
18.704 Supplementary Notes: Simple Groups

and Composition Series

Genevieve Hanlon and Rachel Lee

February 23-25, 2005

Simple Groups

Definition: A simple group is a group with no proper normal sub-

group.

Simple groups are the primitive building blocks of finite groups, in much the same
way that primes are the building blocks of the integers. We can often learn about
the structure of a finite group G by decomposing G into its simple factor (or
quotient) groups. In order to decompose a finite group G into simple factor groups,
we will need to work with quotient groups.

Recall that a normal subgroup N of a finite group G is a subgroup that is
sent to itself by the operation of conjugation: ∀g ∈ N , x ∈ G, xgx−1 ∈ N . In
particular, the kernel of a homomorphism is a normal subgroup.

Proof: Recall that a homomorphism is compatible with the laws of compo-
sition. So if ψ is a homomorphism ψ:G → G′ with kernel N , a ∈ N , b ∈ G, then
ψ(bab−1) = ψ(b)ψ(a)ψ(b−1) = ψ(b)(1)ψ(b)−1 = 1. Since b was arbitrary, N is
normal. �

In order to decompose a finite group G into simple factor groups, we need to
work with quotient groups. Recall that a coset of a subgroup N is set aN = {g ∈
G|g = an, for some n ∈ N} or Na = {g ∈ G|g = na, for some n ∈ N . The set
of left or right cosets of a subgroup partitions G, and if N is a normal subgroup,
then aN = Na for all a ∈ G. The quotient space G/N is the set of all left cosets
of N in G : G/N = {aN |a ∈ G} and the map π : G → G/N, π(x) = xN is
a homomorphism with kernel N . This coset space G/N is the quotient group of
G mod N , with the induced law of composition (aN)(bN) = (ab)N. It is easy to
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see that this is a well-defined group operation if we remember that xN = Nx for
all x ∈ G. So every normal subgroup N of G is the kernel of the homomorphism
from G to its quotient group G/N .

Quotient groups are often easier to work with than their parent groups, and
it seems intuitive that we should be able to describe a group in some way using
quotient groups. In particular, we can decompose a finite group G using quotients
of G into a series of simple groups. If all of these simple groups happen to be
abelian, we say that the group G is solvable. This concept of decomposition is
useful because, as George Polya said,

”If there’s a problem you can’t figure out, there’s a simpler problem
you can figure out.”

In order to describe this decomposition process, we first need a few definitions.

Definition: A subnormal series is a finite chain of subgroups Gn ⊂
Gn−1... ⊂ G0 = G such that Gi+1 is normal in Gi∀i, 0 ≤ i ≤ n. The

factor groups of the series are the quotients Gi+1/Gi. If Gn = 1 and

the factor groups are all simple, we say that it is a composition series

of G. The length of a composition series is the number of subgroups

in the chain, not including the identity.

The following theorem is essential to our understanding of group structures in
relation to simple groups.

The Jordan-Holder Decomposition Theorem.

Theorem:

Every finite group G has a composition series, and any two composition series of
G have the same length and the same factor groups, up to ordering. Our proof of

the Jordan-Holder theorem will use the Second Isomorphism Theorem.

Second Isomorphism Theorem.

Let G be a group, let H be a subgroup of G, let K be a normal subgroup of G.
Define HK = {hk ∈ G|h ∈ H, k ∈ K. Then HK is a subgroup of G, K is a normal
subgroup of HK, (H∩K) is a normal subgroup of H, and there is an isomorphism
ψ:H/(H ∩K) → (HK)/K.

Supercomposition series: this is a chain of subgroups satisfying
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(1) the subgroup Gi+1 is normal in Gi

(2) the quotient group Gi/Gi+1 is simple or trivial for i = 0, 1, ..., n − 1

This is similar to the composition series for G discussed earlier, but some of
the quotients, like in a prime factorization of an integer, are factors of 1 (or E in
the case of groups).

Proof of the Jordan-Holder Theorem

Suppose:
1 = Gq ⊂ Gq−1 ⊂ ... ⊂ G1 ⊂ G and 1 = G′

m ⊂ G′

m−1 ⊂ ... ⊂ G′

1 ⊂ G are two
supercomposition series for G. Then the set of simple groups appearing in the list
{Gi/Gi+1} is exactly the same as te set appearing in the list {G′

j/G
′

j+1}.
Before beginning the proof, we need a lemma.

Lemma

Suppose 1 = Gq ⊂ Gq−1 ⊂ ... ⊂ G1 ⊂ G0 = G is a composition series for G, and
N is any normal subgroup of G.

(1) The chain of subgroups N = G0 ∩ N ⊃ G1 ∩ N ⊃ ... ⊃ Gn ∩ N = 1 is a
supercomposition series for N .

(2) The chain of subgroups G/N = G0/(G0∩N) ⊃ G1/(G1∩N) ⊃ .... ⊃ Gn/(Gn∩
N) = 1 is a supercomposition series for G/N .

(3) For each i, exactly one of the composition factors Gi∩N/(Gi+1∩N), [Gi/(Gi∩
N)]/[Gi+1/(Gi+1 ∩N)] is isomorphic to Gi = Gi+1, and the other is trivial.

(4) With these particular choices of composition series, the set of simple composi-
tion factors of G (counted with multiplicity) is the union of the simple composition
factors of N and the simple composition factors of G/N .

Proof of theorem By induction on the order of G. If G is simple, the result
is trivial, so suppose G is not simple. Let N be a proper normal subgroup of
G. By inductive hypothesis, the theorem is known for N and for G/N . Use
the first composition series for G as in the above lemma to get the first kind of
supercomposition series for N and G/N . The lemma says

(A) Gi/Gi+1 = (1st kind of factors for N) /(1st kind of factors for G/N)
the union taken with multiplicities.

Next use the second composition series for G to get second kinds of supercom-
position series for N and G/N . The lemma says
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(B) G′

j/G
′

j+1 = (2nd kind of factors for N) / (2nd kind of factors for G/N )
The inductive hypothesis (applied to N and to G/N) says that the right hand

sides of (A) and (B) are the same. So the left sides are the same, which is what
we wanted to show. �

NOTE: However, nonisomorphic groups may have the same simple decompo-
sition factors.

Solvable Groups

Next we turn to solvable groups. Recall that a group is solvable if the factor
groups of its composition series are all abelian. As it happens, the only abelian
simple groups are the cyclic groups of prime order, and so a solvable group has
only prime-order cyclic factor groups.

Proof: Let A be a non-zero finite abelian simple group. Since A is simple,
A has no normal subgroups. But A is abelian, and every subgroup of an abelian
group is normal. Thus, A has no proper subgroups. Now suppose the |A| = p, for
some p ∈ Z. Since A is finite, every x ∈ A has finite order, so ∀x ∈ A, xq = 1 for
some q ∈ Z, and q must divide p. Now consider the set {1, x, · · · , xq−1} generated
by x. This is clearly a subgroup of A, and since A has no proper subgroups, we
find that q = p. Thus A is cyclic. Now suppose that p is not prime, so that p =
nm for some n,m ∈ Z. Then the set {1, xm, x2m, · · · , x(n−1)m} generated by xm

is a proper subgroup of A with n elements. But A has no proper subgroups, and
thus p must be prime. Thus A is a prime cyclic group. �

Nice properties of solvable groups

If G is solvable, and H is a subgroup of G, then H is solvable.

If G is solvable, and H is a normal subgroup of G, then G/H is solvable.

If G is solvable, and there is a homomorphism ψ : G→ H, then H is solvable.

If H and G/H are solvable, then so is G.

There are some nice examples of simple groups and decompositions series in-
volving some familiar groups.

Example

Decomposition of C12

In general, a group will have multiple, different composition series. For exam-
ple, the cyclic group C12 has {E,C2, C6, C12}, {E,C2, C4, C12}, and {E,C3, C6, C12}
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as different composition series. However, the result of the Jordan-Hlder Theorem
is that any two composition series of a group are equivalent, in the sense that
the sequence of factor groups in each series are the same, up to permutations of
their order in the sequence Ai+1/Ai. In the above example, the factor groups as
follow, are isomorphic to {C2, C3, C2}, {C2, C2, C3}, and {C3, C2, C2}, respectively.
(Wikipedia, ”Solvable groups”)

Iwasawa’s Theorem and its significance

To understand Iwasawa’s Theorem we must first have a bit of background infor-
mation.

Commutators

A commutator of two elements a, b ∈ G is aba−1b−1. This commutator is clearly 1
if the group G is an abelian group.

Commutator subgroups

A commutator subgroup, or derived subgroup is the smallest subgroup contain-
ing all commutators. In other words, the set of all commutators generates the
commutator subgroup. We denote the commutator subgroups of G by G′.

For example, the commutator subgroup of Sn is An.

The quotient group G/G′ of the group with its commutator sub-

group is abelian and is referred to as the abelianization of G.

Stabilizers

Recall a stabilizer is the action of a groupG on a set S, a ∈ S such that |OrbG(a)| =
[G : StabG(a)].

Iwasawa’s Theorem

Suppose that G is faithful and primitive on S and G′ = G. Fix s ∈ S and set
H = StabG(s). Suppose there is a solvable subgroup K/H such that G = [∪{Kx :
x ∈ G}]. Then G is simple.
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Proof:

Suppose that 1 6= N/G. N is transitive on S, and G = HN . Thus KN /HN = G.
If x ∈ G then Kx ≤ (KN)x = KN , so ∪{Kx : x ∈ G} ⊆ KN and hence KN = G.
Since K is solvable Km = 1 for some Km in the derived series of K. Check
inductively that (KN)l ≤ K l∀l. Thus

G = Gm = (KN)mN = N and N = G. �
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