
1. Representations of SL(2,R)

These notes describe the irreducible representations of the group G = SL(2,R) of two by two real
matrices of determinant one. The ideas go back mostly to Bargmann’s paper [VB]. The definitions needed
to discuss non-unitary representations are from Harish-Chandra [HC], and the details are copied from the
account in [Green]. There is no homework in this class, but I’ve included some exercises that would be good
for your soul (if you did them, or if you had one, whatever). The “1” in the title is wishful thinking, of
course.

Thanks to Ben Harris (2007) for some corrections.
I began in class by considering a very reducible representation of G on the space W = C∞(R2 − 0) of

smooth functions on the punctured plane. Obviously G acts on the punctured plane by matrix multiplication,
so we get a representation on functions by

π(g)f(x) = f(g−1x) (g ∈ G, f ∈W,x ∈ R2 − 0). (1.1)

(The inverse is needed to make π(g1g2) = π(g1)π(g2); without it the factors would be reversed on the
right side of this equality.) A long discussion in class led to a family of G-invariant closed subspaces of W ,
parametrized by a complex number ν and a parity ε ∈ Z/2Z:

W ε
ν = {f ∈W | f(tx) = tνf(x), f(−x) = (−1)εf(x)(t > 0, x ∈ R2 − 0)}. (1.2)

That is, W 0
ν consists of the even functions homogeneous of degree ν, and W 1

ν is the corresponding odd
functions. The G-invariance of these subspaces is fairly clear. The representation πεν of G on W ε

ν is called a
principal series representation of G.

Exercise 1.3. Write S1 for the unit circle in R2 − 0. The space C∞(S1) is the direct sum of the
subspaces C∞(S1)ε of even and odd functions. Show that restriction to the circle defines a vector space
isomorphism

W ε
ν ' C∞(S1)ε. (1.4)

This identification is called the “compact picture” of the principal series. (The “noncompact picture” arises
by restricting functions to something like the line x2 = 1; it’s more difficult to describe the image of the
restriction map in that case.)

Since these notes are not constrained like fifty-minute classes, I can safely insert a couple of asides here.
First, one can ask about parallel representations for SL(2, F ), where F is any topological field. The group
SL(2, F ) acts on the left on the space F 2 of column vectors. The group therefore acts on any reasonable
space W of complex-valued functions on F 2 − 0. (It makes sense to talk about representations over any
base field k, in which case one should talk about k-valued functions on F 2 − 0; but I’ll stick with complex
representations.) The dilation action of F× on functions commutes with the SL(2, F ) action. If ξ is any
continuous homomorphism from F× to C×, then one can look at the space of homogeneous functions of
degree ξ:

Wξ = {f ∈W | f(tx) = ξ(t)f(x)(t ∈ F×, x ∈ F 2 − 0)}. (1.5)

The space Wξ is a representation of SL(2, F ), called a principal series representation.

Exercise 1.6. Show that the parameters ν and ε above determine a continuous homomorphism of R×
to C×, and that all such homomorphisms arise in this way.

A second natural question is how this family of representations might be generalized to Lie groups other
than SL(2,R). Liberally interpreted, this question includes more or less all of the representation theory of
reductive groups; so I’ll try to narrow it a bit. Let’s look first at the group SL(n,R) of n× n real matrices
of determinant 1. There is an obvious analogue of R2 − 0, namely Rn − 0. One can construct a family of
representations on homogeneous functions on this space, parametrized by a complex number and a sign.
Unfortunately, these representations turn out to be rather special, and not of such general interest for n ≥ 3.
What’s going on is that we ought to be looking at something closer to complete flags in our vector space.
(Recall that a complete flag in an n-dimensional vector space is an increasing family of subspaces Fk, with
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Fk of dimension k.) In a two-dimensional space, the only interesting element of a flag is the one-dimensional
subspace. Here at any rate is a first approximation to the right n-dimensional version of R2 − 0:

Xn = {(x1, x2, . . . , xn) | xi is a non-zero vector in Rn/〈x1, x2, . . . , xi−1〉}. (1.7)

That is, x1 is a non-zero vector in Rn; 〈x1〉 is the line spanned by x1, and x2 is a non-zero vector in the
(n − 1)-dimensional space Rn/〈x1〉; 〈x1, x2〉 is the two-dimensional preimage of the line through x2 back
in Rn; and so on. I don’t know a good name for the points of Xn, so I’ll call them fat flags. Obviously
every element of Xn defines a complete flag (with Fk = 〈x1, . . . , xk〉); but a point of Xn has slightly more
information. The first term x1 is a column vector; x2 is a column vector defined up to a multiple of x1; x3

is defined up to a linear combination of x1 and x2; and so on.
Now SL(n,R) acts on Xn, by acting on representative column vectors for x1, x2, and so on. The

difficulty is that this action is not quite transitive. Here is why. Given a point x of Xn, we can form an n×n
matrix A(x) whose columns are representatives of x1, x2, and so on. This matrix is not quite well-defined:
the first column is defined, but the second is defined only up to adding a multiple of the first, and so on.
Nevertheless the determinant detA(x) is well-defined; and the resulting function det on Xn is invariant under
the action of SL(n,R). We may therefore define

SXn = {x ∈ Xn | det(x) = 1}, (1.8)

the space of special fat flags.

Exercise 1.9. Show that SXn is a homogeneous space for SL(n,R). Show that the isotropy group
(the subgroup fixing a chosen base point) may be chosen to be the group of upper triangular matrices with
1s on the diagonal. Show that SX2 may be identified with R2 − 0.

We can now define W = C∞(SXn), the space of smooth functions on special fat flags. Just as in
the case of SL(2), we’d like to identify G-invariant subspaces by homogeneity conditions. Consider the
(n− 1)-dimensional abelian Lie group

A = {t = (t1, . . . , tn) | ti ∈ R, ti > 0, t1 · · · tn = 1}. (1.10)

Then A acts on SXn on the right by scaling each vector xi:

t · x = (t1x1, . . . , tnxn) (t ∈ A, x ∈ SXn).

This action commutes with the SL(n,R) action. Write

a∗ = {ν = (ν1, . . . , νn) ∈ Cn |
∑

νi = 0}. (1.11)

For t ∈ A and ν ∈ a∗, we can define
tν = tν11 · · · tνn

n ∈ C×.

For any ν ∈ a∗, we define the space of homogeneous functions of degree ν,

Wν = {f ∈ C∞(SXn) | f(t · x) = tνf(x)(t ∈ A, x ∈ SXn)}. (1.12)

Similarly, we define a group isomorphic to (Z/2Z)n−1:

M = {m = (m1, . . . ,mn) | mi ∈ ±1, m1 · · ·mn = 1}. (1.13)

Then M acts on SXn on the right by scaling each vector xi:

m · x = (m1x1, . . . ,mnxn) (m ∈M,x ∈ SXn).

This action commutes with the SL(n,R) and A actions. Write

M̂ = (Z/2Z)n/{(0, . . . , 0), (1, . . . , 1)} = {ξ = (ξ1, . . . , ξn) | ξi ∈ {0, 1}} / ∼;
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here ∼ is the equivalence relation that identifies ξ and ξ′ if their coordinates are either all equal or all
different. For m ∈M and ξ ∈ M̂ , we can define

mξ = mξ1
1 · · ·mξn

n ∈ ±1.

This depends only on the equivalence class of ξ. For any ξ ∈ M̂ , we define the space of functions of parity ξ,

W ξ = {f ∈ C∞(SXn) | f(m · x) = mξf(x)(m ∈M,x ∈ SXn)}. (1.14)

It is easy to check that the whole space W is a direct sum of these 2n−1 subspaces W ξ, and that Wν is
the direct sum of the corresponding subspaces W ξ

ν . The representation πξν of SL(n,R) on W ξ
ν is called a

principal series representation of SL(n,R).

Exercise 1.15. Rewrite this discussion replacing the separate groups A and M by one group H
isomorphic to a product of n−1 copies of R×. In this form it makes sense with R replaced by any topological
field. (The separate treatment of A and M has strong historical roots, which is why I’ve kept it.)

Exercise 1.16. Let SO(n) be the compact group of n×n orthogonal matrices of determinant one. Show
that SO(n) embeds naturally in SXn; and that restriction to SO(n) defines a vector space isomorphism

Wν ' C∞(SO(n)).

What is the corresponding statement for the principal series representation W ξ
ν ? Can you find an analogous

statement for principal series representations over a p-adic field F?

Exercise 1.17. (This one is easy.) Find a reasonable analogue of SXn for the group GL(n,R), and
define principal series for this group.

Exercise 1.18. (This one is harder.) Let Sp(2n,R) be the group of linear transformations of R2n

preserving your favorite standard symplectic form ω. Find a reasonable analogue of SXn for this group, and
define principal series representations. (Hint: the definition looks a lot like the one for GL(n,R), but you
should require that the subspace 〈x1, . . . , xn〉 be isotropic for ω.)

Exercise 1.19. (This one is even harder.) Let U(p, q) be the group of complex-linear transformations
of Cp+q preserving the indefinite Hermitian form |z1|2 + · · ·+ |zp|2−|zp+1|2−· · ·− |zp+q|2. Find a reasonable
analogue of SXn for this group, and define principal series. (On the basis of what I’ve said so far, it isn’t
clear what “reasonable” means for a compact group like U(n). The answer I’m looking for in that case has
the space equal to U(n), with U(n) acting on the left. The analogue of the group M is U(n) acting on the
right, and the analogue of A is trivial. A principal series representation is parametrized by an irreducible
representation of M = U(n). Now interpolate between this example and SL(n,R).)

This is the end of the digression; we’ll now return to talking about representations of G = SL(2,R).
Our goal is (more or less) to show that most representations of G look like principal series representations.
In order to do that, we need to know what principal series representations look like in a convenient basis.
I’ll use the identification of the space W ε

ν with (even or odd) functions on the circle given by Exercise 1.3.
As a basis for functions on the circle I’ll use the various

wm(cos θ, sin θ) = exp(imθ); (1.20)

here m ≡ ε (mod 2). These are obviously linearly independent functions on the circle; of course they are
a basis only in a topological sense, which we will not yet make precise. The problem is to see how the
group acts on this basis. Experience with finite-dimensional representation theory (see the description of
representations of sl(2) in [Hum], for example) suggests that it is much easier to describe explicitly the
action of the Lie algebra than that of the group. The Lie algebra of SL(2,R) is sl(2,R), the two by two real
matrices of trace zero. This Lie algebra has dimension three; a standard basis is

D =
(

1 0
0 −1

)
, E =

(
0 1
0 0

)
, F =

(
0 0
1 0

)
. (1.21)(a)
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These satisfy the commutation relations

[D,E] = 2E, [D,F ] = −2F, [E,F ] = D. (1.21)(b)

In class I showed how to compute the differential operators by which these basis elements act on C∞(R2−0);
they are

π(D) = −x1
∂

∂x1
+ x2

∂

∂x2
, π(E) = −x2

∂

∂x1
, π(F ) = −x1

∂

∂x2
. (1.21)(c)

We want now to see how these Lie algebra elements act on smooth functions on the circle, and in
particular on our basis elements exp(imθ). The difficulty is that the vector fields in (1.21)(c) are not tangent
to the circle. One way to compute is to change from the basis {∂/∂xi} to the basis {∂/∂θ, ∂/∂r} for vector
fields near the circle. On the space Wν , ∂/∂r acts by multiplication by ν. The change of basis is easily
computed to be

∂

∂x1
= −x2

∂

∂θ
+ x1

∂

∂r
,

∂

∂x2
= x1

∂

∂θ
+ x2

∂

∂r
. (1.21)(d)

Putting these formulas and the identities

∂

∂r
= ν, x1 = cos θ, x2 = sin θ

into (1.21)(c) gives

πν(D) = 2 sin θ cos θ
∂

∂θ
+ (− cos2 θ + sin2 θ)ν, (1.21)(e)

πν(E) = sin2 θ
∂

∂θ
+ (− cos θ sin θ)ν, πν(F ) = − cos2 θ

∂

∂θ
+ (− cos θ sin θ)ν. (1.21)(f)

From the formulas in (1.21)(e–f) it is not too hard to see that each Lie algebra element carries a basis
vector wm to a linear combination of wm−2, wm, and wm+2; but it is difficult to understand more. The
problem is that this basis of the Lie algebra is adapted to weight vectors for the diagonal Cartan subalgebra,
and the representation Wν has no such weight vectors. What does act simply is the rotation matrix E − F ,
which acts by ∂/∂θ. Taking this as a starting point, we introduce a new basis of the complexified Lie algebra:

H = −i(E − F ) =
(

0 −i
i 0

)
, (1.22)(a)

X =
1
2

(D + iE + iF ) =
(

1/2 i/2
i/2 −1/2

)
, Y =

1
2

(D − iE − iF ) =
(

1/2 −i/2
−i/2 −1/2

)
. (1.22)(b)

These elements satisfy the same commutation relations as D, E, and F :

[H,X] = 2X, [H,Y ] = −2Y, [X,Y ] = H. (1.22)(c)

Inserting the formulas (1.22)(a–b) in (1.21)(e–f) gives

πν(H) =
1
i

∂

∂θ
, πν(X) =

e2iθ

2i
∂

∂θ
− e2iθ

2
ν, πν(Y ) =

−e−2iθ

2i
∂

∂θ
− e−2iθ

2
ν. (1.22)(d)

These operators act very simply on the functions wm = eimθ:

πν(H)wm = mwm, πν(X)wm =
1
2

(m− ν)wm+2, πν(Y )wm =
1
2

(−m− ν)wm−2. (1.22)(e)

Exercise 1.23. Define V εν to be the algebraic span of the vectors wm with m ≡ ε (mod 2) inside
W ε
ν , a vector space of countable dimension. Find all the subspaces of V εν that are preserved by the Lie

algebra action (1.22)(e). (Here are some hints. First of all, show that unless ν is an integer with the
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property that ν ≡ ε (mod 2), then V εν is irreducible. Next, suppose that ν is an integer congruent to ε.
Show that the subspace spanned by wν , wν−2, wν−4, . . . is invariant. In the same way, the subspace spanned
by w−ν , w−ν+2, w−ν+4, . . . is invariant. Find all the possibilities for sums and intersections of these two
subspaces, and show that in this way one gets all proper invariant subspaces of V εν .)

Having delayed for as long as possible, I must now turn to a discussion of general representations of
SL(2,R).

Definition 1.24. Suppose G is a topological group and V is a complex topological vector space. A
representation of G on V is a homomorphism π:G→ GL(V ) with the property that the map

G× V → V, (g, v) 7→ π(g)v

is continuous. The representation is said to be irreducible if V has exactly two closed G-invariant subspaces
(which must then be 0 and V ).

Suppose that G is a Lie group. A vector v ∈ V is said to be smooth if the map g 7→ π(g)v from G to
V is smooth. The collection of smooth vectors is a G-invariant subspace V∞ of V (usually not closed in
V ). The action π∞ of G on V∞ differentiates to define a Lie algebra representation of g0 = Lie(G) on V∞,
which we also denote π∞.

In order to make much progress, we need to restrict attention to nice topological vector spaces. Harish-
Chandra worked with Banach spaces. The disadvantage is that even if V is a Banach space, V∞ is usually
not. (This phenomenon appears with Sobolev spaces: one can make nice Hilbert spaces of functions having
a finite number of L2 derivatives, but defining smooth functions requires bounding an infinite collection of
derivatives.) Recall that a seminorm on V is a function obeying all the axioms for a norm except that
non-zero vectors may have norm zero. A topological vector space is locally convex if its topology is defined
by a (possibly infinite) family of seminorms; that is, if every neighborhood of zero contains the intersection of
a finite number of balls around zero defined by seminorms. In order to define vectors by nice limit processes,
we also want to require that V be complete; roughly speaking, that sequences which are Cauchy in every
seminorm must converge.

Proposition 1.25. Suppose π is a representation of a Lie group G on a complete locally convex
topological vector space V . Then V∞ is a dense subspace of V , and carries a natural complete locally convex
topology making π∞ continuous.

I’ll omit the proof, but here are some hints. The main point is to introduce the “smooth group algebra”
M∞c (G) of compactly supported smooth measures dµ on G. (A smooth measure on a manifold is one that
looks like a smooth multiple of Lebesgue measure in local coordinates.) The algebra structure arises by
convolution of measures. The first thing to prove is that π defines a representation of the algebra M∞c (G)
by the formula

π(µ)v =
∫
G

π(g)vdµ(g).

The integral can be defined as a limit of Riemann sums taking values in V ; the existence of the limit requires
completeness of V . Using approximate identities in M∞c (G), it is easy to show that π(M∞c (G))V is dense
in V . (This subspace is called the G̊arding subspace of V .) It’s also easy to check that

π(M∞c (G))V ⊂ V∞,

because the differentiation can be moved from v to dµ. This concludes the hints.
We have now constructed from our representation (π, V ) of a Lie group G (with V complete locally

convex) a smooth representation (π∞, V∞). Write

g = (Lie(G))⊗R C

for the complexified Lie algebra of G, and U(g) for its universal enveloping algebra. Smoothness of π∞

means that there is an associative algebra homomorphism

π∞:U(g)→ End(V∞),
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so that V∞ is a U(g)-module. The adjoint action of G on its Lie algebra extends to an action on U(g) by
complex algebra automorphisms. All of these things are related by a compatibility condition

π∞(Ad(g)(u)) = π∞(g)π∞(u)π∞(g−1). (1.26)(a)

We are interested in this compatibility relation in a very special case. Define

Z(g) = {z ∈ U(g) | Ad(g)(z) = z, all g ∈ G}. (1.26)(b)

This is complex subalgebra of the enveloping algebra. If G is connected, it is precisely the center; in general
it may be smaller. What we want from (1.26)(a) is

for all z ∈ Z(g), π∞(z) commutes with all operators π∞(g) on V∞. (1.26)(c)

The idea is that (1.26)(c) forces the eigenspaces of π∞(z) to be G-invariant closed subspaces of V∞. If
π∞ is to be irreducible, this means that the only possible eigenspaces are 0 and V∞. The latter possibility
means that π∞(z) is a scalar operator. We would like to use some kind of spectral theorem to rule out
the former. For unitary representations, this is possible (see the theorem below). For general Banach space
representations, it is not: Soergel has constructed in [WS] an example of an irreducible representation π of
SL(2,R) for which the Casimir operator does not act by scalars in π∞. Here is the positive result.

Theorem 1.27 (Segal [IES]). Suppose (π,H) is an irreducible unitary representation of a Lie group G
on a Hilbert space H. Then for every z ∈ Z(g) (see (1.26)(b)) the operator π∞(z) is a scalar.

Motivated by this theorem, Harish-Chandra in [HC] made the following definition.

Definition 1.28. A representation (π, V ) of a Lie group G on a complete locally convex vector space V
is called quasisimple if π∞(z) is a scalar for every z ∈ Z(g) (see (1.26)). The resulting algebra homomorphism

χπ: Z(g)→ C

is called the infinitesimal character of π.

Theorem 1.27 says that every irreducible unitary representation is quasisimple. We are going to study
only quasisimple irreducible representations; an inspection of [WS] should convince you that the others might
reasonably be regarded as pathological.

We return now to our assumption that G = SL(2,R). As one might gather from our discussion of the
principal series representations, we’ll pay a lot of attention to the subgroup

K = SO(2) =
{(

cos θ sin θ
− sin θ cos θ

)
| θ ∈ R

}
. (1.29)(a)

The matrix appearing in the definition of K will be written k(θ). In terms of the Lie algebra element H of
(1.22)(a), we have

k(θ) = exp(iθH). (1.29)(b)

For the basis vectors wm of Wν , it follows from (1.29)(b) and (1.22)(e) that

πν(k(θ))wm = eimθwm. (1.29)(c)

Suppose now that (π, V ) is a representation of G on a complete locally convex topological vector space.
We know from Proposition 1.25 how to get a smooth representation π∞ of G on the dense subspace V∞.
Our next goal is to find vectors in V∞ like the basis vectors wm of the principal series.

Definition 1.30. For any integer m, the mth K-type of V∞ is the subspace

V∞m = {v ∈ V∞ | π∞(k(θ))v = eimθv (θ ∈ R)}.
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These subspaces are linearly independent. The Harish-Chandra module of V is their direct sum

V∞K =
∑
m∈Z

V∞m .

Proposition 1.31. Suppose (π, V ) is a representation of SL(2,R) on a complete locally convex topo-
logical vector space; use notation as above.

a) The Harish-Chandra module V∞K is dense in V∞. A vector v ∈ V∞ belongs to the Harish-Chandra mod-
ule if and only if the subspace spanned by the vectors π∞(k)v (as k varies over K) is finite-dimensional.

b) The subspace V∞m may be characterized by

V∞m = {v ∈ V∞ | π∞(H)v = mv}.

c) The operator π∞(X) (cf. (1.22)(b)) carries V∞m into V∞m+2, and π∞(Y ) carries V∞m into V∞m−2. In
particular, V∞K is an invariant subspace for the Lie algebra representation π∞.

d) Suppose W is a closed K-invariant subspace of V . Then W is equal to the closure of

W∞K =
∑
m∈Z

V∞m ∩W.

As usual I will offer only some hints towards the proof. For every integer m there is a complex-valued
smooth measure

µm =
1

2π
e−imθdθ

on the circle. It’s not difficult to check that π∞(µm) is a projection operator from V∞ onto V∞m . (That is,
its image is contained in V∞m , and it acts by the identity there.) On the other hand, the theory of Fourier
series allows us to construct approximate identities on K (smooth measures of total mass 1 which are small
away from the unit element) that are finite linear combinations of the µm. It follows easily that V∞K is dense
in V∞. The rest of the proposition is fairly easy.

This proposition is a step in the direction of an algebraic description of the representations of G. The
candidate for the algebraic model of a representation V is the Harish-Chandra module V∞K . Part (d) shows
that a closed invariant subspace W of V gives rise to a “sub-Harish-Chandra module” W∞K , from which W can
be recovered. What is missing is a converse: a statement that the closure of a sub-Harish-Chandra module is
a G-invariant subspace of V . This statement is not true in general, but it is for quasisimple representations.
In order to formulate the result cleanly, it is helpful to have an abstract definition of Harish-Chandra module.

Definition 1.32. A Harish-Chandra module for SL(2,R) is a complex vector space W endowed with
two additional structures: a representation of the complexified Lie algebra g, and a representation of the
compact group K. It is traditional to use module notation for both of these structures, and so to write k ·w
or Z · w for w ∈ W , k ∈ K, and Z ∈ g. Sometimes to maintain compatibility with representation theory
roots, we will write something like π for the representations, and so π(k)w or π(Z)w to mean exactly the
same thing.

We impose three conditions on these representations. First, the action of K should be locally finite.
This means that every vector w ∈W belongs to a finite-dimensional subspace F (w) that is preserved by K,
and on which K acts continuously. This first condition guarantees that the action of K is smooth (and even
analytic), since continuous homomorphisms of Lie groups (in this case K and GL(F (w))) are analytic. The
second requirement is the differential of the K action is equal to the action of k0 ⊂ g. The third requirement
relates the actions of K and g and the adjoint action of K on g:

k · (Z · (k−1 · w)) = [Ad(k)(Z)] · w.

As explained in the following exercise, this third condition is actually a consequence of the second, because
K is connected. We include it to emphasize the analogy with a more general definition of Harish-Chandra
module that will appear later.
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Exercise 1.33. Show that the third condition in the definition of Harish-Chandra module is automat-
ically satisfied. Show also that a Harish-Chandra module is the same thing as a complex vector space W
endowed with two things: a Z grading

W =
∑
m∈Z

Wm,

and linear transformations X and Y satisfying

X(Wm) ⊂Wm+2, Y (Wm) ⊂Wm−2, (XY − Y X)|Wm = multiplication by m.
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