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Introduction The goal of this short presentation is to describe the behavior of several small,
classical groups including PGL(2, F2), PGL(2, F3), and PGL(2, F4).

Earlier During a previous seminar, the following result was shown:

|GL(n, q)| = q
n(n−1)

2

n∏
i=1

(qi − 1) (1)

Lemma Suppose q is a prime.

|GL(2, q)| = q(q2 − 1)(q − 1)

|PGL(2, q)| = (q + 1)(q)(q − 1)

Recall that |Sq+1| = (q + 1)!. If q = 2 or q = 3, then (q + 1)! = (q + 1)(q)(q − 1) because 0! = 1
and 1! = 1 respectively. In these two cases, |PGL(2, 2)| = |S3| and |PGL(2, 3)| = |S4|.

Earlier Recall that in an earlier lecture, it was shown the following groups are isomorphic:

PGL(2, F2) ∼= GL(2, F2) ∼= SL(2, F2) ∼= PSL(2, F2) (2)

These groups are all isomorphic because they each contain the same six matrices:{(
1 0
0 1

) (
0 1
1 0

) (
1 0
1 1

) (
1 1
0 1

) (
0 1
1 1

) (
1 1
1 0

)}
(3)

Let P ′(F2
q) be the projective line over the field Fq. For the field Fq the projective line contains

the elements: {(
0
1

) (
1
0

) (
1
1

)}
(4)

With the operation of left multiplication, the above matrices (3) act on the projective line by
permuting its elements. Some matrices switch only two basis elments and leave the third alone,
and some act on the projective line by creating a subgroup of order 3. Since PGL(2, F2) permutes
these three elements, we have an inclusion (an injection) as follows:

PGL(2, F2) ↪→ Perm (P ′(F2
2)) ∼= S3 (5)

There is an isomorphism between the permutation group of the projective line elements and S3

because both are the group of all permutations over three elements. Therefore,

PGL(2, F2) ∼= S3 (6)

Lemma For any prime p, there are p + 1 elements in the projective line with the following form:

P ′(F2
p) =

{(
1
0

) (
1
1

)
· · ·

(
1

(p− 1)

) (
0
1

)}
(7)
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Description of PGL(2, F3) Because 3 is a prime number we know from the above lemma that
P ′(F2

q) has four elements. Similarly to PGL(2, F2) the action of PGL(2, F3) permutes these four
elements creating an inclusion:

PGL(2, F3) ↪→ Perm (P ′(F2
3)) ∼= S4 (8)

Since both PGL(2, F3) and S4 have exactly 24 elements (from first lemma) and an inclusion exists,
we know that we must have an isomorphism between the groups

PGL(2, F3) ∼= S4 (9)

Description of PGL(2, F4) Now we will examine PGL(2, F3) which has (4 + 1)(4)(4 − 1) = 60
elements. The projective line over F4 contains the following five elements:

Perm (P ′(F2
3)) =

{(
1
0

) (
1
1

) (
1
a

) (
0

(1 + a)

) (
0
1

)}
(10)

These five elements of the projective plane will be referred to as 0, 1, a, 1 + a, and ∞ respectivefully
in the following text. As in a previous lecture on finite fields, a is the elment of F4 which is the
root of x2 + x + 1.

Similar to the above cases, we know that there exists an inclusion based on the fact that the
projective linear group permutes the five elements of the projective line in some way:

PGL(2, F4) ↪→ Perm (P ′(F2
4)) ∼= S5 (11)

However, in this case the orders of the two groups are different. We have |S5| = 120. As discussed
above |PGL(2, F3)| = 60. Therefore, there cannot possibly be an isomorphism between groups. For
any symmetric group, Sn of order 2k, there is only one subgroup of order k: The alternating group
An. Therefore, due to the above inclusion, we must have the following isomorphism:

PGL(2, F4) ∼= A5 (12)

The Geometric Perspective of PGL(2, F4) Because of the above isomorphism, we expect any
elment of PGL(2, F4) act as an even number of transpositions of projective line elements (the
alternating group is the subset of the symmetric group consisting of only permutations which
can be written as an even number of transpositions). Consider the action of the following three
subgroups of PGL(2, F4) on the projective line. For the following subgroups, x ∈ {0, 1, a, a+1} and
y ∈ {0, 1, a, a + 1}. Note that in the second subgroup, x 6= 0

1. The Action of
{(

1 0
x 1

)}
(

1 0
x 1

) (
0
1

)
=

(
0
1

)
The action of matrices in this group fixes ∞.(

1 0
x 1

) (
1
y

)
=

(
1

(x + y)

)
When an element of the group is considered as a transformation T ,

we have a map that sends any element y back to itself eventually as follows:

y
T−→ y + x

T−→ y + 2x = y (13)
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Recall that in F4, 2 = 0. Therefore the elements of N fix ∞, and have two transpositions (y, y +x)
and the other two remaining elements, which are mapped back and forth by the addition of x.
Therefore, elements of this form act as two (or none) transpositions. Elements of this subgroup
have an even number of transpositions.

2. The Action of
{(

1 0
0 x

)}
This group contains four matrices (for the four possible values of

x) and is isomorphic to the kline four group. This group will be reffered to as N .(
1 0
0 x

) (
1
0

)
=

(
1
0

)
The action fixes 0(

1 0
0 x

) (
0
1

)
=

(
0
x

)
=

(
0
1

)
The action fixes ∞.(

1 0
0 x

) (
1
y

)
=

(
1
xy

)
When an element of N is considered as a transformation T , we have a

map that sends any element y back to itself eventually as follows:

y
T−→ xy

T−→ x2y
T−→ x3y = y (14)

Recall that in |F×
4 | = 3, so the any element to the power of three is 1. Therefore this elements of

this subgroup fix ∞ and 0, and create a 3-cycle with the remaining elements. A 3-cycle can be
written as two transpositions. Elements of this subgroup have an even number of transpositions.

3. The Action of
{(

0 1
1 0

)}
(

0 1
1 0

) (
0
1

)
=

(
1
0

)
The action transposes 0 and ∞(

0 1
1 0

) (
1
1

)
=

(
1
1

)
The action fixes 1(

0 1
1 0

) (
1
a

)
=

(
a
1

)
=

(
1

a + 1

)
The action transposes a and a + 1.

Therefore, the action can be written as two transpositions.

Conclusion Using knowlege from linear algebra, every invertible matrix can be written the prod-
uct of elementary matrices which each have a form belonging to one of the three subgroups above
(the first being addition of rows, the second being multiplication of a row by a scalar, and the third
being the switching of two rows). Every matrix in PGL(2, F4) can be generated by the elements
of these three subgroups. Every matrix of PGL(2, F4) can be decomposed into an even number of
transpositions on the five elements of Perm (P ′(F2

3)). Therefore we have an inclusion of

PGL(2, F4) ↪→ A5. (15)

Since both groups have order 60, there must be an isomorphism.

PGL(2, F4) ∼= A5. (16)


