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The talk in one slide

Want to understand representations of any group G.

I’ll give some hints about why this is interesting.

In case you didn’t have it beaten into your head by Paul Sally.

And Bert Kostant. And Armand Borel. And Michele Vergne. . .

Representations of G
crude
! conjugacy classes in G.

Better: relation is like duality for vector spaces.

dim(representation)! (size)1/2(conjugacy class).

Talk is examples of when things like this are true.
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Two cheers for linear algebra

My favorite mathematics is linear algebra.

Complicated enough to describe interesting stuff.

Simple enough to calculate with.

Linear map T : V → V  eigenvalues, eigenvectors.

First example: V = fns on R, S = chg vars x 7→ −x.

Eigvals: ±1. Eigspace for +1: even fns (like cos(x)).
Eigspace for −1: odd functions (like sin(x)).

Linear algebra says: to study sign changes in x, write
fns using even and odd fns.

Second example: V = functions on R, T = d
dx .

Eigenvals: λ ∈ C. Eigspace for λ: multiples of eλx .

Linear algebra says: to study d
dx , write functions using

exponentials eλx .
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The third cheer for linear algebra

Best part about linear algebra is noncommutativity. . .

Third example: V = fns on R, S = (x 7→ −x), T = d
dx .

S and T don’t commute; can’t diagonalize both.

Only common eigenvectors are constant fns.

Representation theory idea: look at smallest subspaces
preserved by both S and T .

W±λ = 〈cosh(λx)︸     ︷︷     ︸
even

, sinh(λx)︸    ︷︷    ︸
odd

〉 = 〈eλx , e−λx〉.
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Definition of representation

Here’s a general setting for not-all-diagonalizable. . .

I’ll talk about groups; same words apply to algebras.

G group; representation of G is
1. (complex) vector space V , and
2. collection of linear maps {Tg : V → V | g ∈ G}

subject to

TgTh = Tgh , Te = identity.

Subrepresentation is subspace W ⊂ V such that

TgW = W (all g ∈ G).

Rep is irreducible if only subreps are {0} , V .

Irreducible subrepresentations are minimal nonzero
subspaces of V preserved by all Tg.
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Gelfand program. . .

. . . for using repn theory to do other math.

Say group G acts on space X .

Step 1: LINEARIZE. X  V(X) vec space of fns on X .
Now G acts by linear maps.

Step 2: DIAGONALIZE. Decompose V(X) into minimal
G-invariant subspaces.

Step 3: REPRESENTATION THEORY. Study minimal
pieces: irreducible reps of G.

Step 4: PRETENDING TO BE SMART. Use
understanding of V(X) to answer questions about X .

Hard steps are 2 and 3: how does DIAGONALIZE work,
and what do minimal pieces look like?
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How many representations are there?

Big step in Gelfand program is describing the set
Ĝ = {all irr reps of G}.

When looking for things, helps to know how many. . .

Theorem Suppose G is a finite group.
1. |Ĝ| = |{conj classes in G}|.
2.

∑
(V ,T)∈Ĝ(dim V)2 = |G|.

3.
∑

C⊂G conj class |C | = |G|.

Theorem suggests two possibilities:

1. Bijection (conj classes in G)
?
! Ĝ, C

?
! VC .

2. |C | ?
= (dim VC)2.

Neither is true; but each has elements of truth. . .

Example: G = Sn = permutations of {1, . . . , n}.

Will see that both conj classes in G and Ĝ are indexed
by partitions of n: expressions n = p1 + p2 · · ·+ pr ,
p1 ≥ p2 ≥ · · · ≥ pr > 0.
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Partitions, conj classes, repns

Sn = permutations of {1, . . . , n} symmetric group.

π = (p1, . . . , pr) decr,
∑

pi = n partition of n.

Sπ = Sp1 × Sp2 × · · · × Spr ⊂ Sn.

Conj class C ! smallest π so Stπ ∩ C , ∅.

Columns of π = cycle sizes of C.

Irr rep (V ,T)! largest π so (V ,T)|Sπ
⊃ trivial.

Theorem. These correspondences define bijections

(conj classes in Sn)↔ (partitions of n)↔ Ĝ
S3 S4

|Cπ| part. π (dim Vπ)
2 |Cπ| part. π (dim Vπ)

2

1 1 1 1
3 4 6 9

2 1 3 4

8 9

6 1
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Lessons learned

Conclusion: For Sn there is a natural bijection

(conj classes)↔ (irr repns), Cπ ↔ Vπ.

But |Cπ| not very close to (dim Vπ)2.

Maybe interesting question: find bijection relating two
formulas

∑
π(dim Vπ)2 =

∑
π |Cπ| for |Sn |.
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GLn(Fq): conjugacy classes
Seek (conj classes)

?
←→ (irr reps) for other groups.

Try next GLn(Fq), invertible n × n matrices /Fq.

|GLn(Fq)| = (qn − 1)(qn − q) · · · (qn − qn−1)

= (qn−1 − 1)(qn−2 − 1) · · · (q − 1) · 1 · q · · · qn−1

= (1 + q + · · ·+ qn−1)(1 + q + · · ·+ qn−2) · · · (1)︸                                                            ︷︷                                                            ︸
q-analog of n!

· (q − 1)n · qn(n−1)/2

GLn(Fq) is q-analogue of Sn.

partition π of m, Galois orbit Λ = {λ1, . . . λd} ⊂ Fq
×
, 

conj class c(π,Λ) ⊂ GLmd(Fq).
General class in GLn(Fq) = partition-valued function π
on Galois orbits Λ ⊂ Fq

×
such that∑

Λ

| Λ︸︷︷︸
eigval

| · |π(Λ)|︸︷︷︸
mult(Λ)

= n.

(π(Λ) = ∅ for most Λ.)
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GLn(Fq): representations
Saw that conj class in GLn(Fq) is partition-valued function on
Galois orbits on

⋃
d≥1 F

×

qd (19th century linear algebra).
Similarly irr rep of GLn(Fq) is partition-valued function on
Galois orbits on

⋃
d≥1 F̂

×

qd Green 1955.

GL2(Fq)
conj class C # classes |C |

diag, 2 ev (q − 1)(q − 2)/2 q(q + 1)
nondiag, 2 ev q(q − 1)/2 q(q − 1)

q − 1 (q + 1)(q − 1)

q − 1 1

repn V # repns dim V
princ series (q − 1)(q − 2)/2 q + 1
disc series q(q − 1)/2 q − 1

q − 1 q
q − 1 1

Conclude (conj classes)↔ (irr reps), but not naturally:
depends on choice of isom F×qd ' F̂

×

qd .

Bijection has |Cπ| ≈ (dim Vπ)2.
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Back to functions on R

G1 = R = translations on R, (Tt f)(x) = f(x − t).

Lie alg g1 = R d
dx ; irr rep Cλ = multiples of e−iλx .

G2 = R = exp mults on R, (Mξf)(x) = e−ixξf(x).

Lie alg g2 = Rix; irr rep Cy = delta fns at y.

Z = R = phase shifts on R, (Pθf)(x) = e iθf(x).

Lie alg z = iR.

Theorem G = group of linear transformations of fns on
R generated by G1, G2, and Z .

1. TtMξ = MξTtPtξ; Pθ commutes with Tt and Mξ.
2. Every element of G is uniquely a product TtMξPθ.
3.

[
d
dx , ix

]
= i.

4. L2(R) = irr rep of G; unique rep where Pθ = e iθI.

Note two versions of canonical comm relations of
quantum mechanics; G is Heisenberg group.
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Conjugacy classes in Heisenberg group. . .
. . . = conj classes in Lie alg g = {t d

dx + iξx + iθ}.

Ad(Tt1 Mξ1 Pθ1 )

t
ξ

θ

 =

 t
ξ

θ + t1ξ − ξ1t


=

 1 0 0
0 1 0
−ξ1 t1 1


t
ξ

θ

 .
2-diml family of 1-diml conj classes (each fixed

(t , ξ) , (0, 0)), 1-diml family of 0-diml classes

00
θ

.
Repns dual to conj classes: orbits of G on g∗.

Ad∗(Tt1 Mξ1 Pθ1 )

λy
z

 =

λ + ξ1z
y − t1z

z

 .
Now have 1-diml fam of 2-diml orbits (each z , 0),

2-diml fam of 0-diml orbits

λy
0

.
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Stone-von Neumann Theorem

Theorem (Stone-von Neumann) Irrs of Heisenberg G:
1. for each z , 0, rep on L2(R)z :

Tt 7→ transl by zt , Mξ 7→ mult by e−ixξ, Pθ 7→ e izθ.

2. for each (λ, y), 1-diml rep on Cλ,y ,

Tt 7→ e iλt , Mξ 7→ e iyξ, Pθ 7→ e i0·θ = 1.

Reps corr perfectly to orbits of G on g∗.

L2(R)z ↔ 2-diml

∗∗
z

 , Cλ,y ↔ 0-diml

λy
0

 .
“Functional dim” of rep space is half dim of orbit.

Analogue of hope dim Vπ ≈ |Cπ|
1/2 for fin gps.
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Philosophy of coadjoint orbits

G Lie group with Lie algebra g, dual vector space g∗.

Kirillov-Kostant philosophy of coadjt orbits suggests

{irr reps of G} =def Ĝ
?
! {orbits of G on g∗} (?)

More precisely. . . restrict right side to “admissible” orbits
(integrality cond). Hope to get “most” of Ĝ: enough for
(interesting parts of) Gelfand harmonic analysis.

Hope: orbit X ! rep VX = fns on Y , dim Y = (dim X)/2.

Hard part is finding Y = “square root” of space X .



Conjugacy classes
and group

representations

David Vogan

Introduction

Repn theory

Counting repns

Symmetric groups

Other finite groups

Lie groups

Last half hour

Evidence for orbit philosophy

With the caveat about restricting to admissible orbits. . .

Ĝ
?
! orbits of G on g∗. (?)

(?) is true for G simply conn nilpotent (Kirillov 1962).

(?) is true for G type I solvable (Auslander-Kostant 1971).

(?) for algebraic G reduces to reductive G (Duflo 1982).

Case of reductive G is still open.

Actually (?) false for connected nonabelian reductive G.

But there are still theorems close to (?).
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GLn(R)

G = GLn(R) for Lie gps! GLn(Fq) for fin gps.

Lie algebra g = all n × n real matrices ' g∗.

coadjt orbits = conj classes of n × n real matrices.
Real n × n matrix has eigenvalues

r1, . . . , rp︸    ︷︷    ︸
real

, {z1, z1}, . . . , {zq, zq}︸                   ︷︷                   ︸
non-real

;

say ri has mult mi and {zj , zj} mult nj , with∑
i

mi + 2
∑

j

nj = n.

Conj class! partitions |π(ri)| = mi , |π({zj , zj})| = nj .
Conj class! partition-valued fn π on Galois orbits Λ ⊂ C,∑

Λ

|Λ| · |π(Λ)| = n.
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What’s a conj class look like?

Fix eigenvalues (ri , {zj , zj}), multiplicities (mi , nj).

Ignore partitions for now (or take all to be 1 + 1 + · · · ).
Matrix in conj class! decomposition

Rn = (E1 ⊕ · · · ⊕ Ep) ⊕ (F1 ⊕ · · · ⊕ Fq), dim Ei = mi , dim Fj = 2nj

together with complex structure on each Fj .

Matrix is scalar ri on Ei , zj on Fj .
Conj class ' manifold of all such decomps of Rn

' GLn(R)/
[
GLm1 (R) × · · · × GLmp (R)

× GLn1 (C) × · · · × GLnq (C)
]

Space depends only on ints (mi), (nj), not on eigvals.
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How do you make a rep from a conj class?

To simplify take real eigenvalues only: ri with mult mi .
Conj class C(mi ) ' decomps Rn = E1 ⊕ · · · ⊕ Ep , dim Ei = mi

' GLn(R)/
[
GLm1 (R) × · · · × GLmp (R)

]
Equivariant line bundles on G/H! characters of H.
Eigenvalues (ri) define character

χ(ri ) : GLm1 × · · · × GLmp → C
×,

(g1, . . . , gp) 7→ | det g1|
ir1 · · · | det gp |

irp

and so eqvt Herm line bundle L(ri) → C(mi).

Recall VC should be fns on a mfld of half dim of C. . .

F(mi ) = flags S1 ⊂ · · · ⊂ Sp = Rn, dim Si/Si−1 = mi .

Have eqvt fibration C(mi) → F(mi),

E1 ⊕ · · · ⊕ Ep 7→ E1 ⊂ E1 ⊕ E2 ⊂ E1 ⊕ E2 ⊕ E3 · · ·

dimF(mi) = dim C(mi)/2, and L(ri) descends to F(mi).

V(mi),(ri) = half-density secs of L(ri) → F(mi), irr of GLn(R).
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What about complex eigenvalues?

Look at matrices with eigvals {z1, z1}, multiplicity n1; n = 2n1,
z1 = a1 + ib1. Admissible reqt is b1 ∈ Z.

Conj class C(n1) = class of a1

(
In1 0
0 In1

)
+ b1

(
0 −In1

In1 0

)
' complex structures on R2n1

' GL2n1 (R)/GLn1 (C)

real manifold of dimension (2n1)2 − 2n2
1 = 2n2

1.

Admissible eigval {z1, z1} defines character

χ{z1 ,z1} : GLn1 (C)→ C×, h 7→ | det h|ia1 ·

(
det h
| det h|

)b1−n1

 eqvt Herm line bundle L{z1,z1}
→ C(n1).

Extra −n1 is “half-density” twist.

Want V(n1),{z1,z1}
on fns on a space of half dim of C(n1).

Subgp GLn1 (C) is maximal: can’t fiber C(n1) over smaller.

Soln: C(n1) is complex. Replace all fns by hol fns.
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Speh representations

C(n1) = GL2n1 (R)/GLn1 (C) complex mfld, dimC = n2
1.

χ{a1±ib1} : GLn1 (C)→ C×, h 7→ | det h|ia1 ·
(

det h
| det h|

)b1−n1

 L{a1±ib1} → C(n1) equiv holomorphic line bdle.

Rough idea: V(n1),{a1±ib1} = holom secs of L{a1±ib1}.

Reason: holom fns on C ≈ all fns on mfld of half dim C.

Difficulty: C(n1) has big compact submanifold
Z(n1) = O(2n1)/U(n1) = orthogonal cplx structures,

dimC Z(n1) = n1(n1 − 1)/2.

Consequence: no holom secs for b1 < n1.

Solution: replace holom secs by Dolbeault cohom.

 irreducible Speh rep V(n1),{a1±ib1}, b1 ≤ 0.
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The rest of the story

For G = GLn(R), C ⊂ g∗ coadjt orbit. . .

. . . eigvals line bundle L on C.
Case of real eigvalues: get G rep by

1. [eigspaces flags] fibration C → F
2. representation = secs of L constant on fibers.

Case of complex eigvalues: get G rep by
1. [cplx structure on eigspaces] complex structure on C
2. representation = (sheaf cohom of) holom secs of L.

Combining ideas, get reps if C diagonalizable over C.

Same ideas apply to any reductive Lie group G.

Need to replace (flag parabolic)

But that’s just jargon, and we’re all GREAT at jargon.

Get rep VC f any coadjt orbit C ⊂ g∗ semisimple.

What about conj classes of nilpotent matrices?
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Conjugacy classes of nilpotent matrices

Cπ ⊂ gln(R)∗ conj class of nilp matrices

! π = (p1, . . . , pr) partition of n (Jordan blocks).

Define tπ = (q1, . . . , qs) transpose partitition.

qj = #{i | πi ≥ j} = dim
(
ker X j/ ker X j−1

)
(X ∈ Cπ)

Recall Ftπ = flags (S1 ⊂ · · · ⊂ Ss = Rn), dim Sj/Sj−1 = qj .

 fibration Cπ → Ftπ, X 7→
(
ker X ⊂ ker X2 ⊂ · · · ⊂ ker X s = Rn

)
.

So can define VCπ = half-densities on Ftπ.

This is like a case we already did. . .

! C(rj),(qj) = matrices with s eigvals (rj), mults (qj).

C(rj ),(qj ) → Ftπ, X 7→ (ker(X − r1) ⊂ · · · ⊂ ker(X − r1) · · · (X − rs)).

Nilpotent class Cπ is limit of semisimple conj classes C(rj),(qj).
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Other Lie groups

Do we understand irreducible reps for Lie group G?

Recall Duflo more or less reduced to case G reductive.

For G reductive, attaching rep to C ⊂ g∗ reduces to C nilp.

Good news: C = limit of semisimple know what to do.

Bad news: G , GLnR =⇒ nilp C , lim(semisimple).

Good news: there’s still more math to do!

Perhaps there should be some sort of organization to support that?
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