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The size of infinite-

Where we (should have) ended yesterday imensionel

representations |l

G = GL(n,R), 6(g) = g~ Cartan involution. David Vogan
K = GL(n,R)? = O(n) (compact, easy). eduton
Ag =20k — Qg € Us(g) difference of Casimir ops.

(7, ") € G; eigval aymptotics of 7°(Ag) ~ Dim(r).

Start today by modifying point of view:

He= D Halp) =) me(pp  (Ma(p) €N).
neo(n)
Since 7°(Qg) = ¢(7) € R,
eigval asymp of Ag = asymp of restr to K.

If Hr(N) =det ZM(QK)SNE Hr(u), then
dim H,(N) ~ a(x)NPM),

Understanding size means understanding = |x.



Stating the question and changing notation T“%?Af;‘;ﬁ;”nf;'r“:'
representations
Two goals tOday: David Vogan
1. describe possibilities for w|on (7 € Gm)); e

2. compute which possibility occurs for which .
Big tools: algebraic geometry, commutative algebra.
Helps to change notation.
Thm. Cpt Lie group K ~~ complexification K(C):
cont reps of K ~ alg reps of K(C).

New notation convenient for using K(C):

old notation new notation
K = 0(n) K(R) = O(n)
K(C) = O(n,C) K = 0O(n,C)

g = Lie(G) = gl(n,R) g(R) = gl(n,R)

g(C) = Lie(G) ®r C g=gl(nC)
All works for any real reductive group with cplxified Lie alg
g, cplxified max cpt K.



New notation suggests new questions T dmensional
representations |l
David Vogan
Old interest: #, = irr unitary of GL(n,R). Introduction

New interest: V = #X>° = O(n, C)-finite vecs.
(g, K)-module is vector space V with

1. alg repn i of algebraic group K = O(n, C):

V= E,uEK my(p)p

2. repn 7, of cplx Lie algebra g

3. dmk = mgle, Tk (K)mg(X)mk (k™) = mg(Ad(K)X).
In module notation, cond (3) reads k- (X - v) = (Ad(k)X) - (k- V).
Two new goals today:

1. describe possibilities for V/|x;
2. compute V| in interesting terms.

Bad answer: my(u) = (formula with signs and partition fns).

Good answer: V|k ~ (alg fns on variety with K action).
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Finding varieties with K action i

representations |l

David Vogan
O(n,C) = K reductive alg gp ~ gl(n,C) = g cplx g
reduc Lie alg.
g = t + s skew symm & symm matrices
N* = cone of nilp elts in g* cplx nilp matrices.
Ny = N* N s*, nilpotent symmetric matrices
Ny = finite # nilpotent K orbits O.
[Irr (g, K)-mod V] | ~ alg fns on some O.
In this language, our goals are

1. Attach nilp orbits to (g, K)-mods in theory.
2. Compute them in practice.

Geometrizing reps

“In theory there is no difference between theory and practice. In
practice there is.” Jan L. A. van de Snepscheut (or not).



Classical limits for representations

Rep of g is module for noncomm U(g): QUANTUM.
CLASSICAL ANALOGUE is module for comm S(g).
Fundamental link is PBW:

U(g) = Un>oUn(g), Up - Ug C Upig
gr U(g) =def Z Un/Un-1, grU(g) ~ S(g).

n>0

V fin gen/U(g), V fin diml generating; set
Vi = Un(g) - Vo, arV =gef Z Vn/ Vo1
n>0
finitely generated graded S(g)-module.
V (g, K)-module, V, K-stable ~~ gr V (S(g/t), K)-module.
Vik ~ (gr V) |k: res to K lives in classical world.

Thm. If V finite length (g, K)-module, then
(S(g/t), K)-module gr V supported on N C s*.
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Associated varieties

F(g, K) = finite length (g, K)-modules. . .
noncommutative world we care about.

C(g,K) = f.g. (S(g/*), K)-modules, support C \j...
commutative world where geometry can help.

F(g,K) > C(g, K)
Prop. gr induces surjection of Grothendieck groups
KF(g, K) = KC(g, K);
image records restriction to K of HC module.

So restrictions to K of HC modules sit in equivariant
coherent sheaves on nilpotent cone in (g/¢)*

KC(g, K) —def KK(NQ*)v

equivariant K-theory of the K-nilpotent cone.
Goal 2: compute KX (A7) and the map Prop.
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Equivariant K-theory

Setting: (complex) algebraic group K acts on
(complex) algebraic variety X.

Coh/ (X) = abelian categ of coh sheaves on X with K action.
KK(X) =get Grothendieck group of Coh*(X).

Example: Coh*(pt) = Rep(K) (fin-diml reps of K).

KX (pt) = R(K) = rep ring of K; free Z-module, basis K.
Example: X = K/H; Coh® (K /H) ~ Rep(H)

E € Rep(H) ~~ & =q4et K xy E eqvt vector bdle on K/H
KK(K/H) = R(H).

Example: X = V vector space (repn of K).

E € Rep(K) ~~ proj module
OV(E) =get Oy ® E € Coh(X)

proj resolutions = KX (V) ~ R(K), basis {Oy(7)}.
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Doing nothing carefully
Suppose K ~ X with finitely many orbits:
X=YiU---UY,, Yi=K-yi~K/K.
Orbits partially ordered by Y; > Y;if Y; C V..
(1, E) € K¥ ~ £(7) € Coh¥(Y)).
Choose (always possible) K-eqvt coherent extension
E(r) € Coh®(Y)) ~ [€] € KK(Y)).
Class [£] on Y; unique modulo KX(8Y;).
Set of all [E(7)] (as Y; and 7 vary) is basis of KK(X).

Suppose M € Cth(X); write class of M in this basis

M= > n(MIE)]

i=1 TER?i

Max! orbits in Supp(M) = max! Y; with some n, (M) # 0.

Coeffs n.(M) on maxl Y; ind of choices of exts £(7).
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Our story so far dmensional
representations |l

We have found David Vogan

1. homomorphism
virt G(R) reps KF(g, K) -2 KK(N;) equt K-theory
2. geometric basis {[5(7)]} for KK(A\), indexed by irr K-theory
reps of isotropy gps
3. expression of [gr(w)] in geom basis ~ AC(7).
Problem is computing such expressions. . .

Teaser for the next section: Kazhdan and Lusztig
taught us how to express 7 using std reps /():

(7= m @I my(r) e Z.

S
{lar I(7)]} is another basis of KK(N).
Last goal is compute chg of basis matrix: to write

[E(r ]—Zm ) I(7)]



The last goal (last slide of actual lecture)

Studying cone NV = nilp lin functionals on g/¢.

Found (for free) basis {[8(7‘)]} for KK(AN), indexed
by orbit K/K' and irr rep 7 of K'.

Found (by rep theory) second basis {[gr /(7)]},
indexed by (parameters for) std reps of G(R).

To compute associated cycles, enough to write

i1 =Y" > N(MIEM)]

orbits 7 irr for
isotropy

Equivalent to compute inverse matrix

7)] = Z ny(7)lgr (v
Need to relate

geom of nilp cone «~ geom of std reps.
Use parabolic subgps and Springer resolution.
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Introducing Springer

g = ¢ @ s Cartan decomp, N =~ Ny =get N N nilp cone in s.
Kostant-Rallis, Jacobson-Morozov: nilp X € s ~~ Y €5, He ¢
[H,X] =2X, [H,Y]=-2Y, [X,Y]=H,
g[k] = t[k] @ s[k] (ad(H) eigenspace).
~ g[>0] =¢et q = [+ u 0-stable parabolic.
Theorem (Kostant-Rallis) Write O = K - X C Nj.
1. 1 Og =get K Xqnk s[> 2] j@, (k,Z2) — Ad(k)Z is
proper birational map onto O.

2. KX=(QnK)X =(LnKYX(UnK)Xis a Levi

S~

decomp; so KX = [(LN K)X]".
So have resolution of singularities of O:

K xank s[> 2]
vec bdle v N I

K/QnkK o

Use it (i.e., copy McGovern, Achar) to calculate
equivariant K-theory. ..
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Using Springer to calculate K-theory S
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X € Ny represents O = K - X.
1 Oq =dgef K X onk 5[>2] — O Springer resolution.
Theorem Recall KX = (LN K)X]™ . A

1. KX(Oq) has basis of eqvt vec bdles:
(o,F) € Rep(LN K) ~ F(o).
2. Get extension of £(a|(k)x) from O to O

[F(o)] =def Z Y[R 1.(F(0))] € KK(O).
3. Compute (very easny [F(o)] = 3, ny(o)gr I(7)]-

4. Eachirr 7 € [(LN K)X]™ extends to (virtual) rep o(7)
of LN K; can choose F(o(7)) as extension of £(7).




Now we can compute associated cycles imersonal
representations
RecaIIXENQWO:K-X;TE [(LﬁK)X]A David Vogan
We now have explicitly computable formulas
E()] = [Flo(M)] = Z n (7)lgr 1(+)

K-theory & repns

Here’s why this does what we want.

1. inverting matrix n,(7) ~» matrix N-(y) writing [gr /()]
in terms of [£(7)].

2. multiplying N-(v) by Kazhdan-Lusztig matrix m, ()
~» matrix n.(m) writing [gr 7] in terms of [£(7)].

3. Nonzero entries n, () ~ AC(m).

Side benefit: algorithm for G(R) cplx also computes
a bijection (conj Lusztig, proof Bezrukavnikov)

(dom wts) <« (pairs (O, 1))...



Complex groups regarded as real e

representations |l
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Gy = cplx conn reductive alg gp «~ old G(RR)).
o1 = cplx conj for compact real form of G;.
G = Gy x Gy complexification of Gy...
1. a(x,y) = (o1(y), o1(x)) cplx conj for real form Gs:
GR) =G ={(x,01(x) | x € G1} ~ Gy.
2. 0(x,y) = (y,x) Cartaninv: K = G’ = (Gi)a.
K-nilp cone N C g* ~ Gy-nilp cone N} C gj.
Hy Cc Gy, H=H; x Hi C G, T = (Hi)a C K max tori.
a=h""={(Z,~Z)| Z € h;} Cartan subspace.
Param for princ series repis v = (\,v) € X*(T) x a*:
1. I\ v)|k = Indf(N);
2. virtrep [I(wy - A\, wy - v)] indep of wy € Wy;
3. [gri(\,v)] € KK(WNy) ~ K& (N5) indep of v.

Conclusion: the set of all [gr /(\)] ~ Ind¥())
(A € X*(T) dom) is basis for (virt HC-mods of Gy) |k.

Complex groups



Connection with Weyl char formula e
representations |l
K ~ Gj cplx conn reductive alg, T ~ H; max torus. David Vogan

Asserted “{Ind’?()\)} basis for (virt HC-mods of Gy) |k.”

What's that mean or tell you?

Fix (F,pn) € K of highest weight ;. Xdom(T).

(F, p) also irr (fin diml) HC-mod for Gy; (F, )|k = (F, p). Complex groups
Assertion means F = Y. _ yiom (1) My (F) Indf (7).

Such a formula is a version of Weyl char formula:

(Fop)y= > (1) ™ Indf(u+p— wp)
weW(K,T)

= > (=1 1Bndf (1 + 2p — 2p(B)).
BCA*(¢,t)
One meaning: if (E,~) € K, then

D (=) MWme(p+p—w-p) =
weW



Lusztig’s conjecture

G D B D H complex reductive algebraic.
X*(H) > X9%°™(H) dominant weights.
N* = cone of nilpotent elements in g*.
Lusztig conjecture: there’s a bijection
X9 ... pairs (¢, 7)/G conjugation;
EeN* ¢ aiewaeqvtvecbdleé’( )=GxgeT

Thm (Bezrukavnikov). There is a preferred virt
extension £(7) to G- £ so

] = £l IAE N+ D m(&nlari()]-

Y= T)
Upper triangularity characterizes Lusztig bijection.
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Calculating Lusztig’s bijection T dmensional
representations |l
Proceed by upward induction on nilpotent orbit. David Vogan

Start with (£,7), £ e N*, 7 € GE.
JM parabolic Q = LU, ¢ € (g/q)*; G* = Q° = LS US.
Choose virt rep [o(7)] € R(L) extension of .
Write formula for corr ext of £(7) to G - &:
[F@D =D mory(2) Do (~1)I DB R 7 (—p)lassensee
A BCA*+(1,h) ACA(g[1],h)
[ar IO\ + 21 — 2p(A) — 2p(B))].
Rewrite with [gr /(\)], A’ dominant.
Loop: find largest \'.
If N s (&, 7") for smaller G- ¢, subtract
My (A') x formula for (&', 7');
~» new formula for (&, 7) with smaller leading term.
When loop ends, ) = A\(§, 7).



What to do next

Sketched effective algorithms for computing
assoc cycles for HC modules, Lusztig bijection.
What should we (this means you) do now?
Software implementations of these?

Pramod Achar ~~ gap script for Lusztig bij in type A.
Marc van Leeuwen ~~ atlas software for (std rep)|x.

Real group version of Lusztig bijection?
Algorithm still works, but bijection not quite true.
Failure partitions K into small finite sets.

Closed form information about algorithms?

formula for smallest A «~ (one orbit, any 7);
Would bound below infl char of HC-mod «~ orbit.
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