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1 Representations of sl(2)

The point of these notes is to summarize and complete what was done in
class March 19 about the representation theory of the three-dimensional Lie
algebra

g = sl(2, k) = 2 x 2 matrices over k of trace zero.

This Lie algebra has a basis consisting of the three matrices

(3 %) =08 (0

(That this is a basis follows immediately from the fact that the four “matrix
units” e;;, with 1 <14, 5 < 2, are a basis for the vector space of all matrices.
You want a basis for the kernel of the linear map tr to k.)

Here is the main theorem about representations.

Theorem 1.1. [text, Theorem 4.59] For each integer m > 0 there is a
representation (pm,V(m)) of sl(2,k) on a vector space of dimension m + 1
over k, defined as follows. The space V(m) has a basis
{Um—2j | 0<j< m} = {Um’vm—% cee 7U—m}‘

The action of the basis elements of the Lie algebra is given by

pm(H)0m—2j = (M = 2j)0m—2;

Pm(X)Vm—2j = jUm—2j42 (0<j<m)

P (Y )Um—2; = (m — j)vm—2j—2.
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Equivalently,

pm(H)vp = pop

m-—p

pm(X)vp = 5 Upt2 (p=m,m—2,...,—m)
m+

punY vy = =y,

As long as the characteristic of k is either zero or strictly larger than m,
the representation py, is irreducible.
Suppose now that char k = 0.

1. Every irreducible representation of sl(2, k) is isomorphic to some V (m).

2. Every finite-dimensional representation of sl(2,k) is isomorphic to a
direct sum of copies of V(m).

3. The element H acts diagonalizably with integer eigenvalues in any
finite-dimensional representation of sl(2,k).

Before beginning the proof of the theorem, we need some additional
notation. The Lie bracket is commutator of matrices, so we compute

[H,X]=2X, |[HY]=-2Y, [X,Y]=H. (1.2a)

These bracket relations describe the matrices ad(X), ad(H), and ad(Y) in

the basis {X, H,Y'}:
0 0 0 0 0
, ad(H) = 0 0 |,ad¥)=(—-1 0 0]. (1.2b)
0 -2 0 2 0

ad(X) = (

From these matrices one immediately calculates the Killing form

-2
0
0

o O O
o = O

B(H,H)=4, B(X,Y)=4, B(X,H)=B(Y,H)=0. (1.2¢)

The Killing form is nondegenerate as long as chark # 2. In that case the

dual basis to {X, H,Y'} is {%Y7 %H, %X}, so the Casimir operator is

1 1 1
Cp=5(XY +YX)+ ZH2 = Z(H2 +2XY 4+ 2YX) € U(g).
I proved in class (see also the text, Proposition 6.15) that C'p belongs to

3(g) =dqet center of U(g). (1.2d)
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Using the defining relation
XY =YX+ [X,)Y]=YX+H
of the enveloping algebra, we calculate (still with char k # 2)

1

Cp 1

(H? +2H +4Y X) = %(H2 —2H +4XY) € 3(g). (1.2¢)

It is convenient (and fairly standard) to multiply this element by four, and
to define

O=H>4+2H+4YX = H> — 2H +4XY < 3(g). (1.2f)

The element () is defined for any field k (even in characteristic two, where
it reduces to H?).

Proof of Theorem 1.1. To prove that p,, is a representation, one has to do
three calculations like this:

[pm(H), pm(X)] = (pm(H) pin(X) = pm (X) o (H)) Um—2;
= pm(H)(J - vm—2j+2) — pm(X)((m = 2j) - vm—2;)
= j(m —2j + 2)vm—2j42 — j(m — 2j)Um—2j42
= 2jUm—2j42
= pm (2X)vm—2;.

Since this equality holds for every basis vector v,,—2;, the conclusion is that

[pm(H)7pm(X)] :pm(QX) :pm([H’X])' (1'33’)

Together with parallel calculations for [H, Y] and [X, Y], this shows that p,,
respects the Lie bracket, and so is a representation.

Suppose now that char(k) is zero or greater than m; we want to show
that py, is irreducible. Suppose W C V(m) is a nonzero invariant subspace.
Because p,,,(X) is obviously a nilpotent linear map, the restriction of p,(X)
to W is also nilpotent, and so must contain a nonzero vector w in the kernel
of ppm(X). But the formula in the theorem for p,,(X) shows that

ker(pm (X)) = span{vy,—2;j | 7 = 0 in k} = kv,

the last equality because of the assumption that char(k) is zero or greater
than m. The conclusion is that v, € W. Applying p,,(Y) to v, repeatedly
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(and using again the hypothesis on char(k)) we find that W contains every
basis vector v,—a;; so W = V(m), as we wished to show.
We record also the fact

pm(Q) = (m?* +2m)1. (1.3b)

When p,, is irreducible and k is algebraically closed, Schur’s lemma tells
us that p,,(2) must be a scalar. We can compute that scalar most easily
by applying © to v, and using the first formula in (1.2f): pp,(X)v,, =
0, so the calculation is very easy. It’s clear that knowing (1.3b) for the
algebraic closure of k implies it for k. To get the identity in fields of small
characteristic, one can either calculate the action of p,,(€2) on every basis
vector vp,—2j, or use the fact that the identity is true “over Z.”
Because (pm(H? — 2H)(vp) = (p* — 2p)vp, we calculate

P (AXY Y025 = pm(Q — H? + 2H vy, —oj
= (m? +2m — (m — 2§)% + 2(m — 25))vm_2;
= (45m + 4m — 457 — 45)vpm—o; = 4(j + 1)(m — J)vm—2;-.
As long as char k # 2, we can divide by four to get
P (XY )om 5 = (j + 1)(m — j)vm-2;,

m-—p+2)m+p (1.3¢)
5 5 Up

pm (XY )vp = (

This equation is still true in characteristic two, either by direct cal-
culation from the formulas in the theorem or by another argument about
identities over Z.

Now suppose that (7, W) is a finite-dimensional representation of s((2, k).
For any A € k, consider the A eigenspace of 7(H):

Wy =get {w € W | 7(H)w = Aw}. (1.3d)
It is an immediate consequence of (1.2a) that
T(X)Wy C Wiya, T(Y)Wy C Wy_o. (1.3e)

If we define

Wisoz = > Wagaj, (1.3f)
jez

then the conclusion is that W),o7 is an invariant subspace of W.
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In the same way, for any x € k, consider the k eigenspace of 7(2):
WH =get {w € W | 7(Q)w = kw}. (1.3g)

Because Q) € 3(g), any such eigenspace is an invariant subspace of W.
Assume for a moment that k is algebraically closed, and that W # 0.
Then 7(H) must have an eigenvalue; that is,

Wx#0 (some \ € k).

Such A are called weights of W. Because k has characteristic zero, the various
A+ 2j (for j € Z) are distinct elements of k. Since W is finite-dimensional,
these cannot all be eigenvalues of 7(H). The conclusion is

W,#0, Wy=0 (some p € k). (1.3h)

Such a p is called a highest weight of W. Combining (1.3e) with (1.3h), we
find
T(H)w = pw, 7(X)w=0 (w e W,). (1.31)

In light of the formula (1.2f), we conclude that
7(Qw = (u? + 2u)w = [(p+ 1)% — 1w (w e W,). (1.3))
We have now found a nonzero invariant subspace
242
S=Whilrcw,  S,=W, (1.3k)

Lemma 1.4. Suppose chark = 0, p € k, and (0,S) is a nonzero finite-
dimensional representation of sl(2, k) satisfying

1. Sy #0, Sup2 =0; and
2. o(Q) = (u? +2u)l.

Then p = m is a nonnegative integer, and o contains (pm,V(m) as a sub-
representation.

Proof. We can find in S a lowest weight for H in the same way we found a
highest weight: a weight y — 2m so that

Sy—om #0, Su—om—2=0 (some m € N). (1.5a)
Calculating the action of 2 exactly as in (1.3j) gives

o(Qu=(p—2m)* —2(p—2m))u=[(u—2m—1)* - 1u (u € Sy—2m)-
(1.5Db)
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By hypothesis, © acts by the scalar (1 + 1)2 — 1. The conclusion is
(12— 1= (u—2m—1)? — 1,

or

2u = —4dmp — 2 + 4m?
or

dp(m+1) =4dm(m + 1).
Since m is a nonnegative integer and chark = 0, we can conclude that
w=m.

Now choose any nonzero vector v, € S, = Sy,, and define
1

mm—1)---(m—(j—1

Um—2j = ))O'(Y)j’l)m (0<j<m). (1.5¢c)

The numerator here is a product of j factors, each of which is nonzero since
char k = 0. Because of (1.3e) and this definition, we calculate immediately

O‘(H)Um72j = (m — 2j)vm,2j, O'(Y)’Umfzj = (m — j)Umfgjfg. (1.5(].)

(For the last equality in case j = m, we use also the fact that S_,,_o =
Si—2m—2 = 0 by the choice of m.) These are two of the three defining
relations of p,, from the theorem.

For the last, part of the hypothesis on S is that

o(Qw = (p? + 2u)w = (m? + 2m)w (weS9).
Exactly the same proof as we gave for (1.3c) therefore shows that
(XY )omozy = (' + Dm—omay (07 <m).  (L5e)
Inserting the formula for the action of 7(Y") gives
o(X)(m = ) vm—gj—2 = (j'+ 1)(m = )om-2;y  (0<j <m—1).
The factor m — j' is nonzero in this range, so we get
o (X)m—gjr—2 = (j' + 1)vm_aj,
or (writing j = j' + 1)
o(X)vm-2j = jom-2j+2 (1 <j<m). (1.5f)

The same formula holds also for j = 0 because of the highest weight hy-
pothesis 5,42 = Sp42 = 0. O



The lemma completes the proof of (1) in the theorem in case k is alge-
braically closed. Part (2) is Weyl’s theorem of complete reducibility, and
(3) is immediate from (2).

Suppose finally that k£ has characteristic zero but is not algebraically
closed, and (7, W) is any finite-dimensional representation of s[(2, k). If k is
an algebraic closure of k, then

Wi =det k @ W

is a finite-dimensional representation 7 of sl(2, k); the operators 7(X), 7(H),
and 7(Y') may be represented by exactly the same k-matrices as for 7, just
interpreted as k-matrices. By the algebraically closed case, 7(H ) is diagonal-
izable with integer eigenvalues. Because these eigenvalues belong to Z C k,
7(H) is also diagonalizable with integer eigenvalues.

We used the algebraically closed assumption above only to find an eigen-
value of 7(H); and now we have that for any field of characteristic zero.
The construction of S, and the inclusion of V(m) in S, proceeds exactly as
above. O



