
Classification of root systems

September 8, 2017

1 Introduction

These notes are an approximate outline of some of the material to be covered
on Thursday, April 9; Tuesday, April 14; and Thursday, April 16. They
represent a (very slightly) different approach to the material in Chapter 7
of the text. I won’t try to make a precise correspondence with the text,
but I will try to make the notation match as well as possible with the text.
I will also try to include connections with the notion of root datum which
appeared in the Lie groups class last fall, and which is central to the theory
of algebraic groups.

Making that connection requires comparing two extremely elementary
ideas.

Definition 1.1. A Euclidean space is a finite-dimensional real vector space
E endowed with a positive-definite inner product 〈·, ·〉. Any linear map
T : V → V has a transpose tT defined by

〈Tv,w〉 = 〈v, tTw〉.

The map T respects the inner product (that is, T is orthogonal) if and only
if tT = T−1.

If α ∈ E is any nonzero vector, then the hyperplane orthogonal to α is

Eα = {e ∈ E | 〈α, e〉 = 0}.

There is an orthogonal direct sum decomposition

E = Rα⊕ Eα.
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The orthogonal reflection in α is the linear map sα which is the identity on
Eα and −1 on Rα. It is given by the formula

sα(ξ) = ξ − 2
〈ξ, α〉
〈α, α〉

α

= ξ − 〈ξ, 2

〈α, α〉
α〉α.

The reflection sα respects the inner product and has order 2; so

sα = s−1
α = tsα.

One of the main properties of a reflection is that there are just two eigen-
values: −1 (with multiplicity one) and 1. This property can be expressed
without an inner product.

Definition 1.2. Suppose V is a finite-dimensional vector space over a field
k of characteristic not equal to two, with dual space V ∗. Write

〈·, ·〉 : V × V ∗ → k, 〈v, f〉 = f(v)

for evaluation of linear functionals. Any linear map T : V → V has a trans-
pose tT : V ∗ → V ∗ defined by

〈Tv, f〉 = 〈v, tTf〉.

Suppose α ∈ V , α∨ ∈ V ∗, and α∨(α) = 2. The hyperplane defined by α∨

is
V α∨ = ker(α∨) = {v ∈ V | 〈v, α∨〉 = 0}.

There is a direct sum decomposition

V = kα⊕ V α∨ .

The reflection in (α∨, α) is the linear map sα∨,α which is the identity on
V α∨ and −1 on kα. It is given by the formula

sα∨,α(v) = v − 〈v, α∨〉α.

The reflection sα∨,α has order two. Its transpose is the reflection sα,α∨ .

Having dispensed with the inner product, we can even dispense with the
field.
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Definition 1.3. Suppose L is a lattice: a finitely generated torsion-free
abelian group. (That is, L is isomorphic to Zm for some nonnegative integer
m, called the rank of L.) The dual lattice is

L∗ = HomZ(L,Z),

another lattice of rank m. Write

〈·, ·〉 : L× L∗ → Z, 〈`, λ〉 = λ(`)

for evaluation of linear functionals. Any Z-linear map T : L → L has a
transpose tT : L∗ → L∗ defined by

〈T`, λ〉 = 〈`, tTλ〉.

Suppose α ∈ L, α∨ ∈ L∗, and α∨(α) = 2. The hyperplane defined by α∨

is
Lα
∨

= ker(α∨) = {` ∈ L | 〈`, α∨〉 = 0}.

The reflection in (α∨, α) is the Z-linear map

sα∨,α(`) = `− 〈`, α∨〉α.

Even though L need not be the direct sum of Lα
∨

and Zα, the reflection
may still be characterized as the unique Z-linear map that is the identity on
Lα
∨

and minus the identity on α.
The reflection sα∨,α has order two. Its transpose is the reflection sα,α∨ .

Here is the main definition from the text.

Definition 1.4. text, Definition 7.1 Suppose E is a Euclidean space (Defi-
nition 1.1). A root system is a finite collection R of nonzero vectors in a E,
subject to the three requirements below.

(R1) R spans E as a vector space.

(R2) For any α and β in R,

nαβ =def
2〈α, β〉
〈β, β〉

is an integer.

(R3) For each α in R, the reflection sα permutes R.

The root system R is called reduced if it satisfies in addition
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(R4) If α and cα are both in R, then c = ±1.

The rank of R is the dimension of the vector space E.
Suppose R ⊂ E and R′ ⊂ E′ are root systems. An isomorphism of R

with R′ is a linear isomorphism J : E → E′ with the property that

JR = R′, Jsα = sJαJ (α ∈ R).

We do not require that J respect the inner products.
Let ∼ be the equivalence relation on R generated by the relations

α ∼ β if 〈α, β〉 6= 0.

The root system is called simple if R is a single equivalence class.

We will recall in Section 2 the connection with semisimple Lie algebras
established in Chapter 6 of the text (and in class March 31–April 7).

The axiom (R1) is essentially a historical accident, of no theoretical
importance; when the definitions were fixed, the notion of semisimple Lie
algebra was primary. Now we might prefer (as the text usually does) to work
mostly with reductive Lie algebras. We might call a root system with (R1)
a semisimple root system, and a root system without (R1) a reductive root
system. Then it’s obvious that any reductive root system is the orthogonal
direct sum of a semisimple root system and a Euclidean space with no roots.

Here is a version of this definition without inner products.

Definition 1.5. Suppose V is a finite-dimensional real vector space and V ∗

is its dual space. A vector root system consists of a finite set R ⊂ V ; a finite
set R∨ ⊂ V ∗; and a bijection α 7→ α∨ between R and R∨, subject to the
three requirements below.

(RV1) R spans E as a vector space, and R∨ spans V ∗.

(RV1.5) For any α ∈ R, 〈α, α∨〉 = 2.

(RV2) For any α ∈ R and β ∈ R∨, nαβ =def 〈α, β∨〉 is an integer.

(RV3) For each α in R, the reflection sα,α∨ permutes R, and sα∨,α permutes
R∨.

The vector root system R is called reduced if it satisfies in addition

(RV4) If α and cα are both in R, then c = ±1.

An equivalent requirement is
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(RV4∨) If α∨ and cα∨ are both in R∨, then c = ±1.

The rank of (R,R∨) is the dimension of the vector space V .
Suppose (R ⊂ V,R∨ ⊂ V ∗) and (R′ ⊂ V ′, R′∨ ⊂ (V ′)∗) are vector root

systems. An isomorphism between them is a linear isomorphism J : V → V ′

with the property that

JR = R′, tJ−1R∨ = R′∨,

and these maps respect the bijections R↔ R∨, R′ ↔ R′∨.
Let ∼ be the equivalence relation on R generated by the relations

α ∼ β if 〈α, β∨〉 6= 0.

The root system is called simple if R is a single equivalence class.

Again, axiom (RV1) is just a historical accident.
So why is this version of the definition worth considering? Examination

of Theorem 6.44 in the text shows that the root system for a semisimple Lie
algebra in h∗ is really constructed as a vector root system with the roots
α ∈ h∗ and the coroots α∨ = hα ∈ h (constructed in Lemma 6.42); the inner
products are just added decoration.

Having disposed of the inner product, we can even dispose of the real
numbers entirely.

Definition 1.6. Suppose L is a lattice and L∗ is its dual lattice. A root
datum consists of a finite set R ⊂ L; a finite set R∨ ⊂ L∗; and a bijection
α 7→ α∨ between R and R∨, subject to the three requirements below.

(RD1.5) For any α ∈ R, 〈α, α∨〉 = 2.

(RD3) For each α in R, the lattice reflection sα,α∨ (Definition 1.3) permutes
R, and sα∨,α permutes R∨.

The root datum is called reduced if it satisfies in addition

(RD4) If α and cα are both in R, then c = ±1.

An equivalent requirement is

(RD4∨) If α∨ and cα∨ are both in R∨, then c = ±1.

The rank of (R,R∨) is the rank of the lattice L. The root lattice of R is
the sublattice Q(R) ⊂ L generated by R. The semisimple rank is the rank
of Q(R).
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Suppose (R ⊂ L,R∨ ⊂ L∗) and (R′ ⊂ L′, R′∨ ⊂ (L′)∗) are root data.
An isomorphism between them is a lattice isomorphism Λ: L→ L′ with the
property that

ΛR = R′, tΛ−1R∨ = R′∨,

and these maps respect the bijections R↔ R∨, R′ ↔ R′∨.
Let ∼ be the equivalence relation on R generated by the relations

α ∼ β if 〈α, β∨〉 6= 0.

The root system is called simple if R is a single equivalence class.

This definition (due to Grothendieck and his school in the 1960s) was
formulated when the primary role of reductive groups had become clear; so
there is no “semisimplicity” axiom analogous to (R1) or (RV1). (How might
you formulate one if you wanted it?) In this version of the definition the
second (integrality) axiom has entirely disappeared: it is embedded in the
fact that we are using a Z-valued pairing. The main axioms are (RD1.5)
(saying that root reflections can be defined) and (RD3) (saying that they
permute roots and coroots). This is the real heart of the matter.

Definition 1.7. A diagram is a finite graph in which each edge is either
single, or double with an arrow, or triple with an arrow.

The goal of Chapter 7 in the text, and of these notes, is

Theorem 1.8. Attached to each root system (or vector root system, or root
datum) is a diagram Γ. The number of connected components of Γ is the
number of equivalence classes in R. Each connected component of Γ appears
in Table 1.

2 Connection with Lie algebras

In this section we recall the construction of a root system from a semisimple
Lie algebra given in Chapter 6 of the text. We will also state Grothendieck’s
version of the classification of compact Lie groups (as motivation for the
definition of root datum), and the classification of reductive algebraic groups
(for the same reason).

3 Root systems and root data

In this section we will describe how to relate the three versions of root system
in the introduction.
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Table 1: Dynkin diagrams

type diagram #R #W

An (n ≥ 1)
s s s. . . s s

n2 + n (n+ 1)!

Bn (n ≥ 2)
s s s. . . s s> 2n2 2n · n!

Cn (n ≥ 3) s s sc s. . . s s< 2n2 2n · n!

Dn (n ≥ 4)
s s s. . . s ss��QQ 2n2 − 2n 2n−1 · n!

G2
s s> 12 12

F4
s s>s s 48 1152

E6

ss s s s s 72 27 · 34 · 5 = 51,840

E7 s s s s s ss
126 210 · 34 · 5 · 7 = 2,903,040

E8 s s s s s s ss
240 214 · 35 · 52 · 7 = 696,729,600

4 The Weyl group

In this section we define the Weyl group of a root system. This is an ex-
traordinarily important finite group. Much of Lie theory is dedicated to
translating difficult problems into questions about the Weyl group. To un-
derstand how this looks, consider the simple Lie algebra sl(n) of trace zero
n×n matrices. The Weyl group is the symmetric group Sn. You may know
that the irreducible representations of the symmetric group are indexed by
partitions of n; and you should certainly know that conjugacy classes of
n× n nilpotent matrices (equivalently, nilpotent elements of sl(n)) are also
indexed by partitions of n. This is not a coincidence. At a deeper level,
some of the most complicated questions about representation theory for any
semisimple Lie algebra g are answered by the “Kazhdan-Lusztig polynomi-
als;” and these polynomials are constructed by elementary combinatorics on
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the Weyl group.

Definition 4.1. Suppose R is a root system (Definition 1.4). The Weyl
group of R is the subgroup W (R) of automorphisms of E generated by
the reflections {sα | α ∈ R}. By (R3), the elements of W (R) permute R.
Since R spans E, we may identify W (R) with the corresponding group of
permutations of R; so W (R) is finite.

Here is the same definition in the language of vector root systems.

Definition 4.2. Suppose (R,R∨) is a vector root system (Definition 1.5).
The Weyl group of R is the subgroup W (R) of automorphisms of V gener-
ated by the reflections {sα∨,α | α ∈ R}. By (RV3), the elements of W (R)
permute R. Since R spans V , we may identify W (R) with the corresponding
group of permutations of R; so W (R) is finite.

Taking inverse transpose identifies W (R) with the Weyl group W (R∨)
of automorphisms of V ∗ generated by the reflections {sα,α∨ | α∨ ∈ R∨}.

Finally, here is the definition in the language of root data.

Definition 4.3. Suppose (R ⊂ L,R∨ ⊂ L∗) is a root datum (Definition
1.6). The Weyl group of R is the subgroup W (R) of automorphisms of L
generated by the reflections {sα∨,α | α ∈ R}. By (RD3), the elements of
W (R) permute R.

Taking inverse transpose identifies W (R) with the Weyl group W (R∨)
of automorphisms of L∗ generated by the reflections {sα,α∨ | α∨ ∈ R∨}.

In this setting the finiteness of W (R) is not quite so obvious.

5 Rank two

In this section we analyze root systems of rank two; that is, the possible
behavior of two roots α and β is an arbitrary root system. The case of
root data is the most subtle, so we will concentrate on that, leaving the
simplifications possible for root systems to the reader.

Here is the underlying algebra fact.

Lemma 5.1. Suppose A is a 2 × 2 matrix of integers having some finite
order m; that is, that Am = I. There are the following possibilities.

1. Both eigenvalues of A are +1, trA = 2, and A = I.

2. Both eigenvalues of A are −1, trA = −2, and A = −I.
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3. The eigenvalues of A are +1 and −1, trA = 0, and A2 = I.

4. The eigenvalues of A are e±2πi/3, trA = −1, and m = 3.

5. The eigenvalues of A are e±2πi/4, trA = 0, and m = 4.

6. The eigenvalues of A are e±2πi/6, trA = +1, and m = 6.

Proof. The first three cases are the only possibilities with real eigenvalues;
so we may assume that m > 2, and that the eigenvalues are e±2πik/m, with
k an integer relatively prime to m. Then tr(A) = 2 cos(2πk/m). Since A
has integer entries, this trace is an integer. Since it is also twice a cosine,
and not ±2, it must be −1, 0, or 1.

We fix throughout this section a root datum

(R ⊂ L,R∨ ⊂ L∗) (5.2)

as in Definition 1.6.

Lemma 5.3. Suppose α and β are nonproportional elements of R. Then
there are four possibilities.

1. 〈α, β∨〉 = 0. In this case also 〈β, α∨〉 = 0. The two reflections sα∨,α
and sβ∨,β commute; their product acts by +1 on the common kernel of
α∨ and β∨, and by −1 on the span of α and β.

Otherwise 〈α, β∨〉 = n 6= 0 is a nonzero integer. In this case 〈β, α∨〉 = n′ is
a nonzero integer of the same sign, and 1 ≤ nn′ ≤ 3. Possibly after replacing
β by −β, we may assume that n and n′ are both negative. Possibly after
interchanging α and β, we may assume that n ≤ n′.

2. If n = n′ = 1, then sα∨,αsβ∨,β has order three. The (root, coroot) pairs
include

(α, α∨), (β, β∨) (sα∨,α(β) = α+ β, α∨ + β∨)

and their negatives, constituting a subsystem of type A2.

3. If n = 1 and n′ = 2, then sα∨,αsβ∨,β has order four. The (root,coroot)
pairs include

α α∨

β β∨

sβ∨,β(α) = α+ β sβ,β∨(α∨) = α∨ + 2β∨

sα∨,α(β) = 2α+ β sα,α∨(β∨) = α∨ + β∨

and their negatives, constituting a subsystem of type B2.
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4. If nn′ = 3, then sα∨,αsβ∨,β has order six. The (root,coroot) pairs
include

α α∨

β β∨

sβ∨,β(α) = α+ β sβ,β∨(α∨) = α∨ + 3β∨

sα∨,α(β) = 3α+ β sα,α∨(β∨) = α∨ + β∨

sα∨,α(α+ β) = 2α+ β sα,α∨(α∨ + 3β∨) = 2α∨ + 3β∨

sβ∨,β(3α+ β) = 3α+ 2β sβ,β∨(α∨ + β∨) = α∨ + 2β∨

and their negatives, constituting a subsystem of type G2.

Corollary 5.4. Suppose α and β are nonproportional roots. If

〈α, β∨〉 = m > 0,

then the m elements

α− β, · · · , α−mβ = sβ∨,β(α)

are all roots. If
〈α, β∨〉 = −m < 0,

then
α+ β, · · · , α+mβ = sβ∨,β(α)

are all roots.

6 Positive root systems and Dynkin diagrams

In this section we define positive roots and simple roots for a root system,
and use them to define the Dynkin diagram of a root system. At the same
time we show how to recover all the roots from the Dynkin diagram.

Definition 6.1. Suppose R ⊂ E is a root system. An element λ ∈ E is
called regular if λ is not orthogonal to any root. A system of positive roots
for R is a subset R+ ⊂ R so that for some regular element λ, we have

R+ = {β ∈ R | (β, λ) > 0}.

The set of simple roots for R+ consists of the positive roots that cannot
be written as sums of positive roots:

Π = Π(R+) = {γ ∈ R+ | γ 6= α+ β (α, β ∈ R+)}.
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The collection of nonregular elements of E is a finite union of hyper-
planes, and therefore cannot be equal to E. So regular elements exist, and
positive root systems exist.

We will leave to the reader the definition of positive root systems in the
vector root case, and pass directly to root data.

Definition 6.2. Suppose (R ⊂ L,R∨ ⊂ L∗) is a root datum. An element
λ ∈ L∗ is called regular if λ does not vanish on any root. A system of positive
roots for R is a subset R+ ⊂ R so that for some regular element λ, we have

R+ = {β ∈ R | (β, λ) > 0}.

The set of simple roots for R+ consists of the positive roots that cannot
be written as sums of positive roots:

Π = Π(R+) = {γ ∈ R+ | γ 6= α+ β (α, β ∈ R+)}.

The kernel in L∗ of a nonzero element of L (such as α) is a sublattice
of rank one less. The set of nonregular elements of L∗ is therefore a finite
union of sublattices of lower rank. A lattice is never the union of sublattices
of lower rank; so regular elements exist, and positive root systems exist.

Here are some of the basic facts about positive roots and simple roots.

Proposition 6.3. Suppose R is a root system (or vector root system, or
root datum). Then there is a set of positive roots for R. Fix such a set R+,
and let Π be the corresponding set of simple roots.

1. The root system R is the disjoint union of R+ and −R+.

2. If α, β ∈ R+, p, q ∈ N, and pα+ qβ ∈ R, then pα+ qβ ∈ R+.

3. For every positive root β there are expressions

β =
∑
α∈Π

mαα, β∨ =
∑
α∈Π

mα∨α
∨,

with each mα and m∨α a non-negative integer.

4. Suppose β 6= α are positive roots, and α is simple. If β − α is a root,
then it is positive.

5. Suppose α1 6= α2 are simple roots. Then 〈α1, α
∨
2 〉 ≤ 0; it is nonzero if

and only if 〈α2, α
∨
1 〉 is also nonzero. In this case one of the numbers

is −1, and the other is −1, −2, or −3.
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6. Suppose β is a positive root, and β is not simple. Then there is a
simple root α so that

〈β, α∨〉 = m > 0

is a strictly positive integer, and

sα(β) = β −mα ∈ R+.

Before we embark on the proof of Proposition 6.3, we record the defini-
tion of Dynkin diagram that it provides.

Definition 6.4. Suppose R is a root system (or vector root system, or root
datum), R+ is a system of positive roots, and Π the corresponding set of
simple roots (Definition 6.1. The Dynkin diagram of R (Definition 1.7) is
the graph with vertex set Π. Two simple roots α1 and α2 are joined if and
only if 〈α1, α

∨
2 〉 < 0. In this case they are joined by a bond of multiplicity

〈α1, α
∨
2 〉〈α2, α

∨
1 〉

(which is 1, 2, or 3); in the double and triple cases, there is an arrow pointing
to αi if 〈αi, α∨j 〉 = −1. In the root system case (that is, with a Euclidean
structure) the arrow points to the root that is strictly shorter.

The Dynkin diagram therefore records all pairings between simple roots
and coroots, and so records formulas for the action of the simple reflections
on these elements.

Next, we notice that Proposition 6.3 gives a method to reconstruct all
of R from the Dynkin diagram. Here is the procedure. I will phrase it for
the case of root data; the modifications for the other cases are simple.

Begin with the set R1 = Π (the vertices of the diagram). We are going
to construct additional sets of positive roots R2, R3, and so on. We always
construct Ri+1 from Ri by the same procedure. For each element β in Ri,
list all the simple roots α so that

〈β, α∨〉 = m < 0

For each such root, we introduce the element

sα∨,α(β) = β +mα ∈ Ri+1.

It is a root by (RD3) of Definition 1.6, and positive by Proposition 6.3(2).
Therefore all the sets Ri are contained in R+. We claim that⋃

i

Ri = R+.
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Now Proposition 6.3(6) allows one to prove that β belongs to some Ri by
induction on 〈β, λ〉, with λ a regular element defining R+.

Example 6.5. Let E = {v ∈ R3 |
∑
vi = 0}, with the usual inner product.

It turns out that the two elements

α1 = (1,−1, 0), α2 = (−2, 1, 1)

are a set of simple roots for a root system. Let’s construct the rest of the
positive roots. To build R2, we begin with α1 ∈ R1 and find all the simple
roots having negative inner product with it. There is only one, namely α2;
the corresponding integer is

2〈α1, α2〉/〈α2, α2〉 = 2(−3)/6 = −1,

so we get
sα2(α1) = α1 + α2 = (−1, 0, 1) ∈ R2.

A similar calculation with α2 leads to

sα1(α2) = α2 + 3α1 = (1,−2, 1) ∈ R2.

Next we calculate R3. The element (−1, 0, 1) ∈ R2 has negative inner prod-
uct only with the simple root α1, so we get

sα1(−1, 0, 1) = (−1, 0, 1) + α1 = (0,−1, 1) ∈ R3.

Similarly (1,−2, 1) leads to

sα2(1,−2, 1) = (1,−2, 1) + α2 = (−1,−1, 2) ∈ R3.

Both roots in R3 have non-negative inner product with both simple roots,
so R4 and later sets are empty. Therefore

R+ = {(1,−1, 0), (−2, 1, 1), (−1, 0, 1), (1,−2, 1), (0,−1, 1), (−1,−1, 2)}.

The full root system includes the negatives of these six; it is the root system
of type G2.

In the case of E8, a calculation like the one just given for G2 has 29 steps;
that is, R30 is empty. It produces explicit formulas for the 120 positive roots
as sums of simple roots. Such a calculation can be done by hand without
too much difficulty, and of course is utterly trivial for a computer.
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Proof of Proposition 6.3. We will work in the case of a root datum; the
other two cases are similar but simpler.

Fix a regular element λ ∈ L∗ defining R+:

〈α, λ〉 > 0 (α ∈ R+). (6.6)

Parts (1) and (2) of the proposition are immediate. Let ε > 0 be the
smallest possible value of a pairing product 〈α, λ〉, with α ∈ R+; this is a
strictly positive number (actually a positive integer in the root datum case)
since R is finite. To prove (3), find a positive integer N so that

(N + 1)ε > 〈β, λ〉 ≥ Nε;

we prove (3) by induction on N . If β is simple there is nothing to prove;
so suppose β = β1 + β2 with βi ∈ R+. Define Ni for βi as above. Since
〈βi, γ〉 ≥ ε, we have Ni < N . By inductive hypothesis, we can write

βi =
∑
α∈Π

mα,iα.

Taking mα = mα,1 +mα,2 gives (3).
For (4), if β − α is negative, then α − β is positive, and the expression

α = (α− β) + β contradicts the assumed simplicity of α.
For part (5), suppose 〈α1, α

∨
2 〉 > 0. We deduce from Corollary 5.4 that

〈α2, α
∨
1 〉 > 0, and that α1 − α2 is a root. By (4), this root is both positive

and negative. This contradiction proves that 〈α1, α2〉 ≤ 0. The remaining
assertions are in Lemma 5.3.

For (6), write β∨ =
∑

δ∈Πmδ∨δ
∨ as in (3).

2 = 〈β, β∨〉 =
∑
δ∈Π

mδ∨〈β, δ∨〉.

So at least one summand is strictly positive; that is, there is a simple root
α with mα∨ > 0 and 〈β, α∨〉 = m > 0. By Corollary 5.4,

β, β − α, . . . , sα∨,α(β) = β −mα

are all roots; so by (4) they are all positive.

Corollary 6.7. Suppose R is a root system (or vector root system, or root
datum) with positive root system R+, and simple roots Π (Proposition 6.3).
Define

2ρ =
∑
β∈R+

β =
∑
α∈Π

rαα, 2ρ∨ =
∑
β∈R+

β∨ =
∑
α∈Π

rα∨α
∨;

here rα and rα∨ are strictly positive integers.
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1. If α ∈ Π, then the simple reflection sα∨,α preserves R+\α.

2. If α ∈ Π,
〈α, 2ρ∨〉 = 2, 〈2ρ, α∨〉 = 2.

3. The element 2ρ∨ ∈ L∗ takes strictly positive (even integer) values on
R+; so it is regular, and may be used as the element defining R+.

4. The element 2ρ ∈ L takes strictly positive even integer values on
(R+)∨; so these coroots form a positive system.

5. The set Π is linearly independent; it is a basis for the vector space E
(in the root system case) or V (in the vector root case) or for the root
lattice Q(R) ⊂ L (in the root datum case).

Proof. For (5), suppose that
∑

α∈Π pαα = 0, but that the pα are not all
zero. We may assume that some pα0 > 0.

Suppose first that all of the pα are non-negative. Pairing with the element
λ ∈ L∗ defining R+, we get

0 =
∑

pα〈α, λ〉.

Since the terms on the right are all non-negative and one is positive, this is
impossible.

We conclude that some of the pα are strictly negative. Define

ΠA = {α ∈ Π | pα > 0}, ΠB = {α ∈ Π | pα < 0}.

These are non-empty disjoint subsets of Π. We have∑
α∈ΠA

pαα =
∑
δ∈ΠB

(−pδ)δ. (6.8)

By the first part of the argument, all the coefficients on each side are non-
negative, and one pα0 on the left is strictly positive.

Now define RA to be the root datum generated by ΠA (with roots ob-
tained by applying simple reflections from this subset repeatedly to ΠA) and
define

ρ∨A =
∑
α∈ΠA

rα∨,Aα
∨

for this root system as above, with all rα∨,A strictly positive integers. Ap-
plying ρ∨A to the left side of (6.8) gives

2
∑
α∈ΠA

pα ≥ 2pα0 > 0.
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Applying ρ∨A to the right side of (6.8) gives∑
α∈ΠA,δ∈ΠB

(−pδ)rα∨,A〈δ, α∨〉.

Because ΠA and ΠB are disjoint, all the factors 〈δ, α∨〉 are nonpositive;
and the coefficients are nonnegative. So the right side is nonpositive, a
contradiction. The conclusion is that no linear dependence relation among
the roots in Π is possible, as we wished to show.

7 Coxeter graphs and the classification

In this section we introduce the “labelled extended Dynkin diagram” for a
simple root system. In the simply laced case, we prove that any labelled
extended diagram is a “Coxeter graph,” and classify the Coxeter graphs.
This will complete the proof of Theorem 1.8 in the simply laced case.

Definition 7.1. Suppose R is a simple root system with positive roots R+

and simple roots Π. A positive root β is called highest if β +α is not a root
for any simple root α. Similarly, a negative root γ is called lowest if γ − α
is not a root for any simple root α.

If γ is a lowest root, then the extended Dynkin diagram is constructed
in essentially the same way as the Dynkin diagram, adding the additional
vertex γ:

Π∗ = Π ∪ {γ}.

For the definition of edges, the only new case is that if γ = −α (which can
happen only in type A1). If

〈α, γ∨〉 = 〈γ, α∨〉 = −2,

then we join α to γ by two single bonds (not a double bond).
The special vertex γ may be depicted with a star.
According to Proposition 6.3(3)

γ = −
∑
α∈Π

mαα

for nonnegative integersmα; in fact the “lowest” condition makes allmα > 0.
We define mγ = 1, so that ∑

α′∈Π∗

mα′α
′ = 0. (7.2)
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The labelled extended Dynkin diagram has the positive integer mα′ labelling
each vertex α′.

Definition 7.3. A Coxeter graph is a connected graph subject to the fol-
lowing requirements.

1. Each vertex α′ is labelled by a positive integer mα′ .

2. There is a distinguished vertex γ labelled 1.

3. If α is any vertex, then ∑
α′ adjacent to α

mα′ = 2mα.

Proposition 7.4. Every finite Coxeter graph is either A∗n (for n ≥ 1) or
Dn∗ (for n ≥ 4) or E∗n (for n = 6, 7, 8).

This could be proved by clever elementary school students.

Proposition 7.5. The labelled extended Dynkin diagram of a simply laced
simple root system is a finite Coxeter graph. Conversely, any finite Coxeter
graph is the labelled extended Dynkin diagram of a simply laced simple root
system.

The first statement is a simple exercise in the definitions. The interesting
property (3) in the definition of Coxeter graph comes by applying (7.2) to
the coroot α∨.

The converse is more difficult, but not a great deal. One way to prove it
uses the following lemma from Bourbaki’s Lie algebra book (Exercise 7 for
Chapter V, §3).

Lemma 7.6. Suppose A = (aij) is a symmetric n × n real matrix with
aij ≤ 0 whenever i 6= j. Introduce an equivalence relation ∼ on {1, . . . , n}
by requiring i ∼ j whenever aij 6= 0; and assume that there is just one
equivalence class. Consider the quadratic form

Q(x) = xtAx =
∑
i,j

aijxixj .

Assume that there are real numbers ζi > 0 so that∑
i

ζiaij = 0 (1 ≤ j ≤ n).

Then Q is positive semidefinite, with radical spanned by ζ ∈ Rn.
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