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The simplest noncommutative compact Lie group is the group SU(2) of unit
quaternions. If K is a compact Lie group, write D(K) for the set of conjugacy
classes of homomorphisms of SU(2) into K. Dynkin showed in the 1950s that
D(K) is a finite set, and calculated it in all cases.

A fundamental unsolved problem is to parametrize the “purely real” unramified
unitary representations of a split reductive group G over a local field. Such
representations are parametrized by a compact polytope P(G). When G and
K are “Langlands dual” to each other, a conjecture of Arthur realizes D(K) as
a subset of P(G). We discuss the status of this conjecture, and how Dynkin’s
problem illuminates the representation-theoretic one.

1 Introduction

One of the purposes of representation theory is to provide tools for harmonic
analysis problems. The idea is to understand actions of groups on geomet-
ric objects by understanding first the possible representations of the group
(by linear operators). Formally the simplest examples are finite groups: no
sophisticated analytical tools are needed to study them. Nevertheless the (fi-
nite set) of irreducible representations of a finite group can be extraordinarily
complicated from a combinatorial point of view. In some respects the rep-
resentation theory of (connected) Lie groups is actually simpler than that of
finite groups, because the geometric structure of a Lie group constrains the
multiplication law to be nearly commutative.

The purpose of this paper is to examine a classical problem in the rep-
resentation theory of Lie groups (formulated as (23) below). The problem is
still unsolved. I'll explain a conjecture due to James Arthur that relates this
representation theory problem to a structural problem for compact groups.
The structural problem was solved by Eugene Dynkin in the 1950s. Connect-
ing the two problems requires the classification of compact Lie groups in the
beautiful form given to it by Michel Demazure and Alexandre Grothendieck
(elaborating on previous constructions). I will recall that classification in
Sec. 2. The solution to Dynkin’s problem appears in Sec. 3. In Sec. 4 T will
formulate the representation-theoretic problem, and state Arthur’s conjecture
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about it (see (24) below). Finally, Sec. 5 outlines results of Barbasch and Moy
proving (24) for p-adic fields.

2 Compact Lie groups

The formulation of Dynkin’s problem can be motivated by a fundamental
idea from topology. There one begins with the spheres S™ as the most basic
examples of topological spaces. One can then study a general space X by
studying the (continuous) maps from spheres to X. The nth homotopy group
of X is

7 (X) = maps(S™, X) /homotopy.

In the category of compact Lie groups, there are two simplest examples:
the unit circle in the multiplicative group of complex numbers, and the unit
3-sphere in the quaternions. That is,

8!~ U(1) = unit sphere in C

(1)
§3 ~ SU(2) =~ unit sphere in H

In analogy with the homotopy groups of topological spaces, it is then natural
to attach to a compact Lie group K two invariants:

C(K) = (homomorphisms from U(1) to K)/(conjugation by K)

(2)
D(K) = (homomorphisms from SU(2) to K)/(conjugation by K)

A description of the invariant C(K) is implicit in the classical structure theory
for compact Lie groups, which we will recall below. This set may be naturally
identified with the orbits of a finite group on a lattice. The invariant D(K),
which is a finite set, was computed by Dynkin;'® we will discuss his result in
Sec. 3.

In order to understand the invariant C(K), we begin with the special case
when K is a compact torus. It is convenient and traditional in this case to use
a slightly different notation. Suppose therefore that T is a compact connected
abelian Lie group. The lattice of one-parameter subgroups of T is

X.(T) = continuous homomorphisms from U(1) to 7' (3)
Dually, the lattice of weights of T is
X*(T') = continuous homomorphisms from 7" to U(1). (4)

Because of the duality between these notions, one-parameter subgroups are
also called coweights.
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Theorem 1 Suppose T is a compact connected abelian Lie group. Then the
sets X.(T) and X*(T) defined in (3) and (4) are naturally lattices (that is,
free abelian groups) of rank equal to the dimension of T. There is a natural
pairing (,) from X.(T) x X*(T) into Z identifying each lattice as the dual of
the other.

The set C(T) defined in (2) may be identified with the lattice X, (T).

We omit the elementary proof, but recall the construction of the pairing.
Suppose 7:U(1) — T is a one-parameter subgroup and A::T — U(1) is a
weight. Then the composition A o 7 is a homomorphism from U(1) to itself,
which therefore sends e? to ™ for some integer m. We define (7, \) = m.

We return now to the setting of a compact connected Lie group K. Recall
that a mazimal torus in K is a connected abelian Lie subgroup 7' C K of
maximal dimension. The Weyl group of T in K is equal to the normalizer of
T in K modulo T":

W =W(K,T) = Nk(T)/T. (5)

It is a finite group of automorphisms of the torus 7', and therefore acts also
by automorphisms on the lattices X,(T") and X*(T).

Theorem 2 Suppose K is a compact connected Lie group. Any two mazimal
tori T and T' in K are conjugate by K. This conjugation defines isomor-
phisms

X (T) = X, (T"),  X*(T)=~X*(T')

which are uniquely determined up to composition with an automorphism from
W(K,T).

Any homomorphism from U(1) to K is conjugate to one mapping to T
Two homomorphisms from U(1) to T are conjugate by K if and only if they
are conjugate by W (K, T). Consequently the set C(K) defined in (2) may be
identified with the set of orbits of W(K,T) on the lattice X.(T):

C(K) ~ X, (T)/W(K,T).

Proofs may be found in many texts, including Knapp.'?

This is all the structure theory for compact groups that we need to de-
scribe Dynkin’s determination of D(K). In order to make the connection
to our representation-theoretic problem, we will need a bit about root sys-
tems. For proofs and more details, the reader may again consult Knapp.!3
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We continue to fix a maximal torus 7" in a compact connected Lie group K.
Write

t = Lie(K), tc=t®xC

for the Lie algebra of K and its complexification. We use similar notation
for T. The group K acts on #¢ by Lie algebra automorphisms; this defines
a complex representation of K, called Ad. The restriction of Ad to T splits
(like any finite-dimensional complex representation of T') into a direct sum of
one-dimensional representations. The action of T on {c is trivial (since T is
abelian). All the other characters of T appearing in Ad are non-trivial, and
each appears exactly once. We find in this way a decomposition

te=tc® Y (6)
a€R(K,T)
Here R(K,T) C X*(T) is the set of non-trivial weights of Ad(T') acting on
Ec. It is called the set of roots of T' in K. The one-dimensional subspace &z
is called a root space. Clearly
|R(K,T)| = dimt/t = dim K/T,
so that in particular the root system is a finite subset of X*(T').

The traditional approach to the classification of compact Lie groups is
based on the geometry of the root system, which is characterized by fairly
simple axioms (see for example Knapp,'® section I.5). Our purposes (in-
cluding the connection with representation theory) are better served by the
Demazure-Grothendieck notion of root datum, which requires one more idea.
In order to express it, notice first that the compact group SU(2) has a maxi-

mal torus 77 consisting of diagonal matrices, which is naturally identified with
U(1):

1= (% %) =W ")

Next, the complexified Lie algebra of SU(2) is naturally identified with two
by two complex matrices of trace 0. The two root subspaces are

su(2)g' = {(o5) 12 €C},

au(z™ = {(29) [we ),
The identification of T7 with U(1) identifies the lattices X, (T1) and X*(T})
with Z. In this identification, the root oy is identified with 2. (This means

that Ad (e“"’ 0 ) acts on €' by multiplication by e?¥.)

0 e—if

(8)
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Theorem 3 Suppose K is a compact connected Lie group, T is a mazimal
torus in K, and a € R(K,T) is a root. Then there is a group homomorphism

0a:SU(2) = K,
satisfying ¢o(T1) C T, and
dpo(su(2)gr) = 2.

The homomorphism ¢, is uniquely determined up to conjugation by T in
K or by T1 in SU(2). In particular, the restriction of ¢o to Ty ~U(1) is a
well-defined homomorphism from U(1) to T. This restriction determines o
uniquely.

‘We omit the elementary proof; most of the necessary ingredients may be found
on page 209 of Knapp.3

The restriction of ¢, to T} described in the proposition is called the coroot
corresponding to o, and written

a’ = o |1, € Xu(T). (9)

The set of all coroots of T in K is written RV (K,T) C X.(T). According to
Theorem 3, the map a + oV is a bijection from R(K,T) to RV (K, T).

In order to understand the notion of root datum, we need to know how
roots and coroots are related to the Weyl group W (K, T') defined in (5). Here
is the result.

Theorem 4 Suppose K is a compact connected Lie group, T is a mazimal
torus in K, and a € R(K,T) is a root. Fiz a homomorphism ¢, as in

Theorem 8, and define
01
Oa = ¢a (_1 0) .

Then 0o € Nk (T). The coset 0,T is independent of the choice of ¢, and
therefore gives a well-defined element s, € W(K,T). The action of so on T
is given by

sa(t) =t (a¥(at) ).

The actions on one-parameter subgroups and on weights are
sa(7) =7 - (v;a)a’ (v € X(T)),
sa(A) = A — (¥, N (A e X*(T)).
The elements s, have order 2, and they generate W (K, T).
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Everything except the assertion that the elements s, generate W (K,T) is
elementary. Again, a proof may be assembled from page 209 of Knapp.'3
Given the formulas for s,, the fact that s, has order two is equivalent to
(aV,a) = 2. This fact in turn comes down to the identification of the root a;
of SU(2) with 2, explained after (8). The element s, is called the reflection
in the root a.

Finally we can give the definition of a root datum due to Demazure and
Grothendieck. For more details we refer to Springer.!® A root datum is a
quadruple ¥ = (X,R,XV,RY). Here X and XV are lattices (that is, free
abelian groups of finite rank) dual to each other by a fixed pairing (, ) mapping
XV x X toZ. The sets R and RV are finite subsets of X and XV respectively,
endowed with a fixed bijection a — o from R to RY. For each a € R we
define endomorphisms s, of X and XV by

s5a(A) = A — (¥, N)a, sa(7) =7 — (7,a)a AeX,yeXV).

This structure is subject to just two axioms:

(RD1) If @ € R, then (a¥,a) = 2.
(RD2) If @ € R, then so(R) C R, and so(RY) C RY.

The Weyl group of the root datum is by definition the group W (¥) of auto-
morphisms of X generated by the s,. It is naturally isomorphic (by an inverse
transpose map) to the corresponding group of automorphisms of XV.

The root datum is called reduced if it satisfies also the axiom

(RDO) If @ € R, then 2a ¢ R and 2a¥ ¢ RY.

Because of the symmetry of the axioms, it is immediately obvious that
to every root datum ¥ = (X, R, XV, R") is associated the dual root datum
¥V = (XV,RY, X, R). It is reduced exactly when ¥ is. Because of Theorem
4, it is easy to see that if K is a compact Lie group with maximal torus K,
then ¥(K,T) = (X*(T),R(K,T),X.(T),RY(K,T)) is a root datum, called
root datum of T in K; its Weyl group is the Weyl group of T in K. It is
a standard fact about compact groups that this root datum is reduced. By
Theorem 2, any two root data for K are isomorphic, and the isomorphism is
canonically defined up to composition with an element of the Weyl group.

Theorem 5 Suppose (K,T) and ((K',T') are pairs consisting of a compact
connected Lie group and a mazimal torus. Suppose that the corresponding
root data ¥(K,T) = (X*(T),R(K,T),X.(T),RY(K,T)) and ¥(K',T') =
(X*(T"),R(K",T"), X,.(T"),RV(K',T")) are isomorphic by an isomorphism j*
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from X*(T) to X*(T") (and its inverse transpose j.: X.(T) — X.(T")). Then
there is a group isomorphism j from K to K' carrying T to T', and induc-
ing the isomorphisms j* and j, in the obvious sense. Any two such group
isomorphisms differ by composition with an inner automorphism from T (or
T).

Finally, suppose ¥ is any reduced root datum. Then there is a compact
connected Lie group K and a mazimal torus T C K so that ¥(K,T) ~ .

Unfortunately, I do not know a good reference for this result. The analogue for
algebraic groups over an algebraically closed field is in SGA 3.8 There is a close
relationship, implemented by a “complexification” functor, between compact
Lie groups and complex reductive algebraic groups. On the Lie algebra level
this relationship can be found in many places (for example Knapp,'® Theorem
6.11); but the relationship of the groups is harder to find. In any case, this
relationship reduces Theorem 5 to the complex case treated in SGA3.2
Theorem b5 reduces the classification of compact Lie groups to the classifi-
cation of root data. This in turn is closely related to the classification of root
systems. We do not need this classification, so we will not discuss it further.
We can now begin to understand the role of root data and their du-
ality in representation theory. If T' is a compact torus (with root datum
(X4(T),0,X*(T),0)) then the dual root datum corresponds to a compact
torus TV, called the dual torus of T. The weights of T' are in one-to-one cor-
respondence with the one-parameter subgroups of TV. More generally, if K
is a compact connected Lie group with root datum ¥ = ¥(K,T'), then Theo-
rem 5 guarantees that ¥V is the root datum of a dual compact Lie group KV
with maximal torus 7. (The notation is consistent: T is actually the dual
torus to T.) The Cartan-Weyl highest weight theory says that irreducible
representations of K are in one-to-one correspondence with W (K, T) orbits
on the lattice X*(T') of weights of T. The duality provides an isomorphism of
Weyl groups W (K, T) ~ W(KV,TV), respecting the actions of these groups
on X*(T') ~ X,(T). In light of Theorem 2, the conclusion is that irreducible
representations of K are in one-to-one correspondence with K V-conjugacy
classes of one-parameter subgroups of the dual group. In the notation of (2),

R ~ X*(T)/W(K,T) ~ X,(TV)/W(K",T") ~ C(K"). (10)

Roughly speaking, information about representations of K is encoded by in-
formation about elements (precisely, one-parameter subgroups) of the dual
group.

A central theme of the Langlands program!® is enormous generalizations
of (10). The compact group K can be replaced first by a reductive group
over a local field, and later even by an adele group over a number field. In

5
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the latter setting the irreducible representations of K are replaced by spaces
of automorphic forms. The compact dual group is replaced by the (closely
related) L-group. Instead of one-parameter subgroups of the dual group,
one considers various kinds of homomorphisms of Galois groups (and related
groups) into the L-group. (I learned from Mark Reeder the beautiful idea
that these homomorphisms can be thought of as “arithmetic elements” of
the L-group. Then the (local) Langlands philosophy says that irreducible
representations of a reductive group over a local field are (approximately)
parametrized by arithmetic elements of the L-group.)

Langlands’ original conjectures have been refined and clarified in many
ways, but still have been proved only in a few cases. Our concern here will
be with a very special case of conjectures of Arthur, concerning the role of
unipotent elements in the L-group. The Jacobson-Morozov theorem says that
such elements may be parametrized (up to conjugacy) by homomorphisms of
SU(2) into the compact dual group; that is (in the notation of (2)) by D(K V).
We will explain Dynkin’s computation of D(K ") in Sec. 3, and then formulate
Arthur’s conjecture precisely in Sec. 4.

Here is a basic example. Suppose K is the group U(n) of n X n unitary
matrices. As a maximal torus in K we can choose the group 7' of diagonal
matrices. There is a natural isomorphism 7' ~ U(1)™ given by the diagonal
entries. In these coordinates, we find

X (T)~=2Z",  X*(T)~7". (11)

For example, the one-parameter subgroup 7y(ms,...,m,) corresponding to
an n-tuple of integers sends e’ to the diagonal matrix with diagonal entries
efmf . emn® The natural pairing between X,(T) and X*(T) is given
by the usual inner product. Both roots and coroots correspond to ordered
pairs (i,7) of distinct integers between 1 and n: in terms of the standard
basis {e1,...,en} of Z", a(; j) = €; — e; (and similarly for o] ;). From the
formula in Theorem 4, it is easy to check that the reflection sq, ;) interchanges
the ¢ and j coordinates. Consequently the Weyl group is the group of all
permutations of the coordinates:

W(K,T) =~ Sy.

Notice that the root datum of U(n) is isomorphic to its own dual.

‘We conclude this section with one more kind of structure on a root datum,
which will appear repeatedly in the following sections. Suppose that ¥ =
(X,R,XV,RY)is aroot datum, with Weyl group W (¥). Because so(a) = —a
for every root «, the roots R consist of pairs {a, —a} of non-zero elements.
Similarly, the coroots occur in pairs {aV,—a"}. A positive system for ¥ is
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a good way of picking out one root or coroot from each such pair. Here is a
precise definition. A coweight v € XV is called regular if (v,a) # 0 for all
o € R; it is called singular if it is not regular. The singular elements of XV
are evidently the union of at most |R| proper subgroups of X V. It follows that
there exist regular elements of XV. A set of positive roots for ¥ is a subset
RT C R so that there is a regular element v € XV with

Rt ={a€R|(y,a) > 0}. (12)
As immediate consequences of this definition, we get
R=R"U-R" (disjoint union)

(R"+R")NRCR".
A positive root that is not the sum of two other positive roots is called simple.
The collection of simple roots in R is written II(RT). A coweight v € XV
is called dominant for RT if
(v,a) >0, alla € RT.
All of these definitions can be made in exactly the same way for coroots.

Theorem 6 Suppose ¥ = (X,R, X"V, RY) is a root datum, and R™ is a sys-
tem of positive roots for U.

1. The set of coroots (RT)Y = {a" | « € RT} is a set of positive coroots for
v,

2. The set TI(R™) is a basis for the lattice generated by R. Every positive
root is a non-negative combination of these basis elements.

3. Every coweight v/ € XV is conjugate by W(¥) to a uniqgue dominant
coweight; and every weight A\ € X is conjugate by W(¥) to a unique
dominant weight.

4. Any two positive root systems for U are conjugate by a unique element of

Here is how these definitions look in the example of U(n) (see (11) above).
An n-tuple of integers v = (71, ... ,7n) is regular exactly when all the integers
are distinct. The corresponding set of positive roots is

RT ={ei—ej |7 >}
That is, positive root systems correspond precisely to orderings of the n coor-

dinates; so the Weyl group S,, acts simply transitively on them. A coweight
~'" is dominant if and only if its coordinates decrease in the specified ordering.
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3 Dynkin’s classification

We turn now to Dynkin’s description of the homomorphisms from SU(2) to
a compact connected Lie group K. Theorem 3 already describes some such
homomorphisms, characterizing them by their restrictions to the maximal
torus T of SU(2). Dynkin’s first result extends a part of this characterization
to general homomorphisms of SU(2) into K.

Theorem 7 Suppose K is a compact connected Lie group, T is a mazimal
torus in K, and

$:SU(2) - K

is a group homomorphism. Recall that Ty ~ U(1) is the standard mazimal
torus in SU(2). Then there is a K-conjugate ¢' of ¢ with the property that

¢I(T1) cT.

The homomorphism ¢'|1, is uniquely determined by ¢ up to conjugation by
Nk (T). In particular, the one-parameter subgroup

V(¢) = ¢'|r:U(1) = T € X.(T)

is determined by ¢ up to the action of the Weyl group W (K, T).

The one-parameter subgroup v(¢p) must belong to the sublattice of X.(T')
generated by the coroots of T in K.

Conversely, suppose that v:U(1) — T is a one-parameter subgroup of T.
Then there is at most one K -conjugacy class of homomorphisms ¢: SU(2) —

K with v(¢) = 7.

The analogue of this theorem for complex algebraic groups is due to Mal’cev;!
a proof of that version may be found in Theorem 3.4.12 of Collingwood-
McGovern.® It is not difficult to modify that proof to produce the result
stated here. (The middle assertion, that v(¢) lies in the coroot lattice, may
require some comment. First, the group SU(2) is equal to its own com-
mutator subgroup. Its image under ¢’ must therefore be contained in the
commutator subgroup of K. The one-parameter subgroups of 7' taking val-
ues in the commutator subgroup are exactly the rational combinations of the
coroots. So v(¢) must be a rational combination of coroots. Because SU(2)
is simply connected, the homomorphism ¢’ lifts to any covering group of K.
Essentially because of Theorem 5, there is such a covering group for which
the only coweights that are rational combinations of coroots are the integer
combinations of coroots.)

6

vogansing: submitted to World Scientific on July 26, 2000 10




Theorem 7 makes it reasonable to define
D(RY) ={y € X.(T) | v = ¢|r,, some ¢: SU(2) — K}, (13)

the Dynkin coweights for R¥. Obviously D(R") is invariant under the Weyl
group W (K, T). Theorem 7 identifies the invariant D(K) (of conjugacy classes
of homomorphisms of SU(2) into K) with W(K,T) orbits on D(R"). Our
next task is to get some a priori information about D(RY). For that purpose,
we fix a set of positive roots RT C R(K,T) as in (12). Write IT = II(R™) for
the corresponding set of simple roots. Fix also a homomorphism ¢: SU(2) —
K, and write v € X,(T) as in Theorem 7. According to Theorem 6, the
W(K,T) orbit W(K,T)-v C X«(T) has a unique dominant element v'. Such
a dominant element determines a collection of non-negative integers

(Ysa)  (acT).

Conversely, each such collection of non-negative integers determines at most
one dominant coweight in the span of the coroots. (They will determine a
unique element in the rational span of the coroots; there are some congruence
conditions on the integers to get an element in the integer span of the coroots.)
Again because of Theorem 7, it follows that this collection of non-negative
integers determines ¢ up to conjugacy. The collection of integers (labelling
simple roots) is called the Dynkin diagram of ¢. Dynkin’s problem was to
determine all possible Dynkin diagrams of SU(2) homomorphisms. Here is a
key result.

Theorem 8 Suppose K is a compact connected Lie group, T is a mazimal
torus in K, and R™ is a positive root system for R(K,T), with simple roots
II. Suppose

¢:SU(2) = K,

is a group homomorphism. Then the corresponding dominant coweight ~'
described above attaches to every simple root in I the integer 0, 1, or 2. In
particular, the total number of K-conjugacy classes of homomorphisms ¢ is
at most 3™,

Proof. We may replace ¢ by a conjugate so that the restriction of ¢ to 77 is
equal to the dominant coweight v'. Write d¢¢ for the complexified differential
of ¢, a Lie algebra homomorphism from su(2)c to ¢c. We will use the root
decompositions of these two algebras from (6) and (8). Fix a basis vector
X, for each root space £2. Notice first that the action of Ad(7;) provides a
Z-grading of su(2)c:

su(2)c[—2] = su(2)c™, su(2)c[0] =t ¢, su(2)c[2] = su(2)g,
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and all other levels are zero. Similarly, the action of Ad(¢(7}) provides a
Z-grading of £c. The zero level is

tcl0] =tc @ Z £z

a€ER, (',a)=0

If £ < 0, then

EC[k] = Z Ea

a€—R*, (v ,a)=k

a sum of negative root spaces. If £ > 0, then

E(C [k] = Z %1

a€Rt, (v,a)=k

a sum of positive root spaces.
Now the Lie algebra homomorphism d¢¢ must respect these gradings. In

particular, the element
01
E=d
s (o)

must belong to £:[2]. Consequently F is a sum of positive root vectors:

E= > eaXa- (14)

a€RY, (v,a)=2

The adjoint action of SU(2) on £¢ provides a finite-dimensional complex
representation of SU(2). Such representations are understood in great detail.
We need only one fact: for every k£ < 0, the adjoint action of E provides a
one-to-one mapping

ad(E): tc[k] — tc[k + 2]. (15)

We can now prove the theorem. Suppose § is a simple root in II. We are
to show that (v',d) < 2. Suppose not; then (7', —J§) < —3. Therefore the root
vector X_; € tclk], with k < —3. According to (15), it follows that [E, X_;]
is a non-zero element of ¢c[k + 2|, with k + 2 < —1. Therefore [E, X_;] is a
non-zero sum of negative root vectors.

On the other hand, (14) says that F is a sum of positive root vectors for
roots of level 2 (and therefore not including §). The Lie bracket of a positive
root vector and a negative simple root vector is always a positive root vector
(except that [Xs, X_s] € tc). Since this last possiblity has been excluded, we
see that [E, X_;] is a sum of positive root vectors. This is a contradiction.
The conclusion is that (7/,8) < 2, as we wished to show. Q.E.D.

vogansing: submitted to World Scientific on July 26, 2000 12




Theorem 8 shows that the set D(RY) is finite, but does not determine
it completely. Dynkin’s determination of it is a case-by-case enumeration
of the possibilities. His work has been simplified significantly (notably by
Bala and Carter), but even today there is no satisfactory a priori answer: no
characterization of D(R") by properties analogous to Theorem 8. Here are
some candidates for such properties.

Theorem 9 Suppose K is a compact connected Lie group, T is a mazimal
torus in K, and R™ is a positive root system for R(K,T), with simple roots II.
Write D(RY) for the set of Dynkin coweights. Then every dominant element
~ € D(RY) has the following properties.

1. The coweight v belongs to the lattice generated by R .
2. If § is a simple root, then (vy,§) < 2.

3. If § is a simple root such that (v,8) = 1, then there is a root 8 with
(v, B) =2 such that B — ¢ is a root.

4. The coweight v is conjugate by W (K, T) to —v.

5. For every non-negative integer k, the number of roots satisfying (v, 8) = k
(plus the dimension of T, if k = 0) is greater than or equal to the number
of roots satisfying (v,B) =k + 2.

6. Write REVE™ for the set of roots taking even values on vy, which is a root
system in its own right. Then vy satisfies the analogues of 1) and 2) with
R replaced by R€Ve™,

7. Suppose (w,V) is a finite-dimensional representation of the group K. For
every non-negative integer k, the number of weights A of V. (counted with
multiplicity) satisfying (v, \) = k is greater than or equal to the number
of weights (with multiplicity) satisfying (y,\) = k + 2.

I will not prove this in detail, but here are some hints. Of course we already
proved 1) and 2) in Theorem 8 and the preceding discussion. Part 3) follows
from the proof of 2). Part 4) is a consequence of the fact that the Weyl group of
SU(2) acts by inversion on T; (together with Theorem 2 to turn conjugacy by
#(SU(2)) into Weyl group conjugacy). Parts 5) and 7) are general properties
of representations of SU(2), applied to Ad o ¢ and 7 o ¢ respectively. Part 6)
comes by considering the centralizer in K of ¢(—I). This subgroup obviously
contains T (since ¢(—I) € ¢(T1) C T) and ¢(SU(2)) (since —I is central in
SU(2)). Its root system is REVe™.

‘ vogansing: submitted to World Scientific on July 26, 2000 13




These conditions provide only negative information: they never say that
some homomorphism of SU(2) actually exists. So far our only positive result
is Theorem 3, which says that RY C D(RY). Here is another.

Theorem 10 Suppose K is a compact connected Lie group, T is a mazimal
torus in K, and R™ is a positive root system for R(K,T), with simple roots
II. Write v = 2p" for the sum of all the positive coroots.

1. If § is a simple root, then (v,d8) = 2.

2. There is a homomorphism ¢ : SU(2) — K whose restriction to Ty is .
We have

d¢c (g %)) = ZaEH eaXa;

déc ((1] g) =2 acn €-aX-a-

The constants e, and e_,, are non-zero.

Part 1) is standard (although it is the analogue for roots that is usually
considered); a proof may be found in Knapp,'? Proposition 2.69. Given 1), the
construction of the Lie algebra homomorphism d¢ subject to the conditions
in 2) is quite easy. We omit the details. The homomorphism ¢ constructed
in the theorem is called a principal SU(2). A wealth of beautiful properties
of it may be found in Kostant.!*

Theorem 11 Suppose K is a compact connected Lie group, T is a mazimal
torus in K, and R = R(K,T) is the root system for T in K. Let S be a subset
of R having the properties

S=-85, (S+S)NRCS.

1. There is a compact connected subgroup H of K containing T, with root
system equal to S.

2. The Dynkin set for S is contained in the Dynkin set for R:
D(SY) c D(RY) C X.(T).

In particular, the sum of any set of positive coroots for S belongs to D(RY).

Part 1) is a straightforward consequence of the relation between the structure
constants of the (complexified) Lie algebra ¢ of K and the root system. Then
part 2) is immediate: a homomorphism of SU(2) into H is automatically a
homomorphism into K.
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Table 1. Possible Dynkin diagrams for Aj

diagram principal in subsystem violates Theorem 9
0—o0
1—1 Ay
2—2 A,
0—1 1)’ 3)a 4)
0—2 1), 4)
1—0 1)a 3)a 4)
0—2 1), 4)
1—2 1)a 3)a 4)
2—0 1), 4)
2—1 1)a 3)a 4)

Table 2. Possible Dynkin diagrams for C

diagram principal in subsystem violates Theorem 9
0==0

0=<2  Ashort glong . ylone
lon,
1=<0 ACRE

2==2 Cs
0=1
1=1
1==2
2==0
2==1

a3)

(5 diml. rep.)
, 3)

—_ g W =

)
)
)
)
)

The most obvious subgroups H as in the theorem are the Levi subgroups
of K. These are the centralizers in K of one-parameter subgroups of 7'. If
v € X«(T), then the corresponding subroot system and Levi subgroup are

S(y) ={a € R| (v,a) = 0}, L(y) = K*©M).

Such a subroot system always arises as the span of a subset of the simple roots
for some positive system in R. But there are other examples as well, like the
subsystem of type C; x C; in Cs.

Let us see what we know about D(R") in the simplest examples, beginning
with K = SU(2). The root system of SU(2) is of type Aj; it has a single
positive root aj, which is simple. We know three elements of D(RY): the
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Table 3. Possible Dynkin diagrams for G2

diagram principal in subsystem violates Theorem 9
0=0
0=<1 Alone
1=0 Aﬁhort
0=<2 AmS
2==2 Gs
1=l 6) ((2) for REVeM)
2= 5) (k=4)
2=1 3)
1=<=2 3)

coweight 0 (corresponding to the trivial homomorphism of SU(2) to itself);
ay (corresponding to the identity homomorhism of SU(2) to itself, which is
both principal and attached to a root); and —ay (a Weyl group conjugate
of a; the corresponding homomorphism of SU(2) is inverse transpose). The
first two of these are dominant, and give rise to the Dynkin diagrams (0)
and (2) respectively (since (@, 1) = 2). The only other Dynkin diagram
allowed by Theorem 8 is (1), and the corresponding coweight ay /2 is not
in X,(T1). This last possibility is ruled out by Theorem 9(1). So we have
determined D(RY) in type A;: there are three points, corresponding to two
Dynkin diagrams.

Next, we turn to SU(3), for which the Dynkin diagram is of type As.
Table 1 lists the nine Dynkin diagrams allowed by Theorem 9(2). Three of
these correspond to homomorphisms of SU(2) given by Theorem 11; the cor-
responding subroot systems are listed. The remaining six violate some of the
necessary conditions in Theorem 9. We list only violations of 1), 3), or 4):
the remaining conditions are progressively more difficult to check, and part
of the goal of this exercise is seek candidates for a simple and useful char-
acterization of D(R"). (For SU(n), Theorem 9(4) and (7) for the standard
n-dimensional representation characterizes D(R") completely. This is an el-
ementary consequence of the representation theory of SU(2); that is, of the
explicit determination of D(SU(n)) on a case-by-case basis. It is therefore in
the spirit of Dynkin’s original work, on which we would like to improve.)

For the group Sp(4), with Dynkin diagram of type Ca, the situation is
more difficult. The results are listed in Table 2. Condition (4) of Theorem 9
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is automatically satisfied, since —1 is in the Weyl group. The most difficult
possible Dynkin diagram is 2==0. The corresponding coweight satisfies The-
orem 9 (1)—(6), as well as (7) for the standard 4-dimensional representation.
But (7) is not satisfied for the 5-dimensional representation (arising from the
covering map Sp(4) — SO(5)), so this coweight does not belong to D(R").

For the compact group of type G2, —1 is in the Weyl group, and the
coweight lattice is equal to the coroot lattice; so conditions (1) and (4) of
Theorem 9 are automatically satisfied. Condition (3) rules out two possible
Dynkin diagrams. The remaining two possibilities 1=1 and 2=<0 are more
difficult to rule out, but conditions (5) and (6) suffice.

For more complicated groups, Theorems 11 and 10 do not suffice to con-
struct all of D(RY). (They are sufficient in type A and type C. In type
B, Theorem 11 constructs every non-principal SU(2) from a proper sub-
group, but not necessarily using a principal SU(2) in the subgroup.) Sup-
pose now that n = p 4 ¢ is written as a sum of two positive integers. Then
SO(n) D SO(p) x SO(q), and so the principal SU(2) in SO(p) x SO(q) be-
comes an SU(2) in SO(n). If p and ¢ are both odd, this subgroup is not one of
those constructed in Theorem 11 (because a maximal torus in SO(p) x SO(q)
is not maximal in SO(n)). If p and ¢ are distinct and at least 3, then this
SU(2) does not arise from the theorems. (If p = 1 and g is odd, then it is
the principal SU(2) in SO(n). If p = ¢ is odd, then it is the principal SU(2)
in the subgroup U(p) of SO(2p).) The first case of an SU(2) not arising
from Theorems 11 and 10 is n = 8, p = 5, ¢ = 3: the principal SU(2) in
SO(5) x SO(3) C SO(8). Many more examples appear in the exceptional
groups.

We have included illustrations of the Dynkin sets D(R") for the rank two
root systems in Figures 1, 2, and 3. Because of the Weyl group invariance,
these figures include a great deal of redundant information; but the symmetry
may at the same time make them easier to grasp. In each figure, the points of
D(RY) are indicated by circles; the filled circles are the coroots RV C D(RVY).

4 Split reductive groups

We saw in Theorem 5 that compact connected Lie groups are determined by
root data. Arthur’s conjecture concerns an analogous family of groups over a
local field. We will not try to recall the theory of algebraic groups; but here
are a few elementary pieces of it. We begin with a field F' (for the moment
entirely arbitrary). A split torus over F is a group 7T that is isomorphic to a
finite product of copies of the multiplicative group F'*. The number of copies
of F* is called the dimension of T. (The penalty for being so careless about
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Figure 1. The set D(RV) for type A2
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the notion of algebraic group is that this dimension is not determined uniquely
by T. If for example F is the field with two elements, then any split torus over
F is trivial as a group. We will not allow this ambiguity to lead us astray,
however.) If X is any lattice of rank n, we can construct an n-dimensional
split torus T'(X) over F by

T(X) = F* ®z X;

the tensor product is defined using the natural Z-module structure on the
abelian group F'*.

Suppose H is a group and A is an abelian group. Recall that a central
extension of H by A is a group G endowed with a short exact sequence

150 A-G—-H—1

having the property that A is contained in the center of G. A wunipotent
algebraic group over F' is a group N obtained from the trivial group by re-
peated central extensions by F. (This is not the definition of unipotent, but
the group of F-points of any unipotent algebraic group over F' will have this
property.) The number of repetitions of the central extension is called the
dimension of U. An example of a unipotent group is the group N, of upper
triangular matrices with entries in F' and ones on the diagonal. (Let N, (k) be
the subgroup with zeros in the first k£ rows above the diagonal. Then N, (k)
is a normal subgroup of N,,, and the quotient N, (k — 1)/N, (k) is isomorphic
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Figure 2. The set D(RY) for type C2

to an (n — k)-dimensional vector space over F. Furthermore this subgroup of
N,,/N, (k) is central. It follows that NV, is unipotent, of dimension n(n—1)/2.)

Suppose now that ¥ = (X, R, XV, RY) is a reduced root datum, and R™
is a system of positive roots for ¥. We will sketch briefly the construction
from ¥ of a split reductive algebraic group G(¥, F) over F. We first construct
the split torus

T(XV)=F* @, X".

Each coweight v € XV defines in an obvious way a homomorphism (also
denoted «)

yv:F* = T(XY), Y(z)=2®7.
Each weight A € X defines a character
MT(XV) = F*,  AMz®7y) =20%, (16)
We can define for every A € X a semidirect product group

Sa(F) = T(XV, F)) x Ny (F).
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Figure 3. The set D(RV) for type G2
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Set-theoretically this is the product of T(XV, F) and N)(F) ~ F. The group
law is

(t,z)(t, ') = (tt', \{t") 'z + 2').

The group S)(F') is algebraic; it is the semidirect product of the split torus
by the one-dimensional unipotent group Ny (F').

The second step in the construction of G(¥, F) is the construction of a
Borel subgroup

B(¥,F) =T(XY,F) x N(¥,F). (17)

This is again an algebraic group, a semidirect product of the split torus
T(XV,F) with a unipotent group N(¥,F) of dimension equal to the car-
dinality of R*. In fact N(¥,F) is (as a group with T(XV,F) acting as
automorphisms) an iterated central extension of the one-dimensional groups
N, (F), for a € R™. (This does not yet specify the group N(¥, F), but we will
not describe it more precisely.) In the same way, one can build an opposite
Borel subgroup B°P(¥, F) = T(XV, F) x N°P(¥, F), with N°P(F) built from
the negative roots.

Finally, the group G(¥, F) may be taken as the free group generated by
B(¥,F) and B°P(¥, F'), subject to some simple relations: for example, the
identification of the two copies of T'(XV, F'), and other relations satisfied by
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the subgroups of upper and lower triangular matrices in SL(2, F'). For more
details of the construction of G(¥, F), see for example Springer.2°

Theorem 12 Suppose ¥ = (X,R,X",RY) is a reduced root datum, R*
is a set of positive roots for R, and F is a field. Then there is a reduc-
tive algebraic group G(¥,F) of dimension equal to the cardinality of R plus
the rank of X. This group is generated by two solvable algebraic subgroups
B(Y,F) = T(XV,F) x N(¥,F) and B°P(¥,F) = T(XY,F) x N°P(¥, F)
described above. The subset N(¥, F)T(XV,F)N°P(¥, F) is identified by the
group multiplication with F|R+|(F X)I‘ank(X )F|R+|;
subset of G(¥, F).

If F is a local field, then the locally compact topology on F' defines by the
identification above a locally compact topology on G(¥, F). In this topology,
the quotient space G(¥, F)/B(¥, F) is compact.

it is a Zariski dense open

From now on we fix a local field F, and a split reductive group G(¥, F)
as in Theorem 12. We wish to describe a certain family of representa-
tions of G(¥, F). The simplest reductive group (attached to the root da-
tum (Z,0,Z,0)) is the multiplicative group F*. Because it is abelian, its
irreducible representations are one-dimensional; they are just the homomor-
phisms of F'* into C*, also called quasicharacters. Quasicharacters can be
described completely and explicitly, but we will need only certain special ones.
The first is the absolute value on F,

|| FX 5 RX. (18)

By definition |z| is the scalar by which multiplication by z changes an additive
Haar measure on F. It is the usual absolute value on R*, and the square of
the usual absolute value on C*. For a p-adic field its values are just the powers
of g, the order of the residue field. More details may be found in Weil.26

Since the absolute value takes positive real values, we may form arbitrary
real exponentials (or even complex exponentials) of it. In this way we can get
a real line of quasicharacters of F'*:

|7 P = R,

Next we consider quasicharacters of the torus T'(XV,F) = F* @z XV.
We saw already in (16) that every element A € X can be regarded as a
homomorphism from 7'(XV,F) to F*. Composing with the absolute value
map gives quasicharacters

I\ T(XY, F) — R*.
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Because of the possibility of forming real exponentials, we can do even better,
however. The real dual space for the torus T(XV, F) is by definition the real
vector space

t(X) = R®z X. (19)

This is a real vector space of dimension equal to the rank of X (which is the
dimension of T(XV, F)). A typical element is a finite sum v = Y s; ® \;, with
s; real and )\; in X. To every such element v we can associate a quasicharacter
(denoted by the same letter)

v:T(XV,F) - R*, v(t)= H |Xi ()% (20)

Theorem 13 Suppose X and X" are a lattice and the dual lattice, and F is
a local field. Write T(XV,F) for the corresponding split torus, and t(X) for
the real dual space defined in (19). Then the quasicharacters v defined above
(for v € (X)) are well-defined and distinct. They take positive real values,
and in fact exhaust the quasicharacters with this property.

Ultimately we are interested in unitary representations. In the case of
tori, the quasicharacter v is unitary only for » = 0 (when it is trivial). An
interesting connection with unitary representations will appear only when we
pass to the reductive group G(¥, F'). This we now do. Because of the semidi-
rect product decomposition (17), any quasicharacter of T'(XV, F) extends
immediately to a quasicharacter of B(¥, F), with N(¥, F) acting trivially.

We are now in a position to apply Mackey’s induction construction to
get a representation of G(¥, F'). Phrased geometrically, the idea is this. (The
term manifold in the following discussion means a space locally homeomorphic
to F™. Much of the basic theory of real manifolds carries over to manifolds
over any local field F'.) The quasicharacter v of B(¥, F') defines an equivariant
line bundle £(v) over the homogeneous space G(¥, F)/B(¥, F). (The fiber
at the base point eB(¥, F) is C, and the action of the isotropy group B(¥, F)
on this fiber is by the quasicharacter v. We can then define

H(T,v) = Indgggzg(u) = space of sections of L(v + p) (21)
The action of G(¥, F') on this space is by left translation; it is written 7 (¥, v),
and called a real unramified principal series representation.

Two points require explanation. First, the shift p is equal to half the sum
of the positive roots:

p:% Z a € HX).

a€ER*t
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Because of this shift, and more importantly because of the appearance of
B(¥,F), the representation H(¥,v) depends not just on the root datum
but also on the choice of positive roots. Second, we need to say exactly
which sections of L(v + p) constitute the representation space. This is a little
subtle. If F is p-adic, a reasonable choice is the locally constant sections: those
invariant under left translation by some compact open subgroup of G(¥, F)
(depending on the section). If F' is archimedean, one can consider the real
analytic sections. Different choices are appropriate for different purposes, and
we will be somewhat vague about this point.

The line bundle £(p) may be identified with the bundle of half densities
on the manifold G(¥, F)/B(¥, F). (This is a fairly elementary consequence
of the structure theory in Theorem 12.) In particular, there is a natural and
G(¥, F)-invariant pre-Hilbert space structure on #(¥,0). (To form the inner
product of two sections, one essentially takes the tensor product of the first
with the complex conjugate of the second. This tensor product is a section
of the density bundle; that is, it is a nice measure on the compact manifold
G(¥,F)/B(¥,F). The inner product is the total mass of this measure.) In
this way 7(¥,0) may be regarded as a unitary representation. This is just
a very special case of Mackey’s unitary induction construction, building a
unitary representation of G(¥, F') from the unitary character 0 of the subgroup
B(¥,F).

There is another unitary representation hiding here. If v = —p, then
H(T,—p) is by definition the space of sections of the trivial line bundle
L(—p+p); that is, the space of functions on G(¥, F')/B(¥, F). This space con-
tains the one-dimensional space of constant functions as a G(¥, F')-invariant
subspace; so (¥, —p) contains the (unitary) trivial representation of G(¥, F')
as a subrepresentation.

We can get the same representation in a different way. If v = p, then
H(T, p) is by definition the space of sections of the line bundle £L(p+ p), which
is the space of densities on G(¥, F)/B(¥, F). There is a G(¥, F)-equivariant
map from this space to the complex numbers (with trivial G(¥, F) action),
sending each density to its total mass. That is, m(¥, p) contains the trivial
representation of G(¥, F') as a quotient.

Here are some general facts about the representations (¥, v).

Theorem 14 Suppose ¥ = (X,R,XV,RY) is a reduced root datum, R* is
a set of positive roots for R, and F is a local field. For each v € t(X) (see
(19)), define a principal series representation (7w(¥,v), H(¥,v) of G(¥, F) as
in (21).

1. The representation w(¥,v) has a finite composition series. There is a
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distinguished irreducible composition factor (7(¥,v), H(¥,v)), called the
Langlands subquotient.

2. Suppose v and V' are in t(X). Then the following conditions are equiva-
lent.

e There is a w € W (the Weyl group of the root system R) so that
wy =1,

e The representations w(¥,v) and w(¥,v') have isomorphic irre-
ducible composition factors (appearing with the same multiplicities).

o The irreducible representations T(¥,v) and 7(¥,v') are equivalent.

The history of this theorem is long, complicated, and occasionally bitter;
I will not try to sort it out here. The distinguished composition factor 7(¥, v)
can be characterized in at least two completely different ways. One is analytic:
it is the composition factor whose matrix coefficients have the largest growth
at infinity on G(¥, F).

The second characterization is algebraic, and takes a bit longer to state.
There is a natural compact subgroup K (¥, F) of G(¥,F). If F is p-adic,
this subgroup is the “integer points” of the algebraic group G(¥,F). (For
example, in the case of GL(n), it is the group of n x n matrices with coef-
ficients in the ring of integers of F', such that the determinant is an integer
of norm 1.) If F is archimedean, K (¥, F') is a maximal compact subgroup of
G(¥, F). (For example, in the case of GL(n,R), it is the group of orthogonal
matrices.) The restriction of 7(¥,v) to K(¥, F') contains the trivial represen-
tation of K (¥, F') exactly once. (This is an easy consequence of the standard
decomposition G(¥, F) = K(¥, F)B(¥, F).) It follows that 7(¥,v) contains
a unique irreducible composition factor having a K (¥, F')-fixed vector. This
composition factor is 7(¥, v).

Theorem 14 allows us to regard the real vector space t(X) as parametriz-
ing a set of irreducible representations {7(¥,»)} in a W-invariant way. We
have seen that at least some of these representations are unitary—more pre-
cisely, that they admit G(¥, F)-invariant pre-Hilbert space structures that
can be completed to provide unitary representations. Because of the central
role of unitary representations in problems of harmonic analysis, it is natural
to define

P(¥,F) = {v € (X)|7(¥,v)has G(¥, F)-invt pre-Hilbert structure}. (22)

For each such element v, the representation 7(¥,») can be completed to
a unitary representation of G(¥, F'). In light of Theorem 14, it follows that
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P(T, F)/W may be regarded as a subset of the unitary dual of G(¥, F'). Those
few examples that are understood indicate that this subset is analytically
the most difficult part of the unitary dual to understand. (There are also
formidable algebraic difficulties in understanding the unitary dual, related to
the arithmetic of the local field F.) The “classical representation-theoretic
problem” mentioned in the introduction is

Spherical unitary dual problem: calculate P(¥, F). (23)

Here are some representative cases in which P(¥, F) is known. For ¥ of
type A, it was completely determined by Tadié?? in the case of p-adic F' and
by Vogan?? for archimedean F'. (All of the unitary representations involved in
these cases had essentially been constructed by Stein;?! what was missing was
a proof that there were no more.) For ¥ classical and F complex, P(¥, F)
was determined by Barbasch.? For ¥ classical and F p-adic, P(¥,F) was
determined by Barbasch and Moy.*. For ¥ of rank 2 and F complex, P(¥, F)
was determined by Duflo.? In type G2, the real case was treated by Vogan?2®
and the p-adic case by Muié.!”

Here are some general properties of the set P(¥, F).

Theorem 15 Suppose ¥ = (X, R, X", RY) is a reduced root datum, R™ is a
set of positive roots for R, and F is a local field. Write t(X) for the real dual
space of T(XV,F) defined in (19), and W for the Weyl group of R. Finally,
write p € t(X) for half the sum of the roots in R*.

1. The set P(¥,F) is a compact W -invariant polyhedron contained in the
real span of the roots R. This polyhedron depends only on R and F (and
not on the lattices X and XV ).

2. Suppose v is in P(U,F). Then v is conjugate by W to —v.
3. The polyhedron P(¥, F) is contained in the convez hull of W - p.

4. The element p belongs to P(¥, F'); the corresponding unitary representa-
tion of G(¥, F) is the trivial representation.

5. Suppose U1, = (X,Rr, X", RY) is a Levi subsystem of ¥. (This means
that Ry, consists of those roots vanishing on a fized coweight v € XV ).
Then P(¥,F) C P(¥,F). In particular, P(¥, F) contains the half sum
of the positive roots R} .

Again this is an old result, difficult to attribute precisely. Here are some
of the ideas needed for the proofs. Part (2) is the easiest: the condition
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—v € W -v is necessary and sufficient for (¥, v) to admit a G(¥, F)-invariant
Hermitian form. (Using integration of densities over G(¥, F)/B(¥, F), it is
easy to identify the Hermitian dual of (¥, v) as 7(¥, —v). It follows (from the
algebraic characterization of the Langlands subquotient) that the Hermitian
dual of (¥, v) is (¥, —v). Now use Theorem 14.) Part (3) is essentially
due to Helgason and Johnson;!! their proof in the case of archimedean F
carries over with little change to the p-adic case. (What they show is that
v belonging to the convex hull of W - p is necessary and sufficient for the
spherical function—the matrix coefficient given by the K (¥, F')-fixed vector—
to be bounded.) Part (4) was explained before Theorem 14.

Part (5) is based on Mackey’s idea of “induction by stages.” Because
of the W-invariance of P(¥,F), we may as well assume that the coweight
v € XV defining ¥, is dominant for RT. In that case there is a parabolic
subgroup P = LU containing B(%¥, F'), with the property that L is isomor-
phic to the reductive group G(¥r, F). In this situation the representation
w(¥,v) of G(¥, F) may be obtained from 7(¥r,v) on L by a trivial exten-
sion to U, then unitary induction. It follows that 7(¥,v) is a subquotient
of Indg(‘l”F)f(\IlL, v). I 7(¥,v) is unitary—that is, if v € P(¥, F)—then
(¥, v) must be unitary as well.

Part (1) is the most difficult result here. That P(¥, F') depends only on
R and F is fairly easy, using the covering maps between the various groups
arising. The rest of the statement is based on the construction of the in-
variant Hermitian form on m(%,v) using the integral intertwining operators
introduced by Schiffmann. Important ideas came from Speh, and the appli-
cation to unitary representations was mostly developed by Knapp and Stein.
What follows from this construction is that P(¥, F) is a closed polyhedron in
{v e (X) | —v € W - v}. The faces of this polyhedron are built from certain
hyperplanes of the form {v | (a",v) = m}. Here @V € RV is a coroot and m
is a non-zero integer. (If F' is p-adic, m must be one; if F is real, m must be
odd; and if F' is complex, m can be any non-zero integer.) The compactness
follows from part (3). For more details, the reader may consult Chapter 16 of
Knapp.!?

Because of Theorem 15, we may write P(R, F') instead of P(¥,F). II-
lustrations of the unitary sets P(R, F') for the rank two root systems may be
found in Figures 4, 5, and 6. We have omitted the case F' = C for types A3 and
Cs; they may be found in Duflo.® (They contain some additional points and
intervals.) Just as for D(RY), these figures include a great deal of redundant
information; but the symmetry may again make them easier to grasp. In each
figure, the points of P(R, F') are indicated by circles, heavy lines and hatched
regions. One half of each root (which belongs to P(R, F) by Theorem 15(5))
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Figure 4. The set P(R) for type A2

is indicated by a filled circle. We will explain the open circles in a moment.
A comparison of the figures for P(R, F) and D(R) suggests (for any re-
duced root system R and any local field F')

Arthur’s conjecture:  D(R) C 2P(R, F). (24)

This containment (still unproven in general) is an important special case of
conjectures of Arthur.! The circles in the figures for P(R, F) are the points
of (1/2)D(R); they are contained in P(R,F'). (The conjecture (24) is true
in all the cases mentioned before Theorem 15, in which P(R, F) has been
computed. For p-adic F, it is Theorem 8.1 of Barbasch and Moy.?)

The figures here even support a stronger conjecture

D(R) = 2P(R,F)NZR

But this stronger conjecture is false in type Cy for F' complex. (The even
part of the metaplectic representation of G(¥,C) is isomorphic to a certain
m(¥,v), with 2v € ZR but 2v ¢ D(R). For other local fields, the metaplectic
representation is not isomorphic to any 7 (¥,v).)

Arthur’s motivation for his conjectures came from the Langlands phi-
losophy of automorphic representations, and from Arthur’s trace formula.
Roughly speaking, he suggested that the unitary representations whose ex-
istence is implied by (24) ought to arise as local components in the residual
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Figure 5. The set P(R, F) for type C2 (F real or p-adic)

spectrum for a homogeneous space G(¥, A)/G(¥, k). (Here k is a global field
and A is the corresponding adele ring.)

Let us look carefully at what (24) says. Obviously it concerns a reduced
root system R. The right side concerns unitary representations of a split
algebraic reductive group G(¥, F') with root system R. The left side concerns
homomorphisms of SU(2) into a compact Lie group with coroot system R. The
most basic example says that homomorphisms of SU(2) into U(n) should give
rise to unitary representations of GL(n, F') (with n any local field). Another
classical example says that homomorphisms of SU(2) into an odd orthogonal
group SO(2n + 1) should give rise to unitary representations of a symplectic
group Sp(2n,F). In every case, the most complicated homomorphism of
SU(2) (the principal SU(2), described by Theorem 10) corresponds to the
trivial representation of G(¥, F).

Without proving Arthur’s conjecture, we can ask whether the tools de-
scribed in Section 3 for understanding D(K) have analogues that help to
understand the set of unitary representations P(R,F). Our first step for
Dynkin’s problem was to identify D(K) with a set of Weyl group orbits on
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Figure 6. The set P(R, F) for type G2 (F real or p-adic)

the lattice X, (T') (and eventually inside the coroot lattice ZR). (Recall that
the coroots of K are the roots of G(¥,F).) Correspondingly, Theorem 14
identifies a certain set of unitary representations with a set of Weyl group
orbits on the real vector space spanned by R. Next, we can look for analogues
of the constraints in Theorem 9 in the setting of unitary representations. Part
(1) of Theorem 9 is analogous to the (much weaker) assertion (1) in Theorem
15. Part (4) of Theorem 9 is identical to Theorem 15(2). Part (2) of Theo-
rem 9 is a much stronger version of Theorem 15(3). Parts (3) and (5)—(7) of
Theorem 9 have no analogue in Theorem 15.

For the construction of elements of P(R, F'), the situation is even worse.
Theorem 15(4) does provide an analogue of Theorem 10. But the “functori-
ality theorem” Theorem 11 is far stronger than Theorem 15(5); the difference
is that in the former we can use very general root subsystems of R, but in the
latter we must use only Levi subsystems.

We can emerge from this exercise with a goal: to establish more analogues
for P(R, F) of results about the Dynkin set D(R). Here is an example.

Theorem 16 (Barbasch, Vogan) Suppose ¥ = (X,R, XV, RY) is a reduced
root datum, R is a set of positive roots for R, and F is a local field. Suppose
v € P(R,F) is dominant; that is, that (",v) > 0 for all « € R*. Then for
every simple root § for R™, we have (6V,v) < 1.

This is a good analogue of Theorem 9(2). We sketch a proof in Sec. 5.
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5 The results of Barbasch and Moy

We begin this section with a summary of some results of Barbasch and Moy?
in the p-adic case. These results make the calculation of P(R, F') into a finite
algebraic problem for each root system R, and show incidentally that P(R, F)
is independent of the p-adic field F'.
We fix therefore a p-adic field F', and write A for the ring of integers in
F and m C A for the maximal ideal of A. The quotient field
F=A/m (25)

is a finite field. As mentioned after Theorem 14, the construction of the
reductive group G(¥,F) gives rise naturally to a compact open subgroup
loosely described as

K(¥, F) = points of G(¥, F) with coeflicients in A.

Barbasch and Moy study the restrictions to K (¥, F) of the representations
m(¥,v). The quotient map (25) defines a surjective group homomorphism

K(¥,F) - G(¥, F). (26)

The group on the right is a finite Chevalley group. We write K (¥, F') for the
kernel of this homomorphism. The finite Chevalley group has its own Borel
subgroup B(¥, F), and there is also a short exact sequence

1— K;(VY,F)NB(¥,F) - K(Y,F)NB(¥,F) — B(Y,F) » 1
A central role is played by the Iwahori subgroup
I(¥, F) = inverse image of B(¥,F); (27)

this is the subgroup of K(¥,F) generated by K(¥,F) N B(¥,F) and
Ki(9,F).
We have already mentioned the decomposition

G(¥,F)=K(¥,F)B(¥,F).
As a consequence of this decomposition and the definition (21), we find

K(U,F
H(T, V) k@, r) = IndKE\y,pgmB(q,,F)(V|K(\1/,F)m3(qz,p))- (28)

Because the quasicharacter v takes positive real values, it must be trivial on
the compact group K (¥, F) N B(¥, F). Therefore

K(¥,F
H(‘I”V”K(\P,F) = IndKE\I/,F;mB(\If,F)(l)’
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the space of functions on K(¥,F)/(K(¥,F) N B(¥Y,F)). We will look at
the subspace H(¥,v)' of functions invariant under the normal subgroup
K;(¥,F). Clearly this is the same as functions invariant on the right by
K+(¥,F)(K(¥,F)N B(¥, F)); that is, functions on the homogeneous space
K(¥,F)/1(¥, F). Formally,

H(,v)! = Ind; 50 (1). (29)

We now analyze H(¥,v)! as a representation of K (¥, F). By definition
the normal subgroup K (¥, F) acts trivially, so it is natural to regard the
space as a representation of the finite Chevalley group G(¥, F). From this
point of view, we easily find

H(T,v)! _Indggﬁ;( ).

Theorem 17 Suppose ¥ = (X, R, X",RY) is a reduced root datum, R* is
a set of positive roots for R, and F is a finite field. Then the irreducible
consitutuents of the representation

G(¥,F)
B(\Il F)(l)

are naturally parametrized by the irreducible representations of the Weyl group
W of the root system. The representation o(T) corresponding to a W repre-
sentation T appears with multiplicity equal to the dimension of T.

This theorem is due to Tits. A complete account appears in the unpub-
lished lecture notes of Steinberg;?? one can also find information in Curtis,
Iwahori, and Kilmoyer,” or in Chapter 10 of Carter.> In the bijection of the
theorem, o(1) is the trivial representation of G(¥, F), corresponding to the
trivial representation of K (¥, F). We had already used the fact that it ap-
pears exactly once in 7(¥, F) in giving an algebraic characterization of the
Langlands subquotient after Theorem 14.

We can state Theorem 17 as

H(T,v)! ~ Z dim(7)o (7). (30)

This describes the space of K1(¥, F') invariants in a principal series represen-
tation, as a representation of K (¥, F). The Langlands subquotient 7(¥,v)
defines a subquotient

H(T,v)! ~ Z m(t,v)o(T).

TGW
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The multiplicity m(7,v) is between 0 and dim(7); it is 1 for 7 trivial. If
the Langlands subquotient admits an invariant Hermitian form (that is, if
—v € W - v), then this form has a certain signature (p(r,v), g(7,v)) on each
representation o(7). The positive and negative parts are non-negative inte-
gers, and p(7,v)+q(7,v) = m(r,v). We may normalize the form to be positive
on the spherical vector: that is, p(1,v) = 1, ¢(1,v) = 0. The main theorem
of Barbasch and Moy? is

Theorem 18 Suppose ¥ = (X, R, X", RY) is a reduced root datum, R™ is a
set of positive roots for R, and F 1is a p-adic field. Fiz v € t(X), and assume
that —v € W -v (so that 7(¥,v) admits an invariant Hermitian form). Then
the form is positive—equivalently, v € P(R, F)—if and only if it is positive
on the subspace H(¥,v)! of K1(¥,F)-fired vectors. This positivity on the
subspace in turn is equivalent to the vanishing of the integers q(7,v) defined
above for every representation T of W.

Of course the “only if” part of the theorem is obvious, and the last equivalence
is just the definition of g(7,v). What requires proof is that any negativity of
the Hermitian form can be detected inside H(¥,v)!. This Barbasch and
Moy prove by a deep analysis of the reducibility of these principal series
representations, using the geometric ideas of Kazhdan and Lusztig.

Theorem 18 reduces the determination of whether v belongs to P(¥, F')
to a calculation of the signatures of a family of Hermitian forms, one for each
representation of W. Next we will explain how these forms can actually be
calculated. We therefore fix a dominant element

v € HX), —veW. v

Let wo be the long element of the Weyl group, characterized by wo(R*) =
—R*. Because v is dominant, we have wy - v = —v. We know that W is
generated by reflections in simple roots. Choose an expression of minimal
length

Wo = SN *** 81,
with s; the reflection in some simple root o;. Define

Ty = 8p_18,_92 81 EW (1<r<N)

v = (v, (zra)”) €ER.
It is not very difficult to show that
{z,a, |1 <r < N}=R"
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(with no repetitions). In particular, all of the real numbers v, are non-
negative. Finally, define

A(v)= (1+vnsn)(1+vn-1sn-1) - (1 +1181) € RW. (31)

This element of the group algebra turns out to be independent of the choice of
reduced decomposition of wg, and to be “self-adjoint” (in the sense that the
coefficient of each group element w is equal to the complex conjugate of the
coefficient of w™'). Consequently A(v) defines a self-adjoint operator 7(A(v))
on each irreducible representation 7 of W.

Theorem 19 Suppose ¥ = (X,R,X",R") is a reduced root datum, R* is
a set of positive roots for R, and F is a p-adic field. Fixz a dominant weight
v € H(X), and assume that —v € W - v (so that T(¥,v) admits an invariant
Hermitian form.

1. The multiplicity m(t,v) of the representation o(7) of K (¥, F) in 7(¥,v)
is equal to the rank of the operator T(A(v)).

2. The positive part p(T,v) of the signature on o(7) is equal to the number
of strictly positive eigenvalues of T(A(v)).

3. The negative part q(1,v) of the signature on o(7) is equal to the number
of strictly negative eigenvalues of T(A(v)).

In particular, the Hermitian form is positive—equivalently, v € P(R, F)—if
and only if A(v) has non-negative eigenvalues on the group algebra CW.

This result (due to Barbasch and Vogan) is a fairly easy consequence of the
Knapp-Stein construction of the Hermitian form using integral intertwining
operators, together with the standard factorization of such operators and a
calculation in SL(2). One consequence (which was already evident from the
paper of Barbasch and Moy?) is that P(R, F) is independent of the p-adic
field F.

Here is an example of the operator A(v). Suppose ¥ is of type A2, so that
G is locally SL(3). There are two simple reflections s and s’ in W; a reduced
expression for wg is ss’s. The only dominant elements v with —v € W - v
are the multiples of p; so we put v = tp, with ¢ > 0. Then it is not hard to
calculate

A(tp) = (1 + ) +2t(s + s') + 2t%(ss’ + s's) + 2t3(sss)

To determine P(R, F'), we need to know for which non-negative ¢ this operator
is non-negative on every representation of W. On the trivial representation
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of W, it acts by the scalar
144t + 562 + 23 = (1 +t)%(1 + 2t),

which is positive for all ¢ > 0. On the sign representation, it acts by the scalar
1—4t+5t% — 28 = (1 —t)%(1 — 2¢).

This is non-negative for 0 < ¢ < 1/2 and for t = 1. We leave to the reader the
task of writing down the 2 x 2 matrix by which A(tp) acts in the reflection
representation, and verifying that it is non-negative exactly for 0 < ¢ < 1/2
and t = 1. (As a hint, we note that the eigenvalues of this matrix are

A+6)1—t)(1+2t), (1+£)(1—1t)(1—2t).)

The simplicity of all of these formulas for the eigenvalues suggests that there
might be comprehensible closed formulas for all of the eigenvalues of 7(A(v))
in general. Such formulas would be enormously useful in the study of unitary
representations, because of Theorems 19 and 20.

‘We conclude this paper with an application of the idea of Barbasch and
Moy to archimedean fields. For simplicity we will discuss only the complex
case; the real case is very similar. We are therefore considering a complex
reductive algebraic group G(¥, C). The maximal compact subgroup K (¥, C)
is just the compact connected Lie group associated to ¥ by Theorem 5. This
group meets the Borel subgroup in a compact maximal torus:

K(9,C)NnB(Y,C)=T
Just as in the p-adic case, we deduce
H(T,) k(.0 = Indz O 1). (32)

Consequently the multiplicity in H (P, v) of any irreducible representation o
of K(¥,v) is equal to the dimension of the “zero weight space” o7 .

Now the normalizer of 7" in K (¥,C) acts on o7, and this representation
factors to Nk (w,c)/T = W. Call this representation 7(c). The representation
7(0) of W controls the occurrence of o in the principal series, just as in the
p-adic case. What is different is (first) that 7(o) need not be irreducible.
Nevertheless, the statements of Theorem 19 make sense, with 7(o) playing
the role of 7. Unfortunately they are false, already for SL(2,C). If we take o
to be the five-dimensional irreducible representation of SU(2), then the Weyl
group representation 7(o) is trivial. The statements of Theorem 19 would
therefore predict that the Hermitian form on o should be positive for all v.
This is not the case: the form is zero for v = p and 2p, and negative between
these two points.
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On the other hand, most of the proof of Theorem 19 works in the complex
case; these difficulties in SL(2) are the only problem. What distinguishes the
five-dimensional representation (and larger ones) is that twice a root appears
as a weight. Following Reeder,'® we say that a representation o of K(¥,C) is
small if T # 0 (so that 0 is a weight of o) but twice a root is never a weight
of o.

Theorem 20 Suppose ¥ = (X, R, X", RY) is a reduced root datum, and R™
is a set of positive roots for R. Consider principal series for the complex
reductive algebraic group G(¥,C). Fiz a dominant weight v € t(X), and
assume that —v € W - v (so that 7(¥,v) admits an invariant Hermitian
form. Suppose o is a small irreducible representation of K(¥,C), and 7(0o)
the representation of W on the zero weight space oT.

1. The multiplicity m(o,v) of the representation o of K(¥,C) in w(¥,v) is
equal to the rank of the operator 7(o)(A(v)).

2. The positive part p(o,v) of the signature on o is equal to the number of
strictly positive eigenvalues of 7(o)(A(v)).

3. The negative part q(o,v) of the signature on o is equal to the number of
strictly negative eigenvalues of T(o)(A(v)).

Again the result is due to Barbasch and Vogan. This theorem does not produce
any unitary representations, but it can prove that representations are not
unitary. To do that effectively, we need to get interesting representations of
W on the zero weight spaces of small representations of K (¥, C). In type A,
every representation of W appears in this way (see Reeder'®). Theorems 16
and 20 therefore imply that

P(type A,C) C P(type A, F)

for any p-adic F. (Actually equality holds, by the calculations of P(¥, F)
mentioned earlier.)

For groups not of type A, not every Weyl group representation appears in
7(0o) for some small representation o, so we cannot use Theorem 20 to show
that P(¥,C) C P(¥,F) for F p-adic. Indeed we observed before (24) that
this containment is false in types C and G2; the opposite containment is true,
and examples suggest that it may hold in general.

We can now outline a proof of Theorem 16 in the complex case. We may
as well assume that the root system R is simple. The complexified adjoint
representation Ad of K(¥,C) is small, since twice a root is never a root. We
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may therefore apply Theorem 20 to the representation 7(Ad) of W; this is the
“reflection representation” of W on the complexification of the Lie algebra
of T. We are interested in the eigenvalues of the operator 7(Ad)(A(v)). To
prove Theorem 20, it suffices to show that if there is a simple root § with
(6Y,v) > 1, then this operator must have at least one negative eigenvalue.
Here is a way to do that. Let vy be the sum of the fundamental weights for
the simple roots § and —wgd; then vy is dominant, and wory = —vy. We now
consider the one-parameter family of self-adjoint operators

7(Ad)(A(v + twy)),

for real t > 0.

By arranging the reduced expression for wgy appropriately, it is not too
difficult to show that the multiplicity of the eigenvalue 0 of 7(Ad)(A(v +twp))
is independent of ¢ (always for ¢ > 0). (The key point is that the operators
7(Ad)(1 + xs;) appearing in the factorization are invertible for z > 1.) It
follows by a continuity argument that the number of negative eigenvalues of
7(Ad)(A(v+tw)) is also independent of t. So it suffices to prove that there is
a negative eigenvalue for ¢ large. But a very easy argument using the Casimir
operator shows that as soon as |v + tyg| > |p|, then the Hermitian form
on (¥, v + tyy) must be partly negative on the K(¥,C) representation Ad.
According to Theorem 20, this means that 7(Ad)(A(v + tvy)) has negative
eigenvalues, as we wished to show.

The proof of Theorem 16 in the real case proceeds in exactly the same
way, using a real analogue of Theorem 20.
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