3. Hochschild-Serre spectral sequence for $SL(3,\mathbb{R})$

The first big chart here is the E_1 term of the Hochschild-Serre spectral sequence for computing the n-cohomology of a Harish-Chandra module X for $SL(3, \mathbb{R})$. Each column shows the contribution of one representation of K = SO(3); the numbers are the weights of the representation of $T_1 = SO(2)$. For example, the column "5-diml" says that each copy of the 5-dimensional representation of SO(3) occurring in X contributes a three-dimensional piece to the degree one part of E_1 ; the corresponding weights of T_1 are 1, 0, and -3.

degree	1-diml		$3\text{-}\mathrm{diml}$		5-diml		$7 ext{-}\dim l$		9-diml		11-diml	
0	0		1		2		3		4		5	
1	-1, -2	-1	0, -1	-2	1,0	-3	2, 1	-4	3, 2	-5	4,3	-6
2	-3	-2, -3	-2	-3, -4	-1	-4, -5	0	-5, -6	1	-6, -7	2	-7, -8
3		-4		-5		-6		-7		-8		-9

Suppose we concentrate for a moment on the -3 weight space (which has one dimension from each copy of the 5-dimensional representation of K). This weight space might fail to survive to E_{∞} in two ways. First, it could be in the image of a differential from degree 0. But we see from the table (extrapolated infinitely to the right) that the weight -3 does not appear in degree 0; so this is impossible. Second, our weight space could have a non-zero image in the degree 2. By inspection of the degree 2 row of the table, we see that the weight -3 appears there only if X has a copy of the SO(3) representation of dimension 1 or the SO(3)representation of dimension 3.

So inspection of this spectral sequence leads to the following conclusion.

Proposition 1 Suppose X is a Harish-Chandra module for $SL(3, \mathbb{R})$, and that the SO(3) representations of dimensions 1 and 3 do not occur in X. Then the T_1 weight -3 appears in $H^{\bullet}(\mathfrak{n}, X)$ only in degree 1, where it has multiplicity equal to the multiplicity of the 5-dimensional representation of SO(3) in X.

An identical argument proves

Proposition 2 Suppose that $2m+1 \ge 7$, and that the SO(3) representations of dimensions 2m-1, 2m-3, and 2m-5 do not occur in X. Then the T_1 weight -m-1 appears in $H^{\bullet}(\mathfrak{n}, X)$ only in degree 1, where it has multiplicity equal to the multiplicity of the 2m+1-dimensional representation of SO(3) in X.

How was this spectral sequence constructed? Recall that the E_1 term in general is built from pieces $\bigwedge^p(\mathfrak{n}\cap\mathfrak{s})^*\otimes H^q(\mathfrak{n}_{\mathfrak{k}},X)$, and that the degree is p+q. The top entries in the two columns for each representation of K are the weights in $H^0(\mathfrak{n}_{\mathfrak{k}},\bullet)$ and $H^1(\mathfrak{n}_{\mathfrak{k}},\bullet)$ for the indicated representation of K. (Those are provided by the Bott-Kostant theorem.) The rest of each column comes from adding the weights of $\bigwedge^{\bullet}(\mathfrak{n}\cap\mathfrak{s})^*$, which are tabulated below.

degree	$\bigwedge^{\bullet}(\mathfrak{n}\cap\mathfrak{s})^*$
0	0
1	-1, -2
2	-3