = ((2a+ 5)/3,−(a+ 1)/3,−(a+ 4)/3). (6.2d)

The key fact is that

dimπSU(3)
a = 1 (a ≥ 0), dimπSU(3) = 0 (π 6' πa). (6.2e)

Therefore

L2(S7) '
∑
a≥0

πa (6.2f)

as representations of G2,c.
Here is the orbit method perspective. Define

aorbit = a+ 5/2. (6.3a)

Then it turns out that there is an element λ(aorbit) ∈ g∗0 (which we will not attempt
to write down) with the properties

λ(aorbit) ∈ (g0/h0)∗

λ(aorbit) is conjugate to

aorbit · (2/3,−1/3,−1/3).

(6.3b)

Consequently

πa = π(orbit λ(aorbit)). (6.3c)

An aspect of the orbit method perspective is that the “natural” dominance condi-
tion is no longer a ≥ 0 and but rather

aorbit > 0 ⇐⇒ a > −5/2. (6.3d)

For the compact group G2,c we have

π(orbit λ(aorbit)) = 0 if 0 > a > −5/2; (6.3e)

so the difference is not important. But matters will be more interesting in the
noncompact case (Section 15).

Now we’re ready for spectral theory. We need to calculate πa(ΩG2,c
). The sum

of the positive roots is

2ρ(G2,c) = (10/3,−2/3,−8/3). (6.4a)

Because our highest weight is

λ = (2a/3,−a/3,−a/3) (6.4b)

we find
πa(ΩG2,c

) = 2a2/3 + 10a/3 = 2(a2 + 5a)/3

= (2/3)(a2
orbit − 25/4)

(6.4c)
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Here is how the G2,c and O(7) calculations fit together.

Theorem 6.5. Using the inclusion G2,c ⊂ O(7), we have

πO(7)
a |G2,c

= πG2,c
a .

The contribution of these representations to the spectrum of the O(7)-invariant
Laplacian LO is

πO(7)
a (ΩO(7)) = a2 + 5a

= πG2,c
a (3ΩG2,c

/2).

This is a consequence of the equality of dimensions observed at (6.2c), together
with the fact that the inclusion of G2,c in O(7) carries (some) short roots to (some)
short roots.

7. The big G2 calculation

Suppose n is an integer at least two. The group Spin(2n), or equivalently the Lie
algebra spin(2n), has an interesting outer automorphism of order two: conjugation
by the orthogonal matrix

σ = Ad


1 0 · · · 0 0
0 1 · · · 0 0

. . .

0 0 · · · 1 0
0 0 · · · 0 −1

 . (7.1a)

The group of fixed points of σ is the “first 2n− 1 coordinates”

Spin(2n− 1) = Spin(2n)σ. (7.1b)

The automorphism σ implements the automorphism of the Dynkin diagram

s s s. . . s s
s




JJ ←
→

exchanging the two short legs. If n = 4, the Dynkin diagram

s s s
s




JJ

has two additional involutive automorphisms, exchanging the other two pairs of
legs. This gives rise to two additional (nonconjugate) automorphisms σ′ and σ′′ of
Spin(8). Their fixed point groups are isomorphic to Spin(7), but not conjugate to
the standard one (or to each other). We call them

Spin(8)σ
′

= Spin(7)′, Spin(8)σ
′′

= Spin(7)′′. (7.1c)

The full automorphism group of the Dynkin diagram is the symmetric group S3;
σ0 and σ± are the three transpositions, any two of which generate S3. The fixed
point group of the full S3 is

Spin(8)S3 = G2,c = Spin(7) ∩ Spin(7)′; (7.1d)

this is a classical way to construct G2,c. It follows that

S7 = Spin(8)/ Spin(7) ⊃ Spin(7)′/G2,c. (7.1e)
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Because the last homogeneous space is also seven-dimensional, the inclusion is an
equality

S7 = Spin(7)′/G2.c. (7.1f)

Here is the representation theory. We take for our maximal torus in Spin(7)′ the
double cover T+ of

SO(2)3 ⊂ SO(7). (7.2a)

The weights of T+ are

X∗(T ) = {λ = (λ1, λ2, λ3) | λi ∈ Z (all i) or λi ∈ Z + 1/2 (all i)}. (7.2b)

For each integer a ≥ 0 there is an irreducible representation

πSpin(7)′

a highest wt (a/2, a/2, a/2),

dimπSpin(7)′

a =
(a+ 3)

∏5
j=1(a+ j)

3 · 5!

(7.2c)

Notice that the polynomial giving the dimension has degree 6; in fact it is exactly

the polynomial (2.3b) giving the dimension of π
O(8)
a .

Using the calculation of ρ given in (7.4a) below (or in (2.8a)) we find

infl. char.(πSpin(7)′

a ) = ((a+ 5)/2, (a+ 3)/2, (a+ 1)/2). (7.2d)

The key fact is that

πO(8)
a |Spin(7)′ = πSpin(7)′

a . (7.2e)

Therefore

L2(S7) '
∑
a≥0

πSpin(7)′

a (7.2f)

as representations of Spin(7)′.
Here is the orbit method perspective. Define

aorbit = a+ 3. (7.3a)

Then it turns out that there is a 7× 7 skew-symmetric real matrix λ(aorbit) (which
we will not attempt to write down) with the properties

λ(aorbit) ∈ (g0/h0)∗

λ(aorbit) has eigenvalues ± aorbit/4 (three times).
(7.3b)

Consequently

πSpin(7)′

a = π(orbit λ(aorbit)). (7.3c)

An aspect of the orbit method perspective is that the “natural” dominance condi-
tion is no longer a ≥ 0 and but rather

aorbit > 0 ⇐⇒ a > −3. (7.3d)

For the compact group G2,c we have

π(orbit λ(aorbit)) = 0 if 0 > a > −3; (7.3e)

so the difference is not important. But matters will be more interesting in the
noncompact case (Section 16).

Now we’re ready for spectral theory. We need to calculate πa(ΩSpin(7)′). The
sum of the positive roots is

2ρ(Spin(7)′) = (5, 3, 1). (7.4a)
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Because our highest weight is

λ = (a/2, a/2, a/2) (7.4b)

we find
πSpin(7)′

a (ΩSpin(7)′) = 3a2/4 + 9a/2 = 3(a2 + 6a)/4

= (3/4)(a2
orbit − 9)

= (3/4)πO(8)
a (ΩO(8)).

(7.4c)

Here is a summary.

Theorem 7.5. Using the inclusion Spin(7)′ ⊂ O(8), we have

πO(8)
a |Spin(7)′ = πSpin(7)′

a .

The contribution of these representations to the spectrum of the O(8)-invariant
Laplacian LO is

πO(8)
a (ΩO(8)) = a2 + 6a

= πSpin(7)′

a (4ΩSpin(7)′/3).

8. Invariant differential operators

Suppose H ⊂ G is a closed subgroup of a Lie group G. Write

D(G/H) = G-invariant differential operators on G/H, (8.1a)

an algebra. Following for example Helgason [7, pages 274–275], we wish to un-
derstand this algebra and its spectral theory as a way to understand functions on
G/H. A first step is to describe the algebra in terms of the Lie algebras of G and
H. This is done in [5] when H is reductive in G (precisely, when the Lie algebra
h0 has an Ad(H)-stable complement in g0). Ways to remove this hypothesis have
been understood for a long time; we follow the nice account in [11].

Write

g0 = Lie(G) = real left-invariant vector fields on G

g = g0 ⊗R C = complex left-invariant vector fields on G
(8.1b)

These vector fields act on functions by differentiating “on the right:”

(Xf)(g) =
d

dt
(f(g exp(tX))) |t=0 (X ∈ g0). (8.1c)

As usual we can therefore identify the enveloping algebra

U(g) = left-invariant complex differential operators on G. (8.1d)

We can identify

C∞(G/H) = {f ∈ C∞(G) | f(xh) = f(x) (x ∈ G, h ∈ H)}. (8.1e)

Now consider the space

I(G/H) =def

[
U(g)⊗U(h) C

]Ad(H)⊗1
(8.1f)

Before we pass to Ad(H)-invariants, we have only a left U(g) module: no algebra
structure. But Ad(H)-invariants inherit the algebra structure from U(g) ⊗C C; so
I(G/H) is an algebra. The natural action

U(g)⊗ C∞(G)→ C∞(G) (8.1g)
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(which is a left algebra action, but comes by differentiating on the right) restricts
to a left algebra action

I(G/H)⊗ C∞(G/H)→ C∞(G/H) (8.1h)

on the subspace C∞(G/H) ⊂ C∞(G).
Suppose more generally that (τ, Vτ ) is a finite-dimensional (and therefore smooth)

representation of H. Then

Vτ = G×H Vτ (8.1i)

is a G-equivariant vector bundle on G/H. The space of smooth sections is

C∞(Vτ ) = {f ∈ C∞(G,Vτ ) | f(xh) = τ(h)−1f(x) (x ∈ G, h ∈ H)}. (8.1j)

Now consider the space

Iτ (G/H) =
[
U(g)⊗U(h) End(Vτ )

](Ad⊗Ad)(H)
(8.1k)

(The group H acts by automorphisms on both the algebra U(g) and the algebra
End(Vτ ), in the latter case by conjugation by the operators τ(h). The H-invariants
are taken for the tensor product of these two actions.) Before we pass to Ad(H)-
invariants, we have only a left U(g) module: no algebra structure. But Ad(H)-
invariants inherit the algebra structure from U(g) ⊗C End(Vτ ); so Iτ (G/H) is an
algebra. The natural action

[U(g)⊗C End(Vτ )]⊗ C∞(G,Vτ )→ C∞(G,Vτ ) (8.1l)

(which is a left algebra action, but comes by differentiating on the right) restricts
to a left algebra action

Iτ (G/H)⊗ C∞(Vτ )→ C∞(Vτ ). (8.1m)

Proposition 8.2 (Helgason [5, Theorem 10]; [6, pages 758–759]; Koornwinder
[11, Theorem 2.10]). Suppose H is a closed subgroup of the Lie group G. The
action (8.1m) identifies the algebra Iτ (G/H) with

Dτ (G/H) = G-invariant differential operators on the vector bundle Vτ .

The action of Iτ (G/H) on formal power series sections of Vτ at the identity is
a faithful action.

Helgason’s idea for invariant harmonic analysis (see for example [7, Introduc-
tion]) is to understand the spectral theory of the algebra I(G/H) = D(G/H) on
C∞(G/H); or, more generally, of Dτ (G/H) on smooth sections of Vτ . Suppose for
example that D(G/H) is abelian, and fix an algebra homomorphism

λ : D(G/H)→ C, λ ∈ Max Spec(D(G/H)). (8.3a)

Then the collection of simultaneous eigenfunctions

C∞(G/H)λ =def {f ∈ C∞(G/H) | Df = λ(D)f | D ∈ D(G/H)} (8.3b)

is naturally a representation of G (by left translation). The question is for which λ
the space C∞(G/H)λ is nonzero; and more precisely, what representation of G it
carries. We can define

Spec(G/H) = {λ ∈ Max Spec(D(G/H)) | C∞(G/H)λ 6= 0}. (8.3c)

All of these remarks apply equally well to vector bundles.
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How can we identify interesting or computable invariant differential operators?
The easiest way is using the center of the enveloping algebra

Z(g) =def U(g)G. (8.4a)

(If G is disconnected, this may be a proper subalgebra of the center.) The obvious
map

iG : Z(g)→ Iτ (G/H), z 7→ z ⊗ IVτ (8.4b)

is an algebra homomorphism. Here is how the spectral theory of the differential
operators iG(Z(g)) is related to representation theory. Suppose that (π,Eπ) is a
smooth irreducible representation of G. Under a variety of mild assumptions (for
example, if G is reductive and π is quasisimple) there is a homomorphism

χπ : Z(g)→ C (8.4c)

called the infinitesimal character of π so that

dπ(z) = χπ(z) · IEπ . (8.4d)

Suppose now that there is a G-equivariant inclusion

jG : Eπ → C∞(G/H,Vτ ). (8.4e)

Finding inclusions like (8.4e) is one of the things harmonic analysis is about. One
reason we care about it is the consequences for spectral theory:

iG(z) acts on jG(Eπ) ⊂ C∞(Vτ ) by the scalar χπ(z) (z ∈ Z(g)). (8.4f)

Here is a generalization. Suppose G1 is a subgroup of G normalized by H:

G1 ⊂ G, Ad(H)(G1) ⊂ G1. (8.5a)

(The easiest way for this to happen is for G1 to contain H.) Then H acts on Z(g1),
so we get

iG1
: Z(g1)H → Iτ (G/H), z1 7→ z1 ⊗ IVτ . (8.5b)

These invariant differential operators are acting along the submanifolds

xG1/(G1 ∩H) ⊂ G/H (x ∈ G) (8.5c)

of G/H. An example is the first coordinate G1 = U(1) introduced in (3.2), for
H = U(n − 1). The operator ΩU(1) on S2n−1 (acting along the fibers of the map

S2n−1 → CPn−1) is one of these new invariant operators. A more interesting
example is G1 = Sp(1)× Sp(1) studied in (4.2h).

Here is how the spectral theory of these new operators is related to representation
theory. The map (8.4e) is (by Frobenius reciprocity) the same thing as an H-
equivariant map

jH : Eπ → Vτ (8.5d)

or equivalently

j∗H : V ∗τ → E∗π. (8.5e)

It makes sense to define

(E∗π)G1,jH = G1 representation generated by j∗H(V ∗τ ) ⊂ π∗. (8.5f)

If the G1 representation (π∗)G1,jH has infinitesimal character χ∗1 (the contragredient
of the infinitesimal character χ1), then

iG1
(z1) acts on jG(Eπ) ⊂ C∞(Vτ ) by the scalar χ1(z1) (z1 ∈ Z(g1)H). (8.5g)
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The homomorphisms iG of (8.4b) and (8.5b) define an algebra homomorphism
from the abstract (commutative) tensor product algebra

iG ⊗ iG1 : Z(g)⊗C Z(g1)→ Iτ (G/H). (8.5h)

The reason for this is that Z(g) commutes with all of U(g).
Now that we understand the relationship between representations in C∞(Vτ )

and the spectrum of invariant differential operators, let us see what the results
of Sections 2–7 can tell us: in particular, about the kernel of the homomorphism
iG ⊗ iG1

of (8.5h). We begin with G = O(n), H = O(n− 1) as in Section 2. Write
n = 2m+ ε, with ε = 0 or 1. A maximal torus in G is

T = SO(2)m, t0 = Rm, t = Cm. (8.6a)

The Weyl group W (O(n)) acts by permutation and sign changes on these m coor-
dinates. Harish-Chandra’s theorem identifies

Z(g) ' S(t)W (O(n)) = C[x1, · · · , xm]W (O(n)). (8.6b)

Therefore

(maximal ideals in Z(g))↔ Cm/W (O(n)). (8.6c)

Suppose z ∈ Z(g) corresponds to p ∈ C[x1, · · · , xm]W (O(n)) by (8.6b). Accord-
ing to (8.4f) and (2.3e), the invariant differential operator iG(z) will act on πa ⊂
C∞(G/H) by the scalar

p(a+ (n− 2)/2, (n− 4)/2, · · · , (n− 2m)/2).

Recalling that n− 2m = ε = 0 or 1, we write this as

p(a+ (n− 2)/2, (n− 4)/2, · · · , ε/2). (8.6d)

Here is the consequence we want.

Proposition 8.7. With notation as above, the polynomial

p ∈ C[x1, · · · , xm]W (O(n))

vanishes on the (affine) line

{(α, (n− 4)/2, · · · , ε/2) | α ∈ C}.

if and only if iG(z) ∈ I(G/H) is equal to zero.

Proof. The statement “if” is a consequence of (8.6d): if the differential operator is
zero, then p must vanish at all the points (a + (n − 2)/2, (n − 4)/2, · · · ) with a a
non-negative integer. These points are Zariski dense in the line. For “only if,” the
vanishing of the polynomial makes the differential operator act by zero on all the
subspaces πa ⊂ C∞(G/H). The sum of these subspaces is dense (for example as a
consequence of (2.3g)); so the differential operator acts by zero. The faithfulness
statement in Proposition 8.2 then implies that iG(z) = 0. �

Corollary 8.8. The O(n) infinitesimal characters factoring to iG(Z(g)) are indexed
by weights

(α, (n− 4)/2, · · · , ε/2) (α ∈ C). (8.8a)

Suppose (π,Eπ) is a representation of o(n,C) having an infinitesimal character,
and that (E∗π)o(n−1,C) 6= 0. Then π has infinitesimal character of the form (8.8a).
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Exactly the same arguments apply to the other examples treated in Sections 2–7.
We will just state the conclusions.

Suppose G = U(n), H = U(n− 1) as in Section 3. A maximal torus in G is

T = U(1)n, t0 = Rn, t = Cn. (8.9a)

The Weyl group W (U(n)) acts by permutation on these n coordinates. Harish-
Chandra’s theorem identifies

Z(g) ' S(t)W (U(n)) = C[x1, · · · , xn]W (U(n)). (8.9b)

Therefore
(maximal ideals in Z(g))↔ Cn/W (U(n)). (8.9c)

Suppose z ∈ Z(g) corresponds to p ∈ C[x1, · · · , xn]W (U(n)) by (8.9b). According
to (8.4f) and (3.2d), the invariant differential operator iG(z) will act on πb,c ⊂
C∞(G/H) by the scalar

p((b+ (n− 1))/2, (n− 3)/2, · · · ,−(n− 3)/2,−(c+ (n− 1))/2). (8.9d)

Proposition 8.10. With notation as above, the polynomial

p ∈ C[x1, · · · , xn]W (U(n))

vanishes on the (affine) plane

{(ξ, (n− 3)/2, · · · ,−(n− 3)/2,−τ) | (ξ, τ) ∈ C2}.
if and only if iG(z) ∈ I(G/H) is equal to zero.

Corollary 8.11. The U(n) infinitesimal characters factoring to iG(Z(g)) are in-
dexed by weights

(ξ, (n− 3)/2, · · · ,−(n− 3)/2,−τ) ((ξ, τ) ∈ C2). (8.11a)

Suppose (γ, Fγ) is a representation of u(n,C) having an infinitesimal character,

and that (F ∗γ )u(n−1,C) 6= 0. Then Fγ has infinitesimal character of the form (8.11a).
The parameters ξ and τ may be determined as follows. The central character of
γ (scalars by which the one-dimensional center of the Lie algebra acts) is given
by ξ − τ . If in addition Fγ ⊂ Eπ for some representation (π,Eπ) of o(2n,C) as
in Corollary 8.8, then we may take ξ + τ = α. (Replacing α by the equivalent
infinitesimal character parameter −α has the effect of interchanging ξ and −τ ,
which defines an equivalent infinitesimal character parameter.)

Suppose next that G = Sp(n)×Sp(1), H = Sp(n− 1)×Sp(1)∆ as in Section 4.
A maximal torus in G is

T = U(1)n × U(1), t0 = Rn × R, t = Cn × C. (8.12a)

The Weyl group W (Sp(n) × Sp(1)) acts by sign changes on all n + 1 coordinates,
and permutation of the first n coordinates. Harish-Chandra’s theorem identifies

Z(g) ' S(t)W (Sp(n)×Sp(1)) = C[x1, · · · , xn, y]W (Sp(n)×Sp(1)). (8.12b)

Therefore
(maximal ideals in Z(g))↔ Cn+1/W (Sp(n)× Sp(1)). (8.12c)

Suppose z ∈ Z(g) corresponds to p ∈ C[x1, · · · , xn, y]W (Sp(n)×Sp(1)) by (8.12b).
According to (8.4f) and (4.2e), the invariant differential operator iG(z) will act on
πd,e ⊂ C∞(G/H) by the scalar

p((d+ n, e+ (n− 1), n− 2, · · · , 1), (d− e+ 1)). (8.12d)
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Proposition 8.13. With notation as above, the polynomial

p ∈ C[x1, · · · , xn, y]W (Sp(n)×Sp(1))

vanishes on the (affine) plane

{(ξ, τ, n− 2, · · · , 1)(ξ − τ) | (ξ, τ) ∈ C2}.
if and only if iG(z) ∈ I(G/H) is equal to zero.

Corollary 8.14. The infinitesimal characters for Sp(n) × Sp(1) which factor to
iG(Z(g)) are indexed by weights

(ξ, τ, n− 2, · · · , 1)(ξ − τ) ((ξ, τ) ∈ C2). (8.14a)

Suppose (γ, Fγ) is a representation of sp(n,C)× sp(1,C) having an infinitesimal

character, and that (F ∗γ )sp(n−1,C)×sp(1,C)∆ 6= 0. Then Fγ has infinitesimal character
of the form (8.14a); ξ− τ is the infinitesimal character of the sp(1,C) factor. If in
addition Fγ ⊂ Eπ for some representation (π,Eπ) of o(4n,C) as in Corollary 8.8,
then we may take ξ + τ = α.

This is a good setting in which to consider the more general invariant differential
operators from (8.5). Suppose in that general setting that G1 is reductive, and
choose a Cartan subalgebra t1 ⊂ g1, with (finite) Weyl group

W (G1) =def NG1(C)(t1)/ZG1(C)(t1) ⊂ Aut(t1), Z(g1) ' S(t)W1 . (8.15a)

The adjoint action of H on G1 defines another Weyl group, which normalizes
W (G1):

W (G1) /WH(G1) =def NH(C)(t1)/ZH(C)(t1) ⊂ Aut(t1), Z(g1)H ' S(t1)WH(G1).
(8.15b)

Under mild hypotheses (for example G1 is reductive algebraic and the adjoint action
of H is algebraic) then WH(G1) is finite, so the algebra Z(g1) is finite over Z(g1)H ,
and the maximal ideals in this smaller algebra are given by evaluation at

µ ∈ t∗1/WH(G1). (8.15c)

In the case G1 = Sp(1)×Sp(1), the adjoint action of H on G1 is contained in that
of G1, so W (G1) = WH(G1), and Z(g1)H = Z(g1). We have

T1 = U(1)2, t1,0 = R2, t1 = C2. (8.15d)

The Weyl group W (G1) = WH(G1) acts by sign changes on each coordinate, so the
Harish-Chandra isomorphism is

Z(g1)H = Z(g1) ' S(t1)W (G1) = C[u1, u2]W (G1) (8.15e)

Suppose therefore that z1 ∈ Z(g1) corresponds to p1 ∈ C[x1, x2]W (G1). Ac-
cording to (8.5g) and (4.2i), the invariant differential operator iG1

(z1) acts on

π
Sp(n)×Sp(1)
d,e ⊂ C∞(G/H) by the scalar

p1(d− e+ 1, d− e+ 1). (8.15f)

Proposition 8.16. With notation as above, suppose that

P ∈ C[x1, · · · , xn, y, u1, u2]W (G)×W (G1),

and write Z ∈ Z(g)⊗Z(g1)H for the corresponding central element. Then P vanishes
on the affine plane

{(ξ, τ, n− 2, · · · , 1)(ξ − τ)(ξ − τ, ξ − τ) | (ξ, τ) ∈ C2}.
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if and only if (iG ⊗ iG1
)(Z) ∈ I(G/H) is equal to zero.

Corollary 8.17. In the setting G/H = (Sp(n) × Sp(1))/(Sp(n − 1) × Sp(1)∆),
G1 = Sp(1) × Sp(1), the characters of the tensor product algebra (8.5h) which
factor to the image in I(G/H) are indexed by weights

(ξ, τ, n− 2, · · · , 1)(ξ − τ)(ξ − τ, ξ − τ). (8.17a)

Here the first n coordinates are giving the infinitesimal character for Sp(n); the
next is the infinitesimal character for the Sp(1) factor of G; and the last two are
the infinitesimal character for G1.

Suppose (γ, Fγ) is an sp(n,C) representation as in Corollary 8.14. Then the g1

representation generated by (F ∗γ )sp(n−1,C) has infinitesimal character (ξ− τ, ξ− τ).

Suppose next that G = Spin(9), H = Spin(7)′ as in Section 5. A maximal torus
in G is

T = double cover of SO(2)4, t0 = R4, t = C4. (8.18a)

The Weyl group W (Spin(9)) acts by permutation and sign changes on these four
coordinates. Harish-Chandra’s theorem identifies

Z(g) ' S(t)W (Spin(9)) = C[x1, · · · , x4]W (Spin(9)). (8.18b)

Therefore

(maximal ideals in Z(g))←→ C4/W (Spin(9)). (8.18c)

Suppose z ∈ Z(g) corresponds to p ∈ C[x1, · · · , x4]W (Spin(9)) by (8.18b). According

to (8.4f) and (5.2b), the invariant differential operator iG(z) will act on π
Spin(9)
x,y ⊂

C∞(G/H) by the scalar

p((2x+ y + 7)/2, (y + 5)/2, (y + 3)/2, (y + 1)/2). (8.18d)

Proposition 8.19. With notation as above, the polynomial

p ∈ C[x1, · · · , x4]W (Spin(9))

vanishes on the (affine) plane

{(ξ, τ + 5/2, τ + 3/2, τ + 1/2) | (ξ, τ) ∈ C2}.

if and only if iG(z) ∈ I(G/H) is equal to zero.

Corollary 8.20. The infinitesimal characters for Spin(9) factoring to iG(Z(g)) are
indexed by weights

(ξ, τ + 5/2, τ + 3/2, τ + 1/2) ((ξ, τ) ∈ C2). (8.20a)

Suppose (γ, Fγ) is a representation of spin(9,C) having an infinitesimal char-

acter, and that (F ∗γ )h(C) 6= 0. Then Fγ has infinitesimal character of the form

(8.14a). If the spin(8,C)-module generated by (F ∗γ )h(C) has a submodule with an
infinitesimal character, then we may choose τ so that this infinitesimal character
is

(τ + 3, τ + 2, τ + 1, τ). (8.20b)

If in addition Fγ ⊂ Eπ for some representation (π,Eπ) of o(16,C) as in Corollary
8.8 (with infinitesimal character parameter α) then we may choose ξ = α/2.

For the last two cases we write even less.
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Corollary 8.21. When G/H = G2,c/SU(3), the infinitesimal characters for G2,c

which factor to iG(Z(g)) are indexed by weights

(2ξ, (1/2)− ξ,−(1/2)− ξ) (ξ ∈ C). (8.21a)

Suppose (γ, Fγ) is a representation of g2(C) having an infinitesimal character,

and that (F ∗γ )u(3,C) 6= 0. Then the infinitesimal character of Fγ is of the form in
(8.21a). If in addition Fγ ⊂ Eπ for some representation (π,Eπ) of o(7,C) as in
Corollary 8.8, then we may take ξ = α/3.

Corollary 8.22. When G/H = Spin(7)′/G2,c, the infinitesimal characters for
Spin(7)′ which factor to iG(Z(g)) are indexed by weights

(ξ + 1, ξ, ξ − 1) (ξ ∈ C). (8.22a)

Suppose (γ, Fγ) is a representation of spin(7,C)′ having an infinitesimal charac-

ter, and that (F ∗γ )g2(C) 6= 0. Then the infinitesimal character of Fγ is of the form
in (8.22a). If in addition Fγ ⊂ Eπ for some representation (π,Eπ) of o(8,C) as in
Corollary 8.8, then we may take ξ = α/2.

9. Changing real forms

Results like (8.4f) and its generalization (8.5g) explain why it is interesting to
study the representations of G appearing in C∞(Vτ ) and the invariant differential
operators on this space. In this section we state our first method for doing that.

Definition 9.1. Suppose G1 and G2 are Lie groups with closed subgroups H1

and H2. Assume that there is an isomorphism of complexified Lie algebras

i : g1
∼−→ g2, i(h1) = h2. (9.1a)

Finally, assume that i identifies the Zariski closure of Ad(H1) in Aut(g1) with
the Zariski closure of Ad(H2) in Aut(g2). (This is automatic if H1 and H2 are
connected.) Then we say that the homogeneous space G2/H2 is another real
form of the homogeneous space G1/H1.

Given representations (τi, Vτi) of Hi, we say that Vτ2 is another real form
of Vτ1 if there is an isomorphism

i : Vτ1
∼−→ Vτ2 (9.1b)

respecting the actions of h, and identifying the Zariski closure of Ad(H1) in
End(Vτ1) with the Zariski closure of Ad(H2) in End(Vτ2).

Whenever Vτ2 is another real form of Vτ1 , we get an algebra isomorphism

i : Dτ1(G1/H1)
∼−→ Dτ2(G2/H2). (9.1c)

We will use these isomorphisms together with results like Corollaries 8.11–8.22
(proven using compact homogeneous spaces G1/H1) to control the possible repre-
sentations appearing in some noncompact homogeneous spaces G2/H2.

10. Changing the size of the group

Our second way to study representations and invariant differential operators is
this. In the setting (8.1), suppose that S ⊂ G is a closed subgroup, and that

dimG/H = dimS/(S ∩H). (10.1a)

Equivalent requirements are
s/(s ∩ h) = g/h (10.1b)
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or
s + h = g (10.1c)

or
S/(S ∩H) is open in G/H. (10.1d)

Because of this open embedding, differential operators on S/(S ∩ H) are more or
less the same thing as differential operators on G/H. The condition of S-invariance
is weaker than the condition of G-invariance, so we get natural inclusions

D(G/H) ↪→ D(S/(S ∩H)), Dτ (G/H) ↪→ Dτ (S/(S ∩H)). (10.1e)

(notation as in (8.1)). In terms of the algebraic description of these operators given
in Proposition 8.2, notice first that the condition in (10.1b) shows that the inclusion
s ↪→ g defines an isomorphism

U(s)⊗s∩h End(Vτ ) ' U(g)⊗h End(Vτ ) (10.1f)

Therefore

[U(g)⊗h End(Vτ )](Ad⊗Ad)(H) ↪→ [U(g)⊗h End(Vτ )](Ad⊗Ad)(S∩H)

' [U(s)⊗s∩h End(Vτ )](Ad⊗Ad)(S∩H).
(10.1g)

That is,
Iτ (G/H) ↪→ Iτ (S/(S ∩H)). (10.1h)

This algebra inclusion corresponds to the differential operator inclusion (10.1e)
under the identification of Proposition 8.2.

Here is a useful fact.

Proposition 10.2. Let G be a connected reductive Lie group, and let H and S
be closed connected reductive subgroups. Assume the equivalent conditions (10.1a)-
(10.1d). Then

(1) G = SH, and
(2) there is a Cartan involution for G preserving both S and H.

Proof. Part (1) is due to Onishchik [14, Theorem 3.1]. For (2), since H is reductive
in G, there is a Cartan involution θH for G preserving H, and likewise there is
one θS preserving S. By the uniqueness of Cartan involutions for G, θS is the
conjugate of θH by some element g ∈ G, which by (1) can be decomposed as
g = sh. The h-conjugate of θH , which is also the s−1-conjugate of θS , has the
required property. �

It follows from (1) that if (Gc, Sc, Hc) is a triple of a compact Lie group and two
closed subgroups such that Gc = ScHc, and if (G,S,H) is a triple of real forms
(that is, G/S is a real form of Gc/Sc and G/H a real form of Gc/Hc), then S
acts transitively on G/H. Conversely, by (2) every transitive action on a reductive
homogeneous space G/H by a reductive subgroup S ⊂ G is obtained in this way.

In the following sections we shall apply this principle to the real hyperboloid
(11.1a), which is a real form of Sp+q−1 = O(p+ q)/O(p+ q − 1).

The hypothesis that both S and H be reductive is certainly necessary. Suppose
for example that S is a noncompact real form of the complex reductive group G,
and that H is a parabolic subgroup of G (so that S and G are reductive, but H
is not). Then S has finitely many orbits on G/H ([24]), and in particular has
open orbits (so that the conditions (10.1a)–(10.1d) are satisfied); but the number
of orbits is almost always greater than one (so G 6= SH).
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11. Classical hyperboloids

In this section we recall the classical representation-theoretic decomposition of
functions on real hyperboloids: that is, on other real forms of spheres. The spaces
are

Hp,q = {v ∈ Rp,q | 〈v, v〉p,q = 1} = O(p, q)/O(p− 1, q). (11.1a)

Here 〈, 〉p,q is the standard quadratic form of signature (p, q) on Rp+q. The inclu-
sion of the right side of the equality in the middle is just given by the action of the
orthogonal group on the basis vector e1; surjectivity is Witt’s theorem. This real-
ization of the hyperboloid is a symmetric space, so the Plancherel decomposition
is completely known. In particular, the discrete series may be described as follows.
To avoid degenerate cases, we assume that

p ≥ 2. (11.1b)

There is a “compact Cartan subspace” with Lie algebra

ac = 〈e12 − e21〉. (11.1c)

The first requirement is that

ac ⊂ k = o(p)× o(q). (11.1d)

That this is satisfied is a consequence of (11.1b). The second requirement is that
ac belongs to the −1 eigenspace of the involutive automorphism

σ = Ad (diag(−1, 1, 1, . . . , 1)) (11.1e)

with fixed points the isotropy subgroup O(p − 1, q). (More precisely, the group of
fixed points of σ is O(1) × O(p − 1, q); so our hyperboloid is a 2-to-1 cover of the
algebraic symmetric space O(p, q)/[O(1)×O(p−1, q)]. But the references also treat
analysis on this cover.)

For completeness, we mention that whenever

q ≥ 1. (11.1f)

there is another conjugacy class of Cartan subspace, represented by

as = 〈e1,p+1 + ep+1,1〉. (11.1g)

This one is split, and corresponds to the continuous part of the Plancherel formula.
The discrete series for the symmetric space Hp,q is constructed as follows. Using

the compact Cartan subspace ac, construct a θ-stable parabolic

qO(p,q) = lO(p,q) + uO(p,q) ⊂ o(p+ q,C); (11.1h)

the corresponding Levi subgroup is

LO(p,q) = [O(p, q)]ac = SO(2)×O(p− 2, q) (11.1i)

We will need notation for the characters of SO(2):

ŜO(2) = {χ` | ` ∈ Z}. (11.1j)

The discrete series consists of certain irreducible representations

AqO(p,q)(λ), λ : LO(p,q) → C×. (11.1k)

The allowed λ are (first) those trivial on

LO(p,q) ∩O(p− 1, q) = O(p− 2, q). (11.1l)
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These are precisely the characters of SO(2), and so are indexed by integers ` ∈ Z.
Second, there is a positivity requirement

`+ (p+ q − 2)/2 > 0. (11.1m)

We write
λ(`) =def χ` ⊗ 1: LO(p,q) → C×,

π
O(p,q)
` = AqO(p,q)(λ`) (` > (2− p− q)/2).

(11.1n)

The infinitesimal character of this representation is

infl char(π
O(p,q)
` ) = (`+ (p+ q − 2)/2, (p+ q − 4)/2, (p+ q − 6)/2, · · · ). (11.1o)

The discrete part of the Plancherel decomposition is

L2(Hp,q)disc =
∑

`>−(p+q−2)/2

π
O(p,q)
` . (11.1p)

This decomposition appears in [18, page 360], and [16, page 449, Theorem 10, and
page 471]. What Strichartz calls N and n are for us p and q; his d is our `. What
Rossmann calls q and p are for us p and q; his ν−ρ is our `; and his ρ is (p+q−2)/2.
The identification of the representations as cohomologically induced may be found
in [21, Theorem 2.9].

Here is the orbit method perspective. Just as for O(n), we use a trace form to
identify g∗0 with g0. We find

(g0/h0)∗ ' Rp−1,q, (11.2a)

respecting the action of H = O(p − 1, q). The orbits of H of largest dimension
are given by the value of the quadratic form: positive for the orbits represented by
nonzero elements x(e12 − e21) of the compact Cartan subspace of (11.1c); negative
for nonzero elements of the split Cartan subspace y(e1,p+1 + ep+1,1); and zero for
the nilpotent element (e12 − e21 + e1,p+1 + ep+1,1).

Define
`orbit = `+ (n− 2)/2,

λ(`orbit) = `orbit · ((e12 − e21)/2).
(11.2b)

Then the coadjoint orbits for discrete series have representatives in the compact
Cartan subspace

π
O(p,q)
` = π(orbit λ(`orbit)). (11.2c)

Now this representation is an irreducible unitary cohomologically induced repre-
sentation whenever

`orbit > 0 ⇐⇒ ` > −(n− 2)/2. (11.2d)

One of the advantages of the orbit method picture is that the condition `orbit >
0 is simpler than the one ` > (−(n − 2)/2) arising from more straightforward
representation theory as in (11.1n). Of course we always need also the integrality
condition

`orbit ≡ (n− 2)/2 (mod Z) ⇐⇒ ` ≡ 0 (mod Z). (11.2e)

For completeness we mention also the continuous part of the Plancherel decom-
position. The split Cartan subspace as (defined above as long as p and q are each
at least 1) gives rise to a real parabolic subgroup

PO(p,q) = MO(p,q)AsN
O(p,q), MO(p,q) = {±1} ×O(p− 1, q − 1). (11.3a)
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Here As = exp(as) ' R, and {±1} is

O(1)∆ ⊂ O(1)×O(1) ⊂ O(1, 1);

we have
{±1} ×As = SO(1, 1) ' R×,

an algebraic split torus. Therefore

PO(p,q) = SO(1, 1)×O(p− 1, q − 1)×NO(p,q). (11.3b)

The characters of SO(1, 1) are

̂SO(1, 1) = {χε,ν | ε ∈ Z/2Z, ν ∈ C}, χε,ν(r) = |r|ν · sgn(r)ε. (11.3c)

We define
πO(p,q)
ε,ν = Ind

O(p,q)

PO(p,q)

(
χε,ν ⊗ 1O(p−1,q−1) ⊗ 1NO(p,q)

)
. (11.3d)

Here (in contrast to the definition of discrete series π
O(p,q)
` ) we use normalized

induction, with a ρ shift. As a consequence, the infinitesimal character of this
representation is

infl char(πO(p,q)
ε,ν ) = (ν, (p+ q − 4)/2, (p+ q − 6)/2, · · · ); (11.3e)

The continuous part of the Plancherel decomposition is

L2(Hp,q)cont =
∑

ε∈Z/2Z

∫
ν∈iR≥0

πO(p,q)
ε,ν . (11.3f)

Just as for the discrete part of the decomposition, all (not just almost all) of the

representations π
O(p,q)
ε,ν are irreducible (always for ν ∈ iR).

There is an orbit-theoretic formulation of these parameters as well, corresponding
to elements −iν · (e1,p+1 + ep+1,1)/2 of the split Cartan subspace. We omit the
details.

We will need to understand the restriction of π
O(p,q)
` to the maximal compact

subgroup
K = O(p)×O(q) ⊂ O(p, q). (11.4a)

This computation requires knowing

LO(p,q) ∩K = SO(2)×O(p− 2)×O(q), u ∩ s = χ1 ⊗ 1⊗ Cq; (11.4b)

here g = k⊕ s is the complexified Cartan decomposition. Consequently

Sm(u ∩ s) = χm ⊗ 1⊗ Sm(Cq) =
∑

0≤k≤m/2

χm ⊗ 1⊗ πO(q)
m−2k. (11.4c)

Now an analysis of the Blattner formula for restricting cohomologically induced
representations to K gives

π
O(p,q)
` |O(p)×O(q) =

∞∑
m=0

∑
0≤k≤m/2

π
O(p)
m+`+q ⊗ π

O(q)
m−2k. (11.4d)

If p is much larger than q, then some of the parameters for representations of O(p)
are negative. Those representations should be understood to be zero.

A description of the restriction to O(p) × O(q) is in [16, Lemma 11]. In Ross-
mann’s coordinates, what is written is

{πO(p)
m ⊗ πO(q)

n | −(m+ (p− 2)/2) + (n+ (q − 2)/2) ≥ ν,
m+ n ≡ ν − ρ− p (mod 2)}.
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Converting to our coordinates as explained after (11.1p) gives

{πO(p)
m ⊗ πO(q)

n | (m+ (p− 2)/2)− (n+ (q − 2)/2) ≥ ν,
m− n ≡ ν − ρ+ q (mod 2)},

(11.4e)

or equivalently

{πO(p)
m ⊗ πO(q)

n | m− n ≥ `+ q − 1, m− n ≡ `+ q (mod 2)}. (11.4f)

The congruence condition makes the inequality into

m− n ≥ `+ q,

which matches the description in (11.4d)
Finally, we record the easier formulas

πO(p,q)
ε,ν |O(p)×O(q) =

∑
m,m′≥0

m−m′≡ε (mod 2)

πO(p)
m ⊗ πO(q)

m′ . (11.4g)

12. Hermitian hyperboloids

In this section we see what the ideas from Sections 8 and 11 say about the
discrete series of the non-symmetric spherical spaces

H2p,2q = {v ∈ Cp,q | 〈v, v〉p,q = 1} = U(p, q)/U(p− 1, q). (12.1a)

Here 〈, 〉p,q is the standard Hermitian form of signature (p, q) on Cp+q. The inclusion
of the right side in the middle is just given by the action of the unitary group on the
basis vector e1; surjectivity is Witt’s theorem for Hermitian forms. These discrete
series were completely described by Kobayashi in [10, Theorem 6.1].

To simplify many formulas, we write in this section

n = p+ q. (12.1b)

Our approach (like Kobayashi’s) is to restrict the discrete series representations

π
O(2p,2q)
` of (11.1p) to U(p, q).

We should mention at this point that the homogeneous space U(n)/U(n−1) has
another noncompact real form GL(n,R)/GL(n− 1,R), arising from the inclusion

GL(n,R) ↪→ O(n, n) (12.1c)

as a real Levi subgroup. For this real form (as Kobayashi observes) the discrete

series representations π
O(n,n)
` decompose continuously on restriction to GL(n,R),

and consequently this homogeneous space has no discrete series. (More precisely,
the character x − y of the center of U(1) of U(p, q) (an integer) appearing in the
analysis below must be replaced by a character of the center R× of GL(n,R) (a
real number and a sign).)

We begin by computing the restriction to U(p)×U(q). What is good about this is
that the representations ofO(2p) andO(2q) appearing in (11.4d) are representations
appearing in the action of O on spheres. We already computed (in Theorem 3.15)
how those branch to unitary groups. The conclusion is

πO(2p,2q)
`

|U(p)×U(q) =
∑
0≤b,c

b+c≥`+2q

∑
0≤b′,c′

b′+c′≤b+c−`−2q

b′+c′≡b+c−` (mod 2)

π
U(p)
b,c ⊗ πU(q)

b′,c′ . (12.1d)

This calculation, together with Corollary 8.11, proves most of
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Proposition 12.2. Suppose p and q are nonnegative integers, each at least two;
and suppose ` > −(n−1). Then the restriction of the discrete series representation

π
O(2p,2q)
` to U(p, q) is the direct sum of the one-parameter family of representations

πU(p,q)
x,y , x, y ∈ Z, x+ y = `.

The infinitesimal character of π
U(p,q)
x,y corresponds to the weight

(x+ (n− 1)/2, (n− 3)/2, . . . ,−(n− 3)/2,−y − (n− 1)/2).

Restriction to the maximal compact subgroup is

πU(p,q)
x,y |U(p)×U(q) =

∑
r,s≥0

min(r,s)∑
k=0

π
U(p)
x+q+r,y+q+s ⊗ π

U(q)
s−k,r−k.

If one of the two subscripts in a U(p) representation is negative, that term is to be
interpreted as zero.

Each of the representations π
U(p,q)
x,y is irreducible.

The “one parameter” referred to in the proposition is x−y; the pair (x, y) can be
thought of as a single parameter because of the constraint x+y = `. What we have
done is sorted the representations of U(p) × U(q) appearing in (12.1d) according
to the character of the center U(1) of U(p, q); this character is (b − c) + (b′ − c′),
and we call it x − y in the rearrangement in Proposition 12.2. The corresponding

representation of U(p, q) (the part of π
O(2p,2q)
` where U(1) acts by x − y) is what

we call π
U(p,q)
x,y . In order to prove most of the proposition, we just need to check

that the same representations of U(p)×U(q) appear in (12.1d) and in Proposition
12.2, and this is easy. We will prove the irreducibility assertion (using [10]) after
(12.3o) below.

Having identified the restriction to U(p) × U(q), we record for completeness
Kobayashi’s identification of the actual representations of U(p, q). These come in
three families, according to the values of the integers x and y. The families are
cohomologically induced from three θ-stable parabolic subalgebras:

q
U(p,q)
+ = l

U(p,q)
+ + u

U(p,q)
+ ⊂ u(n,C); (12.3a)

with Levi subgroup

L
U(p,q)
+ = U(1)p × U(1)q × U(p− 1, q − 1); (12.3b)

q
U(p,q)
0 = l

U(p,q)
0 + u

U(p,q)
0 ⊂ u(n,C); (12.3c)

with Levi subgroup

L
U(p,q)
0 = U(1)p × U(p− 2, q)× U(1)p; (12.3d)

and

q
U(p,q)
− = l

U(p,q)
− + u

U(p,q)
− ⊂ u(n,C); (12.3e)

with Levi subgroup

L
U(p,q)
− = U(p− 1, q − 1)× U(1)q × U(1)p. (12.3f)

(We write U(1)p for a coordinate U(1) ⊂ U(p), and U(1)q ⊂ U(q) similarly. More
complete descriptions of these parabolics are in [10].) Suppose first that

x > `+ (n− 1)/2, y < −(n− 1)/2. (12.3g)
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(Since x+ y = `, these two inequalities are equivalent.) Write ξx for the character
of U(1) corresponding to x ∈ Z. Consider the one-dimensional character

λ+
x,y = ξx ⊗ ξ−(y+n−2) ⊗ det1 (12.3h)

of L
U(p,q)
+ . What Kobayashi proves in [10, Theorem 6.1] is

πU(p,q)
x,y = A

q
U(p,q)
+

(λ+
x,y) (x > `+ (n− 1)/2). (12.3i)

Suppose next that

`+ (n− 1)/2 ≥ x ≥ −(n− 1)/2, −(n− 1)/2 ≤ y ≤ `+ (n− 1)/2. (12.3j)

(Since x + y = `, these two pairs of inequalities are equivalent.) Consider the
one-dimensional character

λ0
x,y = ξx ⊗ 1⊗ ξ−y (12.3k)

of L
U(p,q)
0 . Kobayashi’s result in [10, Theorem 6.1] is now

πU(p,q)
x,y = A

q
U(p,q)
0

(λ0
x,y) (−(n− 1)/2 ≤ x ≤ `+ (n− 1)/2). (12.3l)

The remaining case is

x < −(n− 1)/2, y > `+ (n− 1)/2. (12.3m)

(Since x+ y = `, these two inequalities are equivalent.) Write

λ−x,y = det−1 ⊗ ξx+n−2 ⊗ ξ−y (12.3n)

of L
U(p,q)
− . In this case Kobayashi proves

πU(p,q)
x,y = A

q
U(p,q)
−

(λ−x,y) (x < −(n− 1)/2). (12.3o)

Here is the orbit method perspective. Just as for U(n), we use a trace form to
identify g∗0 with g0. The linear functionals vanishing on h∗0 are

λ(t, u, v) =

 it u v

−u
v 0(n−1)×(n−1)

 ' R + Cp−1,q (12.4a)

with t ∈ R, u ∈ Cp−1, v ∈ Cq.
The orbits of H = U(p − 1, q) of largest dimension are given by the real num-

ber t, and the value of the Hermitian form on the vector (u, v): positive for the
orbits represented by nonzero elements r(e12− e21) (nonzero eigenvalues i(t±a)/2,
with a = (t2 + 4r2)1/2); negative for nonzero elements s(e1,p+1 + ep+1,1) (nonzero

eigenvalues i(t ± a)/2, with a = (t2 − 4s2)1/2); and zero for the nilpotent element
(e12 − e21 + e1,p+1 + ep+1,1) (two nonzero eigenvalues it/2).

Define

`orbit = `+ (n− 1), xorbit = x+ (n− 1)/2, yorbit = y + (n− 1)/2. (12.4b)
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The coadjoint orbits for discrete series have representatives

λ(xorbit, yorbit) =



ixorbite1 − iyorbitep+1 xorbit > 0 > yorbit

ixorbite1 + (e2,p − ep,2)

+(e2,p+1 + ep+1,2) xorbit > 0 = yorbit

ixorbite1 − iyorbitep xorbit > yorbit > 0

iyorbitep + (e1,2 − e2,1)

+e1,p+1 + ep+1,1) xorbit = 0 > yorbit

ixorbitep − iyorbitep+q 0 > xorbit > yorbit.

(12.4c)

Then

πU(p,q)
x,y = π(orbit λ(xorbit, yorbit)). (12.4d)

(We have not discussed attaching representations to partly nilpotent coadjoint or-
bits like λ(xorbit, 0) (with xorbit > 0); suffice it to say that the definitions given
above using q0 are reasonable ones. It would be equally reasonable to use instead
q+. We will see in (12.5a) that this leads to the same representation.)

In the orbit method picture the condition (12.3g) simplifies to

xorbit > yorbit > 0. (12.4e)

Similarly, (12.3m) becomes

xorbit < yorbit < 0. (12.4f)

Finally, (12.3j) is

xorbit ≥ 0 ≥ yorbit; (12.4g)

equality in either of these inequalities is the case of partially nilpotent coadjoint
orbits. In all cases we need also the genericity condition

`orbit > 0 ⇐⇒ ` > −(n− 1), (12.4h)

and the integrality conditions

xorbit ≡ (n− 1)/2 (mod Z), yorbit ≡ (n− 1)/2 (mod Z). (12.4i)

Here now is a sketch of a proof of the irreducibility assertion from Proposition
12.2. Each of the cohomologically induced representations above is in the weakly
fair range. The general results for the weakly fair range of [20] together with
[19, Section 16] apply to show that they are irreducible or zero. The key point is
that the moment map for the cotangent bundle to a relevant partial flag variety is
birational onto its image. This is automatic in type A, which is why the arguments
in [19] for GL(n,R) also apply to U(p, q).

We close with a comment about how the three series of derived functor modules
fit together. If we relax the strict inequalities on x (and y) in (12.3g), then we are
at one edge of the weak inequalities in (12.3j). For these values of x and y (which
occur only when n is odd), namely

(x, y) = (`+ (n− 1)/2,−(n− 1)/2) ,

or equivalently

(xorbit, yorbit) = (`orbit, 0) ,

we claim

A
q
U(p,q)
+

(λ+
x,y) ' A

q
U(p,q)
0

(λ0
x,y). (12.5a)
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To see this, one can begin by checking they have the same associated variety: the

U(p,C)×U(q,C) saturations of u
U(p,q)
+ ∩s and u

U(p,q)
0 ∩s coincide. (The dense orbit

of U(p,C)× U(q,C) is one of the two possibilities with one Jordan block of size 3
and the others of size 1.) A little further checking shows that they also have the
same annihilator: for ` ≤ (n− 2)/2, given the associated variety calculation, there
is a unique possibility for the annihilator; a slightly more refined analysis handles
larger `. Given that their annihilators and associated varieties are the same, the
main result of [2] implies (12.5a). Similarly, for the other edge of the inequalities
in (12.3j), namely

(x, y) = (−(n− 1)/2, `+ (n− 1)/2) ,

we have

A
q
U(p,q)
0

(λ0
x,y) ' A

q
U(p,q)
−

(λ−x,y) (12.5b)

by a similar argument.

13. Quaternionic hyperboloids

In this section we use the ideas from Section 8 to investigate the discrete series
of the non-symmetric spherical spaces

H4p,4q = {v ∈ Hp,q | 〈v, v〉p,q = 1}
= [Sp(p, q)× Sp(1)]/[Sp(p− 1, q)× Sp(1)∆].

(13.1a)

Here 〈, 〉p,q is the standard Hermitian form of signature (p, q) on Hp+q. We are
using the action of a real form of the enlarged group from (4.1a), namely

Sp(p, q)× Sp(1) = Sp(p, q)linear × Sp(1)scalar; (13.1b)

The inclusion of the last side of the equality (forH4p,4q) in the middle is just given
by the action of this enlarged quaternionic unitary group on the basis vector e1;
surjectivity is Witt’s theorem for quaternionic Hermitian forms. To avoid talking
about degenerate cases, we will assume

p, q ≥ 2. (13.1c)

Just as in Section 12, we will simplify many formulas by writing

n = p+ q. (13.1d)

The homogeneous space Sp(n)/Sp(n − 1) has another noncompact real form
[Sp(2n,R)× Sp(2,R)]/[Sp(2(n− 1),R)× Sp(2,R)∆], arising from an inclusion

Sp(2n,R)× Sp(2,R) ↪→ O(2n, 2n). (13.1e)

This real form certainly has discrete series: we expect that the discrete summands of

the restriction of π
O(2n,2n)
` are indexed by discrete series representations of Sp(2,R),

just as we find below (for Sp(p, q)) that they are indexed by irreducible represen-
tations of the compact group Sp(1). But we have not carried out this analysis.

Our goal is to restrict the discrete series representations π
O(4p,4q)
` of (11.1p)

to Sp(p, q), and so to understand some representations in the discrete series of
(Sp(p, q)× Sp(1))/(Sp(p− 1, q)× Sp(1)).
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We have calculated in Theorem 4.5 how the O(4p) and O(4q) representations
appearing in (11.4d) restrict to Sp. The result is

π
O(4p,4q)
` |[Sp(p)×Sp(1)]×[Sp(q)×Sp(1)] =

∞∑
m=0

0≤k≤m/2

∑
0≤e≤d

0≤e′≤d′

d+e=m+`+4q

d′+e′=m−2k

π
Sp(p)×Sp(1)
d,e ⊗ πSp(q)×Sp(1)

d′,e′ .

(13.2a)

The group to which we are restricting here is actually a little larger than the
maximal compact subgroup of Sp(p, q)× Sp(1), which is

Sp(p)× Sp(q)× Sp(1)∆; (13.2b)

the subscript ∆ indicates that this Sp(1) factor (corresponding to scalar multiplica-
tion on Hp,q)) is diagonal in the Sp(1)×Sp(1) of (13.2a) (corresponding to separate
scalar multiplications on Hp and Hq). The branching (G×G)|G∆

is tensor product
decomposition, which is very simple for Sp(1). We find

π
O(4p,4q)
` |[Sp(p)×Sp(q)×Sp(1)] =

∞∑
m=0

0≤k≤m/2

∑
0≤e≤d

0≤e′≤d′

d+e=m+`+4q

d′+e′=m−2k

min(d−e,d′−e′)∑
j=0

π
Sp(p)
d,e ⊗ πSp(q)

d′,e′ ⊗ π
Sp(1)

d+d′−e−e′−2j . (13.2c)

It will be useful to rewrite this formula. The indices m and k serve only to bound
some of the other indices, so we can eliminate them by rewriting the bounds. We
find

π
O(4p,4q)
` |[Sp(p)×Sp(q)×Sp(1)] =∑

0≤e≤d 0≤e′≤d′

d′+e′≤d+e−`−4q

d′+e′≡d+e−` (mod 2)

∑
|(d−e)−(d′−e′)|≤f

≤(d−e)+(d′−e′)

f≡(d−e)+(d′−e′) (mod 2)

π
Sp(p)
d,e ⊗ πSp(q)

d′,e′ ⊗ π
Sp(1)
f . (13.2d)

For each of these representations of K, define integers x and y by solving the
equations

x+ y = `, x− y = f. (13.2e)

The congruence condition on f guarantees that x and y are indeed integers. Con-
versely, given any integers x and y satisfying

x+ y = `, x ≥ y (13.2f)

we can define

πSp(p,q)×Sp(1)
x,y = subrepresentation of π

O(4p,4q)
` |Sp(p,q)×Sp(1)

where Sp(1) acts with infl. char. x− y + 1.
(13.2g)

Equivalently, we are asking that Sp(1) act by a multiple of π
Sp(1)
x−y .

This calculation, together with Corollary 8.14, proves most of

Proposition 13.3. Suppose p and q are nonnegative integers, each at least two;
and suppose ` > −2n + 1. Then the restriction of the discrete series representa-

tion π
O(4p,4q)
` to Sp(p, q) × Sp(1) is the direct sum of the one-parameter family of

representations
πSp(p,q)×Sp(1)
x,y , x ≥ y ∈ Z, x+ y = `.
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The infinitesimal character of π
Sp(p,q)×Sp(1)
x,y corresponds to the weight

(x+ n, y + n− 1, n− 2, . . . , 1)(x− y + 1).

Restriction to the maximal compact subgroup is

πSp(p,q)×Sp(1)
x,y |Sp(p)×Sp(q)×Sp(1) =∑

0≤e≤d 0≤e′≤d′

d′+e′≤d+e−(x+y)−4q

d′+e′≡d+e−(x+y) (mod 2)

∑
|(d−e)−(d′−e′)|≤x−y

x−y≤(d−e)+(d′−e′)

(d−e)+(d′−e′)≡x−y (mod 2)

π
Sp(p)
d,e ⊗ πSp(q)

d′,e′ ⊗ π
Sp(1)
x−y .

Each of the representations π
Sp(p,q)
x,y is irreducible.

We will prove the irreducibility assertions (using [10]) after (13.4j) below.
Having identified the restriction to Sp(p) × Sp(q) × Sp(1), we want to record

Kobayashi’s identification of the actual representations of Sp(p, q)× Sp(1). These
come in two families, according to the values of the integers x and y. The families
are cohomologically induced from two θ-stable parabolic subalgebras. The first is

q
Sp(p,q)×Sp(1)
+ = l

Sp(p,q)×Sp(1)
+ + u

Sp(p,q)×Sp(1)
+ ⊂ sp(n,C)× sp(1,C), (13.4a)

with Levi subgroup

L
Sp(p,q)×Sp(1)
+ = [U(1)p × U(1)q × Sp(p− 1, q − 1)]× U(1). (13.4b)

(The first three factors are in Sp(p, q). We write U(1)p for a coordinate U(1) ⊂
U(p), and U(1)q ⊂ U(q) similarly.) The second parabolic is

q
Sp(p,q)×Sp(1)
0 = l

Sp(p,q)×Sp(1)
0 + u

Sp(p,q)×Sp(1)
0 ⊂ sp(n,C)× sp(1,C), (13.4c)

with Levi subgroup

L
Sp(p,q)×Sp(1)
0 = [U(1)p × U(1)p × Sp(p− 2, q)]× U(1). (13.4d)

More complete descriptions of these parabolics are in [10].) Suppose first that

x > `+ (n− 1), y < −(n− 1). (13.4e)

(Since x+ y = `, these two inequalities are equivalent.) Write ξx for the character
of U(1) corresponding to x ∈ Z. Consider the one-dimensional character

λ+
x,y =

[
ξx ⊗ ξ−(y+2n−2) ⊗ 1

]
⊗ ξx−y (13.4f)

of L
Sp(p,q)×Sp(1)
+ . What Kobayashi proves in [10, Theorem 6.1] is

πSp(p,q)×Sp(1)
x,y = A

q
Sp(p,q)×Sp(1)
+

(λ+
x,y) x > `+ (n− 1). (13.4g)

Suppose next that

`+ (n− 1) ≥ x > `/2, −(n− 1) ≤ y < `/2. (13.4h)

(Since x + y = `, these two pairs of inequalities are equivalent.) Consider the
one-dimensional character

λ0
x,y = [ξx ⊗ ξy ⊗ 1]⊗ ξx−y (13.4i)

of L
Sp(p,q)×Sp(1)
0 . Kobayashi’s result in [10, Theorem 6.1] is now

πSp(p,q)×Sp(1)
x,y = A

q
Sp(p,q)×Sp(1)
0

(λ0
x,y) `/2 < x ≤ `+ (n− 1)). (13.4j)
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Here is the orbit method perspective. Use a trace form to identify g∗0 with g0.
Linear functionals vanishing on h∗0 are quaternionic matrices

λ(z, u, v) =

 z u v

−u
v 0(n−1)×(n−1)

 ,−z

 ' sp(1) + Hp−1,q (13.5a)

with z ∈ sp(1) (the purely imaginary quaternions), u ∈ Hp−1, v ∈ Hq.
The orbits of H = Sp(p − 1, q) × Sp(1)∆ of largest dimension are given by |z|,

and the value of the Hermitian form on the vector (u, v): positive for the orbits
represented by nonzero elements r(e12 − e21) (nonzero eigenvalues i(|z| ± a)/2,
with a = (|z|2 + 4r2)1/2); negative for nonzero elements s(e1,p+1 + ep+1,1) (nonzero

eigenvalues i(|z|±a)/2, with a = (|z|2−4s2)1/2); and zero for the nilpotent element
(e12 − e21 + e1,p+1 + ep+1,1) (nonzero eigenvalues i|z|/2).

Define

`orbit = `+ (2n− 1), xorbit = x+ n, yorbit = y + n− 1. (13.5b)

The coadjoint orbits for discrete series have representatives

λ(xorbit, yorbit) =



[ixorbite1 − iyorbitep+1, i(xorbit − yorbit)]

xorbit > 0 > yorbit

[ixorbite1 + (e2,p − ep,2 + e2,p+1 + ep+1,2), ixorbit]

xorbit > 0 = yorbit

[ixorbite1 + iyorbite2, i(xorbit − yorbit)]

xorbit > yorbit > 0

(13.5c)

Then

πSp(p,q)x,y = π(orbit λ(xorbit, yorbit)). (13.5d)

(The partly nilpotent coadjoint orbits λ(xorbit, 0) (with xorbit > 0) can be treated
as for U(p, q).)

In the orbit method picture the condition (13.4e) simplifies to

xorbit > 0 > yorbit. (13.5e)

Similarly, (13.4h) becomes

xorbit > yorbit ≥ 0; (13.5f)

equality in the inequality is the case of partially nilpotent coadjoint orbits. In all
cases we need also the genericity condition

`orbit > 0 ⇐⇒ ` > −(2n− 1), xorbit − yorbit > 0 ⇐⇒ x− y + 1 > 0 (13.5g)

and the integrality conditions

xorbit ≡ n (mod Z), yorbit ≡ n− 1 (mod Z). (13.5h)

Here is a sketch of proof of the irreducibility assertion from Proposition 13.3.
Each of the cohomologically induced representations above is in the weakly fair
range, so the general theory of [20] applies. One conclusion of this theory is that
the cohomologically induced representations are irreducible modules for a certain
twisted differential operator algebra Dx,y; but in contrast to the U(p, q) case, the
natural map

U(sp(p+ q,C)× sp(1,C))→ Dx,y
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need not be surjective: some of the cohomologically induced modules corresponding
to discrete series for [Sp(2n,R)/Sp(2n− 4, R)× Sp(2, R)∆ are reducible.

Here is an irreducibility proof for the case (13.4j). We begin by defining

q
Sp(p,q)×Sp(1)
0,big = l

Sp(p,q)×Sp(1)
0,big + u

Sp(p,q)×Sp(1)
0,big ⊃ q

Sp(p,q)×Sp(1)
0 (13.6a)

with Levi subgroup

L
Sp(p,q)×Sp(1)
0,big = [U(2)p × Sp(p− 2, q)]× U(1). (13.6b)

Define

λ0,big
x,y =

[
πU(2)
x,y ⊗ 1

]
⊗ ξx−y. (13.6c)

Induction by stages proves that

πSp(p,q)×Sp(1)
x,y = A

q
Sp(p,q)×Sp(1)
0,big

(λ0,big
x,y ) `/2 < x ≤ `+ (n− 1)). (13.6d)

In this realization, the irreducibility argument from the U(p, q) case goes through.
The moment map from the cotangent bundle of the (smaller) partial flag variety is
birational onto its (normal) image; so the map

U(sp(p+ q,C)× sp(1,C))→ Dsmall
x,y

is surjective, proving irreducibility. (The big parabolic subalgebra defines a small
partial flag variety, which is why we label the twisted differential operator algebra
“small.”)

This argument does not apply to the case (13.4g), since the corresponding larger
Levi subgroup has a factor U(1, 1), and the corresponding representation there is a
discrete series. In that case we have found only an unenlightening computational
argument for the irreducibility, which we omit.

Finally, the two series of derived functor modules fit together as follows. If we
consider the edge of the inequalities in (13.4e) and (13.4h), namely

(x, y) = (`+ (n− 1),−(n− 1)) ,

then we have
A

q
Sp(p,q)×Sp(1)
+

(λ+
x,y) = A

q
Sp(p,q)×Sp(1)
0

(λ0
x,y). (13.6e)

For this equality, as for the irreducibility of A
q
Sp(p,q)×Sp(1)
+

(λ+
x,y), we have found only

an unenlightening computational argument, which we omit.

14. Octonionic hyperboloids

We look for noncompact forms of the non-symmetric spherical space

S15 = Spin(9)/Spin(7)′

studied in Section 5. The map from Spin(p, q) (with p+ q = 9) to a form of O(16)
will be given by the spin representation, which is therefore required to be real. The
spin representation is real if and only if p+ q and p− q are each congruent to 0, 1,
or 7 modulo 8. The candidates are

G = Spin(5, 4) or G = Spin(8, 1), (14.1a)

with maximal compact subgroups

K = Spin(5)×{±1} Spin(4) or Spin(8); (14.1b)

in the first case this means that the natural central subgroups {±1} in Spin(5)
and Spin(4) are identified with each other (and with the natural central {±1} in
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Spin(5, 4)). In each case the sixteen-dimensional spin representation of G is real
and preserves a quadratic form of signature (8, 8). One way to see this is to notice
that the restriction of the spin representation to K is a sum of two irreducible
representations

spin(5)⊗ spin(4)± or spin(8)± (14.1c)

Here spin(2m)± denotes the two half-spin representations, each of dimension 2m−1,
of Spin(2m). We are therefore looking at the hyperboloid

H8,8 = {v ∈ R8,8 | 〈v, v〉8,8 = 1}
= Spin(5, 4)/Spin(3, 4)′ or

= Spin(8, 1)/Spin(7)′.

(14.1d)

In the second case, the harmonic analysis problem is

L2(H8,8) ' L2(Spin(8, 1))Spin(7)′ ; (14.2a)

the Spin(7)′ action is on the right. This problem is resolved by Harish-Chandra’s
Plancherel formula for Spin(8, 1): the discrete series are exactly those of Harish-
Chandra’s discrete series that contain a Spin(7)′-fixed vector, and the multiplicity
is the dimension of that fixed space. Because of Helgason’s branching law from
Spin(7)′ to Spin(8) (5.2g), the number in question is the sum of the multiplicities
of the Spin(8) representations of highest weights

µy = (y/2, y/2, y/2, y/2) (y ∈ N). (14.2b)

Corollary 8.20 constrains the possible infinitesimal characters, and therefore the
Harish-Chandra parameters, of representations appearing on this hyperboloid. Here
are the discrete series having these infinitesimal characters. Suppose x is an integer
satisfying 2x+ y + 7 > 0. Define

π
Spin(8,1)
x,y,± =


discrete series with parameter

((2x+y+7)/2,(y+5)/2,(y+3)/2,±(y+1)/2) x ≥ 0

0 0 > x > −4
discrete series with parameter

((y+5)/2,(y+3)/2,(y+1)/2,±(2x+y+7)/2) −4 ≥ x > −(y + 7)/2.

(14.2c)

We can now use Blattner’s formula to determine which of these discrete series
contain Spin(8) representations of highest weight µy. The representations with a
subscript − are immediately ruled out (since the last coordinate of the highest
weight of any K-type of such a discrete series must be negative). Similarly, in
the first case with + the lowest K-type has highest weight (2x + 1, 1, 1, 1) + µy,
and all other highest weights of K-types arise by adding positive integers to these
coordinates; so µy cannot arise.

In the third case with + the lowest K-type has highest weight (0, 0, 0, x+4)+µy;
we get to µy by adding the nonnegative multiple −x−4 of the noncompact positive
root e4. A more careful examination of Blattner’s formula shows that in fact µy
has multiplicity one. This proves

L2(H8,8)disc =
∑

y≥1, −4≥x>−(y+7)/2

π
Spin(8,1)
x,y,+ . (14.2d)
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Furthermore (by Corollary 8.20)

π
O(8,8)
` |Spin(9,1) =

∑
y≥1, −4≥x≥−(y+7)/2

2x+y=`

π
Spin(8,1)
x,y,+ . (14.2e)

These discrete series are cohomologically induced from one-dimensional characters
of the spin double cover of the compact Levi subgroup

SO(2)× U(3) ⊂ SO(2)× SO(6) ⊂ SO(8) ⊂ SO(8, 1). (14.2f)

Here is the orbit method perspective. We have

(g0/h0)∗ ' Spin8 +R7

as a representation of H = Spin(7)′; the first summand is the 8-dimensional spin
representation. What distinguishes this from the compact case analyzed in (5.3) is
that the restriction of the natural G-invariant form has opposite signs on the two
summands; we take it to be negative on the first and positive on the second. Because
of (1.2b), the orbits we want are represented by H orbits of maximal dimension
on this space. A generic orbit on R7 is given by the value of the quadratic form
length a7 > 0, and the corresponding isotropy group is Spin(6)′ ' SU(4). As a
representation of SU(4),

Spin8 ' C4

regarded as a real vector space. Here again the nonzero orbits are indexed by the
value of the Hermitian form bspin < 0. The conclusion is that the regular H orbits
on (g0/h0)∗ are

λ(a7, bspin) (a7 > 0, bspin < 0).

It turns out that the eigenvalues of such a matrix are ±i(a7/4)1/2 (repeated three
times), ±i(a7/4 + bspin)1/2, and one more eigenvalue zero. Accordingly the element
is elliptic if and only if a7/4 + bspin ≥ 0. In this case we write

xorbit = (a7/4 + bspin)1/2 − a1/2
7 /2, yorbit = a

1/2
7 (a7/4 + bspin ≥ 0)

The elliptic elements we want are

λ(xorbit, yorbit) = (yorbit/2, yorbit/2, yorbit/2, yorbit/2+x), (yorbit/2 > −xorbit > 0);

we have represented the element (in fairly standard coordinates) by something in
the dual of a compact Cartan subalgebra [so(2)]4 to which it is conjugate.

If now we define

y = yorbit − 3, x = xorbit − 2,

then

π
Spin(8,1)
x,y,+ = π(orbit λ(xorbit, yorbit)) (0 > xorbit > −yorbit). (14.3a)

When yorbit = 1 or 2 or 3, or xorbit = −1, these representations are zero; that is
the source of the conditions

yorbit ≥ 4, −2 ≥ xorbit − yorbit/2

in (14.2d).
In the first case of (14.1), we are looking at

H8,8 ' Spin(5, 4))/Spin(4, 3)′; (14.4a)



44 HENRIK SCHLICHTKRULL, PETER TRAPA, AND DAVID A. VOGAN, JR.

this is the R-split version of Section 5, and so arises from

Spin(4, 3)′
spin−→ Spin(4, 4) ⊂ Spin(5, 4). (14.4b)

We have not determined the discrete series for this homogeneous space; of course
we expect two-parameter families of representations cohomologically induced from
one-dimensional characters of spin double covers of real forms of SO(2)× U(3).

15. The split G2 calculation

Write G2,s for the 14-dimensional split Lie group of type G2. There is a 7-
dimensional real representation (τR,s,WR,s) of G2,s, whose weights are zero and the
six short roots. This preserves an inner product of signature (4, 3), and so defines
an inclusion

G2,s ↪→ SO(4, 3). (15.1a)

The corresponding actions of G2,s on the hyperboloids

H4,3 = O(4, 3)/O(3, 3), H3,4 = O(3, 4)/O(2, 4) (15.1b)

are transitive. The isotropy groups are real forms of SU(3):

H4,3 ' G2,s/SL(3,R), H3,4 ' G2,s/SU(2, 1). (15.1c)

The (real forms of) O(7) representations appearing on these hyperboloids are all
related to the flag variety

O(7,C)/P = isotropic lines in C7,

P = MN, M = GL(1,C)×O(5,C).
(15.2a)

What makes everything simple is that G2(C) is transitive on this flag variety:

isotropic lines in C7 = G2(C)/Q,

Q = LU, L = GL(2,C).
(15.2b)

Precisely, the discrete series for H4,3 are cohomologically induced from the θ-stable
parabolic

p1 = m1 + n1, M1 = SO(2)×O(2, 3). (15.2c)

The discrete series representations are

π
O(4,3)
1,` = Ap1

(λ1(`)), `+ 5/2 > 0. (15.2d)

(cf. (12.1)). The inducing representation is the SO(2) character indexed by `, and
trivial on O(2, 3). Similarly, the discrete series for H3,4 are cohomologically induced
from the θ-stable parabolic

p2 = m2 + n2, M2 = SO(2)×O(1, 4). (15.2e)

The discrete series are

π
O(3,4)
2,` = Ap2(λ2(`)), `+ 5/2 > 0. (15.2f)

The intersections of these parabolics with G2 are

q1 = l1 + u1, L1 = long root U(1, 1). (15.2g)

and

q2 = l2 + u2, L2 = long root U(2). (15.2h)
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(The Levi subgroups are just locally of this form.) Because the G2 actions on the
O(4, 3) partial flag varieties are transitive, we get discrete series representations for
H4,3

π
G2,s

1,` = Aq1
(λ1(`)), `+ 5/2 > 0. (15.2i)

The character is ` times the action of L1 on the highest short root defining q1.
Similarly, for the action on H3,4

π
G2,s

2,` = Aq2
(λ2(`)), `+ 5/2 > 0. (15.2j)

The atlas software [1] tells us that all of these discrete series representations

of G2 are irreducible, with the single exception of π
G2,s

1,−2 = Aq1
(λ1(−2)). That

representation is a sum of two irreducible constituents. One constituent is the
unique non-generic limit of discrete series of infinitesimal character a short root. In
[22, Theorem 18.5], (describing some of Arthur’s unipotent representations) this is
the representation described in (b). The other constituent is described in part (c)

of that same theorem. The irreducible representation π
G2,s

2,−2 = Aq2
(λ2(−2)) appears

in part (a) of the theorem. All of these identifications (including the reducibility

of π
G2,s

1,−2) follow from knowledge of the K-types of these representations (given in

(15.4) below) and the last assertion of [22, Theorem 18.5].
Summarizing, in the notation of [22],

π
G2,s

1,−2 ' J−(H2; (2, 0))⊕ J(H2; (1, 1)), π
G2,s

2,−2 ' J(H1; (1, 1)). (15.2k)

That is, the first discrete series for these non-symmetric spherical spaces include
three of the five unipotent representations for the split G2 attached to the principal
nilpotent in SL(3) ⊂ G2.

Here is the orbit method perspective. For the case of H4,3, the representation of
H = SL(3,R) on [g0/h0]∗ is R3+(R3)∗. The generic orbits of H are indexed by non-
zero real numbers A, the value of a linear functional on a vector. We can arrange
the normalizations so that the elliptic elements are exactly those with A > 0; if we
define

`orbit = A1/2, ` = `orbit − 5/2,

and write λ1(`orbit) for a representative of this orbit, then

π
G2,s

1,` = π(orbit, λ1(`orbit)) (`orbit > 0).

For the case of H3,4, the representation of H = SU(2, 1) on [g0/h0]∗ is C2,1;
generic orbits are parametrized by the nonzero values B of the Hermitian form of
signature (2, 1). The elliptic orbits are those with B > 0; if we define

`orbit = B1/2, ` = `orbit − 5/2

then

π
G2,s

2,` = π(orbit, λ2(`orbit)) (`orbit > 0).

We conclude this section by calculating the restrictions to

K = SU(2)long ×{±1} SU(2)short ⊂ G2,s. (15.4a)

We define
γlong
d = (d+ 1)-diml irr of SU(2)long

γshort
d = (d+ 1)-diml irr of SU(2)short

(15.4b)
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The maximal compact of O(4, 3) is O(4) × O(3). The embedding of G2,s sends
SU(2)long to one of the factors in

O(4) ⊃ SO(4) ' SU(2)×{±1} SU(2),

and sends SU(2)short diagonally into the product of the other SU(2) factor and
SO(3) ⊂ O(3) (by the two-fold cover SU(2)→ SO(3)). According to (11.4d),

π
O(4,3)
1,` |O(4)×O(3) =

∑
d−`−3≥e≥0

e≡d−`−3 (mod 2)

π
O(4)
d ⊗ πO(3)

e

π
O(3,4)
2,` |O(3)×O(4) =

∑
d′−`−4≥e′≥0

e′≡d′−`−4 (mod 2)

π
O(3)
d′ ⊗ πO(3)

e′ .
(15.4c)

By an easy calculation, we deduce

π
G2,s

1,` |K =
∑

d−`−3≥e≥0
e≡d−`−3 (mod 2)

γlong
d ⊗

[
γshort
d ⊗ γshort

2e

]
.

π
G2,s

2,` |K =
∑

d′−`−4≥e′≥0

e′≡d′−`−4 (mod 2)

γlong
e′ ⊗

[
γshort
e′ ⊗ γshort

2d′
] (15.4d)

The internal tensor products in the short SU(2) factors are of course easy to com-
pute:

π
G2,s

1,` |K =
∑

d−`−3≥e≥0
e≡d−`−3 (mod 2)

min(d,2e)∑
k=0

γlong
e′ ⊗ γ

short
d+2e−2k, (15.4e)

π
G2,s

2,` |K =
∑

d′−`−4≥e′≥0

e′≡d′−`−4 (mod 2)

e′∑
k′=0

γlong
e′ ⊗ γ

short
2d′+e′−2k′ (15.4f)

16. The noncompact big G2 calculation

In this section we look at noncompact forms of S7 ' Spin(7)′/G2,c from Section
7. The noncompact forms of Spin(7) are Spin(p, q) with p+ q = 7, having maximal
compact subgroups Spin(p) ×{±1} Spin(q). None of these compact subgroups can
contain G2,c (unless pq = 0), so the isotropy subgroup we are looking for is the split
form G2,s. The seven-dimensional representation of G2,s is real, and its invariant
bilinear form is of signature (3, 4); so we are looking at

G2,s ↪→ Spin(3, 4), (16.1a)

the double cover of the inclusion (15.1a). This homogeneous space is discussed
briefly in [10, Corollary 5.6(e)], which is proven in part (ii) of the proof on page
197. We will argue along similar lines, but get more complete conclusions (parallel
to Kobayashi’s results described in Sections 12–13).

The eight-dimensional spin representation of Spin(3, 4) is real and of signature
(4, 4), so we get

Spin(3, 4)′ ↪→ Spin(4, 4), Spin(3, 4)′ ∩ Spin(3, 4) = G2,s. (16.1b)
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The Spin(3, 4)′ action on

H4,4 = Spin(4, 4)/ Spin(3, 4) (16.1c)

is transitive, so

H4,4 ' Spin(3, 4)′/G2,s. (16.1d)

In a similar fashion, we find an identification of six-dimensional complex manifolds

Spin(4, 4)/[Spin(2)×{±1}] Spin(2, 4)] ' Spin(3, 4)′/Ũ(1, 2). (16.1e)

The manifold on the left corresponds to the θ-stable parabolic qO(4,4) described in

(11.1h); the discrete series π
O(4,4)
` for H4,4 are obtained from it by cohomological

induction.
The manifold on the right corresponds to the θ-stable parabolic

qSpin(3,4)′ = lSpin(3,4)′ + uSpin(3,4)′ ⊂ o(7,C); (16.1f)

the corresponding Levi subgroup is

LSpin(3,4)′ = Ũ(1, 2) (16.1g)

The covering here is the “square root of determinant” cover; the one-dimensional
characters are half integer powers of the determinant. We are interested in

λ` = det`/2 ∈ [LSpin(3,4)′ ]̂ (`+ 3 > 0).

π
Spin(3,4)′

` = AqSpin(3,4)(λ`) (` > −3).
(16.1h)

The infinitesimal character of this representation is

infl char(π
Spin(4,3)′

` ) = ((`+ 5)/2, (`+ 3)/2, (`+ 1)/2). (16.1i)

As a consequence of (16.1e),

π
O(4,4)
` |Spin(3,4)′ ' π

Spin(3,4)′

` . (16.1j)

The discrete part of the Plancherel decomposition is therefore

L2(H4,4)disc =
∑
`>−3

π
Spin(3,4)′

` . (16.1k)

The “weakly fair” range for π
Spin(3,4)′

` is ` ≥ −3, so all the representations π
Spin(3,4)′

`

are contained in the weakly fair range. In particular, [20] establishes a priori the
unitarity of what turn out to be the discrete series representations. But the results
in [20] prove only

π
Spin(3,4)′

` is irreducible for ` ≥ 0. (16.1l)

The atlas software [1] proves the irreducibility of the first two discrete series (those
not covered by (16.1l)).

Here is the orbit method perspective. The representation of H = G2,s on [g0/h0]∗

is R3,4, the real representation whose highest weight is a short root. We have already
said that this representation carries an invariant quadratic form of signature (3, 4).
The generic orbits of H are indexed by non-zero real numbers A, the values of the
quadratic form. We can arrange the normalizations so that the elliptic elements
are exactly those with A > 0; if we define

`orbit = A1/2, ` = `orbit − 3,
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and write λ(`orbit) for a representative of this orbit, then

π
Spin(3,4)
` = π(orbit, λ(`orbit)) (`orbit > 0).
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