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1 Representations of sl(2)
{sec:sl2rep}

The point of these notes is to summarize and complete what was done in
class March 19 about the representation theory of the three-dimensional Lie
algebra

g = sl(2, k) = 2× 2 matrices over k of trace zero.

This Lie algebra has a basis consisting of the three matrices

H =

(
1 0
0 −1

)
, X =

(
0 1
0 0

)
, Y =

(
0 0
1 0

)
.

(That this is a basis follows immediately from the fact that the four “matrix
units” eij , with 1 ≤ i, j ≤ 2, are a basis for the vector space of all matrices.
You want a basis for the kernel of the linear map tr to k.)

Here is the main theorem about representations.
{thm:sl2rep}

Theorem 1.1. [text, Theorem 4.59] For each integer m ≥ 0 there is a
representation (ρm, V (m)) of sl(2, k) on a vector space of dimension m+ 1
over k, defined as follows. The space V (m) has a basis

{vm−2j | 0 ≤ j ≤ m} = {vm, vm−2, . . . , v−m}.

The action of the basis elements of the Lie algebra is given by

ρm(H)vm−2j = (m− 2j)vm−2j

ρm(X)vm−2j = jvm−2j+2

ρm(Y )vm−2j = (m− j)vm−2j−2.
(0 ≤ j ≤ m)
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Equivalently,

ρm(H)vp = pvp

ρm(X)vp =
m− p

2
vp+2

ρm(Y )vp =
m+ p

2
vp−2.

(p = m,m− 2, . . . ,−m)

As long as the characteristic of k is either zero or strictly larger than m,
the representation ρm is irreducible.

Suppose now that char k = 0.

1. Every irreducible representation of sl(2, k) is isomorphic to some V (m).

2. Every finite-dimensional representation of sl(2, k) is isomorphic to a
direct sum of copies of V (m).

3. The element H acts diagonalizably with integer eigenvalues in any
finite-dimensional representation of sl(2, k).

Before beginning the proof of the theorem, we need some additional {se:sl2notation}
notation. The Lie bracket is commutator of matrices, so we compute

[H,X] = 2X, [H,Y ] = −2Y, [X,Y ] = H. (1.2a) {e:sl2rel}

These bracket relations describe the matrices ad(X), ad(H), and ad(Y ) in
the basis {X,H, Y }:

ad(X) =

0 −2 0
0 0 1
0 0 0

 , ad(H) =

2 0 0
0 0 0
0 0 −2

 , ad(Y ) =

 0 0 0
−1 0 0
0 2 0

 . (1.2b)

From these matrices one immediately calculates the Killing form

B(H,H) = 4, B(X,Y ) = 4, B(X,H) = B(Y,H) = 0. (1.2c)

The Killing form is nondegenerate as long as char k 6= 2. In that case the
dual basis to {X,H, Y } is {12Y,

1
4H,

1
2X}, so the Casimir operator is

CB =
1

2
(XY + Y X) +

1

4
H2 =

1

4
(H2 + 2XY + 2Y X) ∈ U(g).

I proved in class (see also the text, Proposition 6.15) that CB belongs to

Z(g) =def center of U(g). (1.2d)
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Using the defining relation

XY = Y X + [X,Y ] = Y X +H

of the enveloping algebra, we calculate (still with char k 6= 2)

CB =
1

4
(H2 + 2H + 4Y X) =

1

4
(H2 − 2H + 4XY ) ∈ Z(g). (1.2e)

It is convenient (and fairly standard) to multiply this element by four, and
to define

Ω = H2 + 2H + 4Y X = H2 − 2H + 4XY ∈ Z(g). (1.2f) {e:omega}

The element Ω is defined for any field k (even in characteristic two, where
it reduces to H2).

{se:sl2proof}
Proof of Theorem 1.1. To prove that ρm is a representation, one has to do
three calculations like this:

[ρm(H), ρm(X)] = (ρm(H)ρm(X)− ρm(X)ρm(H)) vm−2j

= ρm(H)(j · vm−2j+2)− ρm(X)((m− 2j) · vm−2j)
= j(m− 2j + 2)vm−2j+2 − j(m− 2j)vm−2j+2

= 2jvm−2j+2

= ρm(2X)vm−2j .

Since this equality holds for every basis vector vm−2j , the conclusion is that

[ρm(H), ρm(X)] = ρm(2X) = ρm([H,X]). (1.3a)

Together with parallel calculations for [H,Y ] and [X,Y ], this shows that ρm
respects the Lie bracket, and so is a representation.

Suppose now that char(k) is zero or greater than m; we want to show
that ρm is irreducible. Suppose W ⊂ V (m) is a nonzero invariant subspace.
Because ρm(X) is obviously a nilpotent linear map, the restriction of ρm(X)
to W is also nilpotent, and so must contain a nonzero vector w in the kernel
of ρm(X). But the formula in the theorem for ρm(X) shows that

ker(ρm(X)) = span{vm−2j | j = 0 in k} = kvm,

the last equality because of the assumption that char(k) is zero or greater
than m. The conclusion is that vm ∈W . Applying ρm(Y ) to vm repeatedly
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(and using again the hypothesis on char(k)) we find that W contains every
basis vector vm−2j ; so W = V (m), as we wished to show.

We record also the fact

ρm(Ω) = (m2 + 2m)I. (1.3b) {e:omegaeigenvalue}

When ρm is irreducible and k is algebraically closed, Schur’s lemma tells
us that ρm(Ω) must be a scalar. We can compute that scalar most easily
by applying Ω to vm and using the first formula in (1.2f): ρm(X)vm =
0, so the calculation is very easy. It’s clear that knowing (1.3b) for the
algebraic closure of k implies it for k. To get the identity in fields of small
characteristic, one can either calculate the action of ρm(Ω) on every basis
vector vm−2j , or use the fact that the identity is true “over Z.”

Because (ρm(H2 − 2H)(vp) = (p2 − 2p)vp, we calculate

ρm(4XY )vm−2j = ρm(Ω−H2 + 2H)vm−2j

= (m2 + 2m− (m− 2j)2 + 2(m− 2j))vm−2j

= (4jm+ 4m− 4j2 − 4j)vm−2j = 4(j + 1)(m− j)vm−2j .

As long as char k 6= 2, we can divide by four to get

ρm(XY )vm−2j = (j + 1)(m− j)vm−2j ,

ρm(XY )vp =
(m− p+ 2)

2

m+ p

2
vp.

(1.3c) {e:XY}

This equation is still true in characteristic two, either by direct cal-
culation from the formulas in the theorem or by another argument about
identities over Z.

Now suppose that (τ,W ) is a finite-dimensional representation of sl(2, k).
For any λ ∈ k, consider the λ eigenspace of τ(H):

Wλ =def {w ∈W | τ(H)w = λw}. (1.3d)

It is an immediate consequence of (1.2a) that

τ(X)Wλ ⊂Wλ+2, τ(Y )Wλ ⊂Wλ−2. (1.3e) {e:sl2wt}

If we define
Wλ+2Z =

∑
j∈Z

Wλ+2j , (1.3f)

then the conclusion is that Wλ+2Z is an invariant subspace of W .
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In the same way, for any κ ∈ k, consider the κ eigenspace of τ(Ω):

W κ =def {w ∈W | τ(Ω)w = κw}. (1.3g)

Because Ω ∈ Z(g), any such eigenspace is an invariant subspace of W .
Assume for a moment that k is algebraically closed, and that W 6= 0.

Then τ(H) must have an eigenvalue; that is,

Wλ 6= 0 (some λ ∈ k).

Such λ are called weights ofW . Because k has characteristic zero, the various
λ+ 2j (for j ∈ Z) are distinct elements of k. Since W is finite-dimensional,
these cannot all be eigenvalues of τ(H). The conclusion is

Wµ 6= 0, Wµ+2 = 0 (some µ ∈ k). (1.3h) {e:hwt}

Such a µ is called a highest weight of W . Combining (1.3e) with (1.3h), we
find

τ(H)w = µw, τ(X)w = 0 (w ∈Wµ). (1.3i)

In light of the formula (1.2f), we conclude that

τ(Ω)w = (µ2 + 2µ)w = [(µ+ 1)2 − 1]w (w ∈Wµ). (1.3j) {e:cashwt}

We have now found a nonzero invariant subspace

S = Wµ2+2µ
µ+2Z ⊂W, Sµ = Wµ. (1.3k) {e:subspace}

Lemma 1.4. Suppose char k = 0, µ ∈ k, and (σ, S) is a nonzero finite-
dimensional representation of sl(2, k) satisfying

1. Sµ 6= 0, Sµ+2 = 0; and

2. σ(Ω) = (µ2 + 2µ)I.

Then µ = m is a nonnegative integer, and σ contains (ρm, V (m) as a sub-
representation.

{se:sl2lemmaproof}
Proof. We can find in S a lowest weight for H in the same way we found a
highest weight: a weight µ− 2m so that

Sµ−2m 6= 0, Sµ−2m−2 = 0 (some m ∈ N). (1.5a) {e:lwt}

Calculating the action of Ω exactly as in (1.3j) gives

σ(Ω)u = (µ− 2m)2 − 2(µ− 2m))u = [(µ− 2m− 1)2 − 1]u (u ∈ Sµ−2m).
(1.5b) {e:caslwt}
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By hypothesis, Ω acts by the scalar (µ+ 1)2 − 1. The conclusion is

(µ+ 1)2 − 1 = (µ− 2m− 1)2 − 1,

or
2µ = −4mµ− 2µ+ 4m2

or
4µ(m+ 1) = 4m(m+ 1).

Since m is a nonnegative integer and char k = 0, we can conclude that
µ = m.

Now choose any nonzero vector vm ∈ Sµ = Sm, and define

vm−2j =
1

m(m− 1) · · · (m− (j − 1))
σ(Y )jvm (0 ≤ j ≤ m). (1.5c)

The numerator here is a product of j factors, each of which is nonzero since
char k = 0. Because of (1.3e) and this definition, we calculate immediately

σ(H)vm−2j = (m− 2j)vm−2j , σ(Y )vm−2j = (m− j)vm−2j−2. (1.5d)

(For the last equality in case j = m, we use also the fact that S−m−2 =
Sµ−2m−2 = 0 by the choice of m.) These are two of the three defining
relations of ρm from the theorem.

For the last, part of the hypothesis on S is that

σ(Ω)w = (µ2 + 2µ)w = (m2 + 2m)w (w ∈ S).

Exactly the same proof as we gave for (1.3c) therefore shows that

σ(XY )vm−2j′ = (j′ + 1)(m− j′)vm−2j′ (0 ≤ j′ ≤ m). (1.5e)

Inserting the formula for the action of τ(Y ) gives

σ(X)(m− j′)vm−2j′−2 = (j′ + 1)(m− j′)vm−2j′ (0 ≤ j′ ≤ m− 1).

The factor m− j′ is nonzero in this range, so we get

σ(X)vm−2j′−2 = (j′ + 1)vm−2j′ ,

or (writing j = j′ + 1)

σ(X)vm−2j = jvm−2j+2 (1 ≤ j ≤ m). (1.5f)

The same formula holds also for j = 0 because of the highest weight hy-
pothesis Sµ+2 = Sm+2 = 0.
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The lemma completes the proof of (1) in the theorem in case k is alge-
braically closed. Part (2) is Weyl’s theorem of complete reducibility, and
(3) is immediate from (2).

Suppose finally that k has characteristic zero but is not algebraically
closed, and (τ,W ) is any finite-dimensional representation of sl(2, k). If k is
an algebraic closure of k, then

Wk =def k ⊗k W

is a finite-dimensional representation τ of sl(2, k); the operators τ(X), τ(H),
and τ(Y ) may be represented by exactly the same k-matrices as for τ , just
interpreted as k-matrices. By the algebraically closed case, τ(H) is diagonal-
izable with integer eigenvalues. Because these eigenvalues belong to Z ⊂ k,
τ(H) is also diagonalizable with integer eigenvalues.

We used the algebraically closed assumption above only to find an eigen-
value of τ(H); and now we have that for any field of characteristic zero.
The construction of S, and the inclusion of V (m) in S, proceeds exactly as
above.
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