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What’s the plan?

Goal: understand classification of regular polyhedra.
Path to goal:

1. Regular polyhedra! big symmetry groups.

2. Big symmetry groups Coxeter
! generators and relations.

Analogy: matrix groups Serre
! generators and relations.

This is what you teach as Gaussian elimination.

3. So far: regular polyhedra←→ finite Coxeter groups.
4. Finish: classify finite Coxeter groups.

Matrix group building block: 2× 2 matrices.
Coxeter group building block: Z/2Z.
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What’s a regular polyhedron?

Something really symmetrical. . . like a square

ss s
s s

FIX one vertex inside one edge inside square.
Two building block symmetries.

ss
s s
−→s1

s s
s s
↖s2

s1 takes red vertex to adj vertex along red edge;
s2 takes red edge to adj edge at red vertex.
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More symmetries from building blocks
.

r r
r r

1 identity

reflect in x = 0 rr
r r

s1 r r
r r

s2 reflect in y = x

90◦ rotation rr
r r

s1s2

r
rr
r

s2s1 270◦ rotation

reflect in y = −x

r
r
r

rs1s2s1

r
rr
r

s2s1s2 reflect in y = 0

r
r

r
rs1s2s1s2
= s2s1s2s1

180◦ rotation

Presentation:
generators s1, s2;
relations s2

1 = s2
2 = 1,

s1s2s1s2 = s2s1s2s1.
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Understanding all regular polyhedra

Introduce a flag as a chain of faces like
vertex ⊂ edge in a square.
Introduce basic symmetries like s1, s2 which change
a flag as little as possible.
Find a presentation of the symmetry group.
See how to recover polyhedron from presentation of
symmetry group.
Decide which presentations are possible.
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Most of linear algebra

V n-diml vec space GL(V ) invertible linear maps.
complete flag in V is chain of subspaces F
{0} = V0 ⊂ V1 ⊂ · · · ⊂ Vn−1 ⊂ Vn = V , dimVi = i .

Stabilizer B(F) called Borel subgroup of GL(V ).
Example
V = kn, Vi = {(x1, . . . , xi ,0, . . . ,0) | xj ∈ k} ' k i .
Stabilizer of this flag is upper triangular matrices.

Theorem
1. GL(V ) acts transitively on flags.
2. Stabilizer of one flag is isomorphic to group of invertible

upper triangular matrices.
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Rest of linear algebra
Fix integers d = (0 = d0 < d1 < · · · < dr = n)

partial flag of type d is chain of subspaces G
W0 ⊂W1 ⊂ · · · ⊂ Vr−1 ⊂Wr , dimWj = dj .

Stabilizer P(G) is a parabolic subgroup of GL(V ).
Example
V = kn, Wj = {(x1, . . . , xdj ,0, . . . ,0) | xi ∈ k} ' kdj .
Stabilizer is block upper triangular matrices.

Theorem
1. GL(V ) acts transitively on partial flags of type d.
2. Stabilizer of one flag is isomorphic to group of invertible

block upper triangular matrices.
3. Consider the n − 1 partial flags obtained by omitting one

proper subspace from a fixed complete flag:
Gp = (V0 ⊂ · · · ⊂ V̂p ⊂ · · · ⊂ Vn) 1 ≤ p ≤ n − 1.

Then GL(V ) is generated by the n − 1 parabolic
subgroups P(Gp), corresponding to block upper triangular
matrices with a single 2× 2 block.
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Notation for polyhedra
Set C in RN is convex if

ci ∈ C, ti ∈ [0,1],
∑

ti = 1⇒
∑

tici ∈ C.

Convex polyhedron P is intersection of half spaces

P = {v ∈ RN | λi(v) ≤ ai ,1 ≤ i ≤ M}.
Here λi ∈ (RN)∗ (dual space), ai ∈ R.
If P is nonempty, it generates an affine subspace

S(P) = {t1q1 + · · ·+ tr qr | qi ∈ P, ti ∈ R,
∑

ti = 1};
say P is n-dimensional if S(P) is n-diml.
Interior P0 of P is topological interior of P ∩ S(P).
Boundary ∂P of P is P − P0.

Theorem
Boundary of n-diml convex polyhedron P is finite union of
(n − 1)-diml convex polyhedra, the faces of P.
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Flags

Pn compact n-dimensional convex polyhedron
A (complete) flag F in P is a chain

P0 ⊂ P1 ⊂ · · · ⊂ Pn, dimPi = i

with Pi−1 a face of Pi .

s���
HHHs���

sH
HHs s���

HHHs���
sH
HHs

Two flags in two-diml P. Symmetry group (generated
by reflections in x and y axes) is transitive on edges,
not transitive on flags.

Definition
P regular if symmetry group acts transitively on flags.
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Adjacent flags

F = (P0 ⊂ P1 ⊂ · · · ⊂ Pn), dimPi = i

complete flag in n-diml compact convex polyhedron.
A flag F ′ = (P ′0 ⊂ P ′1 ⊂ · · · ⊂ P ′n) is i-adjacent to F if
Pj = P ′j for all j 6= i , and Pi 6= P ′i .

s
@@

s
@@

s
s s
@@

s
s s
@@

s
@@

s
s s
@@

s
ss

@@

s
@@

s
s s
@@

s
ss

@@
@@@@
@@@@
@@@@
@@@@
@@@@

s
@@

s
s s
@@

s
s

Three flags adjacent to F , i = 0,1,2.
F ′0: move vertex P0 only. F ′1: move edge P1 only.
F ′2: move face P2 only.
There is exactly one F ′ i-adjacent to F (each
i = 0,1, . . . ,n − 1).
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Stabilizing a flag

Lemma
Suppose F = (P0 ⊂ P1 ⊂ · · · ) complete flag in
n-dimensional compact convex polyhedron Pn. Any affine
map T preserving F acts trivially on Pn.

Proof.Induction on n. If n = −1, Pn = ∅ and result is true.

Suppose n ≥ 0 and the the result is known for n − 1.

Write pn = center of mass of Pn. Since center of mass is
preserved by affine transformations, Tpn = pn.

By inductive hypothesis, T acts trivially on (n − 1)-diml
affine S(Pn−1) spanned by Pn−1.

Easy to see that pn /∈ S(Pn−1), so pn and (n − 1)-diml
S(Pn−1) must generate n-diml S(Pn).

Since T trivial on gens, trivial on S(Pn). Q.E.D.
Compactness matters; result fails for P1 = [0,∞).
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Symmetries and flags

Henceforth Pn is cpt cvx reg polyhedron with fixed flag

F = (P0 ⊂ P1 ⊂ · · · ⊂ Pn), dimPi = i
Write pi = center of mass of Pi

Theorem
There is exactly one symmetry w of Pn for each complete
flag G, characterized by wF = G.

Corollary
Define F ′i−1 = unique flag (i − 1)-adj to F (1 ≤ i ≤ n).
There is a unique symmetry si of Pn char by
si(F) = F ′i−1. It satisfies

1. si(F ′i−1) = F , s2
i = 1.

2. si fixes the (n − 1)-diml hyperplane through the n points
{p0, . . . ,pi−2, p̂i−1,pi , . . . ,pn}.
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Examples of basic symmetries si

s s
ep2e
p1

e
p0

ss
−→

 

s1 s s
ep2e
p1

e
p0

ss
This is s1, which changes F only in P0, so acts
trivially on the line through p1 and p2.s s

�
�
�
�
�
�ep2e

p1
e
p0

ss
↖

s2

 

s s
ep2e
p1

e
p0

ss
This is s2, which changes F only in P1, so acts
trivially on the line through p0 and p2.
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What’s a reflection?
On vector space V (characteristic not 2), a linear
map s with s2 = 1, dim(−1 eigspace) = 1.
−1 eigenspace is line Ls; fix basis vector α∨ ∈ V

Ls = {v ∈ V | sv = −v} = span(α∨).

+1 eigspace = hyperplane Hs = kernel of nonzero α ∈ V ∗

Hs = {v ∈ V | sv = v} = ker(α).

sv = s(α,α∨)(v) = v − 2
〈α, v〉
〈α, α∨〉

α∨.

Extend {α∨} to basis of V with basis of Hs:

matrix of s =

−1 0 · · ·
0 1 · · ·. . .


Orth reflections: quadratic form 〈, 〉 identifies V ' V ∗;

α = α∨ ⇒ s orthogonal.
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Two reflections

sv = v − 2
〈αs, v〉
〈αs, α∨s 〉

α∨s , tv = v − 2
〈αt , v〉
〈αt , α∨t 〉

α∨t .

Assume V = Ls ⊕ Lt ⊕ (Hs ∩ Ht).

On subspace Ls ⊕ Lt , basis {α∨s , α∨t }, cst = 2〈αs, α
∨
t 〉/〈αs, α

∨
s 〉,

s =

(
−1 −cst

0 1

)
, t =

(
1 0
−cts −1

)
, st =

(
−1 + cstcts cst

−cts −1

)
.

det(st) = 1, tr(st) = −2 + cstcts,

eigenvalues exp(±i cos−1(−1 + cstcts/2)).

Proposition
Suppose −1 + cstcts/2 = real part of a prim mth root of 1,
m ≥ 3; or that m = 2, and cst = cts = 0. Then st has order
exactly m. Otherwise st has infinite order. In particular

1. m = 2 if and only if cst = cst = 0;
2. m = 3 if and only if cstcts = 1;
3. m = 4 if and only if cstcts = 2;
4. m = 6 if and only if cstcts = 3;
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Reflection symmetries
Pn compact convex regular polyhedron in Rn, flag

F = (P0 ⊂ P1 ⊂ · · · ⊂ Pn), dimPk = k , pk = ctr of mass(Pk ).

sk = nontriv symmetry preserving all Pj except Pk−1.
sk must be orthogonal reflection in hyperplane

Hk = S(p0,p1, . . . , p̂k−1,pk , . . . ,pn)

(unique aff hyperplane containing these n points).
Write eqn of Hk

Hk = {v ∈ Rn | 〈αk , v〉 = ck}.
αk characterized up to positive scalar multiple by

〈αk ,pj − pn〉 = 0 (j 6= k − 1), 〈αk ,pk−1 − pn〉 > 0.

sk (v) = v − 2〈αk , v − pn〉
〈αk , αk 〉

αk .
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Good coordinates

Pn compact convex regular polyhedron in Rn, flag
F = (P0 ⊂ P1 ⊂ · · · ⊂ Pn), dimPi = i , pi = ctr of mass(Pi).

Translate so center of mass is at the origin: pn = 0.

Rotate pn−1 to R1 ⊂ Rn: pn−1 = (an,0, . . .),an > 0.

Now hyperplane S(Pn−1) is {x1 = an}.
Rotate pn−2 (fixing pn−1) to R2 ⊂ Rn:
pn−2 = (an,an−1,0 . . .),an−1 > 0.

(n − 2)-plane S(Pn−2) is {x1 = an, x2 = an−1}.
...

pn−k = (an, . . . ,an−k+1,0 . . .),an−k+1 > 0.

(n − k)-plane S(Pn−k ) = {x1 = an, x2 = an−1 . . . xk = an−k+1}.
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Reflections in good coordinates
Pn cpt cvx reg polyhedron in Rn, flag
F = (P0 ⊂ P1 ⊂ · · · ⊂ Pn), dimPi = i , pi = ctr of mass(Pi).

pk = (an, . . . ,ak+1,0 . . .),ak+1 > 0.

k -plane S(Pk ) is {x1 = an, x2 = an−1 . . . xn−k = ak+1}.

Reflection symmetry sk preserves all Pj except
Pk−1(1 ≤ k ≤ n), so fixes all pj except pk−1.
Fixes pn = 0, so a reflection through the origin: sk = sαk ,
αk orthogonal to all pj except pk−1.
Solve equations: αk = (0, . . . ,a−1

k ,−a−1
k−1,0, . . . ,0)

(entries in coordinates n − k + 1 and n − k + 2).
To relate two reflections sk1 and sk2 , needed

ck1,k2 = 2〈αk1 , αk2〉/〈αk1 , αk1〉 = 0 (|k1 − k2| > 1),

ck,k+1 = 2〈αk , αk+1〉/〈αk , αk 〉 = −2a2
k−1/(a

2
k + a2

k−1),

ck+1,k = 2〈αk+1, αk 〉/〈αk+1, αk+1〉 = −2a2
k+1/(a

2
k + a2

k+1).

sk sk+1 = rot by cos−1

(
a2

k−1a2
k+1 − a2

k−1a2
k − a2

k a2
k+1 − a4

k

a2
k−1a2

k+1 + a2
k−1a2

k + a2
k a2

k+1 + a4
k

)
.
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Example: n-cube

Pn = {x ∈ Rn | −1 ≤ xi ≤ 1 (1 ≤ i ≤ n)}.

Choose flag Pk = {x ∈ Pn | x1 = · · · = xn−k = 1}, ctr of
mass pk = (1, . . . ,1,0 . . . ,0) (n − k 1s).

sk = refl in αk = (0, . . . , 1,−1, . . . , 0) = en−k+1 − en−k+2

= exchange coords n − k + 1, n − k + 2 (k ≥ 2).
s1 = refl in α1 = (0, . . . ,0,1) = en

= sign change of coord n.

sk sk+1 = rot by cos−1
(

14 − 14 − 14 − 14

14 + 14 + 14 + 14

)
= 2π/3 (k ≥ 2)

s1s2 = rot by cos−1
(

14 − 14

14 + 14

)
= 2π/4

Symm grp = permutations, sign changes of coords

= 〈s1, . . . sn〉/〈s2
k = 1, (sk sk+1)

3 = 1, (s1s2)
4 = 1〉
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Angles and coordinates

F = (P0 ⊂ P1 ⊂ · · · ⊂ Pn), dimPi = i , pi = ctr of mass(Pi).

pk = (an, . . . ,ak+1,0 . . .),ak+1 > 0.
Geom given by n − 1 (strictly) positive reals rk = (ak+1/ak )

2.

sk sk+1 = rotation by θk ∈ (0, π),

cos(θk ) =

(
rk − rk rk−1 − rk−1 − 1
rk rk−1 + rk + rk−1 + 1

)
.

When k = 1, some terms disappear:

cos(θ1) =
r1 − 1
r1 + 1

, r1 =
1 + cos(θ1)

1− cos(θ1)
.

These recursion formulas give all rk in terms of all θk .

Next formula is
r2 = −cos(θ2) + cos(θ1)

1 + cos(θ2)
.

Formula makes sense (defines strictly positive r2) iff
cos(θ2) + cos(θ1) < 0.
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Coxeter graphs
Regular polyhedron given by n − 1 pos ratios
rk = (ak+1/ak )

2.
Symmetry group has n generators s1, . . . , sn,

s2
k = 1, sk sk ′ = sk ′sk (|k − k ′| > 1), (sk sk+1)

mk = 1.
Here mk ≥ 3. Rotation angle for sk sk+1 must be

θk = 2π/mk ∈ {120◦, 90◦, 72◦, 60◦ . . .},

cos(θk ) ∈
{
−1

2
, 0,

√
5− 1
4

,
1
2
, . . .

}
,

Group-theoretic information recorded in Coxeter graph

s s s s s s. . .mn−1 mn−2 m2 m1

Recursion formulas give rk from cos(θk ) = cos(2π/mk ).
Condition cos(θ2) + cos(θ1) < 0 says

one of mk+1, mk must be 3; other at most 5.
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Finite Coxeter groups with one line
Same ideas lead (Coxeter) to classification of all graphs for
which recursion gives positive rk .

type diagram G |G| regular
polyhedron

An
r r. . . r r symmetric

group Sn+1
n! n-simplex

BCn
r r. . . r r4

cube group 2n · n! hyperoctahedron,
hypercube

I2(m) r m r dihedral
group Dm

2m m-gon

H3 r r r5
H3 120 icosahedron,

dodecahedron

H4 r r r r5
H4 14400 600-cell,

120-cell

F4 r 4r r r F4 1152 24-cell

For much more, see Bill Casselman’s amazing website
http://www.math.ubc.ca/∼cass/coxeter/crm.html
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Reading geometry from the Coxeter diagram

H4 r r r r5
H4 14400 600-cell,

120-cell

Read either left to right (600-cell) or right to left (120 cell).

First k vertices←→ (symmetry group of) k -diml face.

k -diml face also preserved by reflections for last
(n − k − 1) vertices, which act trivially.

#(k -faces) =
#(n-vertex group)

#(first k -vrtx grp) ·#(last (n − k − 1)-vrtx grp)
.

Here’s the 600-cell:
0. 0-face = point = 0-simplex (trivial symmetry)

number of vertices = 14400/(1 · 120) = 120.
1. 1-face = interval = 1-simplex (symmetry r ←→ S2)

number of edges = 14400/(2 · 10) = 720.
2. 2-face = triangle = 2-simplex (symmetry r r ←→ S3)

number of 2-faces = 14400/(6 · 2) = 1200.
3. 3-face = tetrahedron = 3-simplex (symmetry r r r ←→ S4)

number of 3-faces = 14400/(24 · 1) = 600.
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Once more for the 120 cell

H4 r r r r5
H4 14400 120-cell,

600-cell

Read this reversed diagram left to right for the 120 cell):
0. 0-face = point = 0-simplex (trivial symmetry)

number of vertices = 14400/(1 · 24) = 600.
1. 1-face = interval = 1-simplex (symmetry r ←→ S2)

number of edges = 14400/(2 · 6) = 1200.

2. 2-face = pentagon (symmetry r r5
←→ dihedral D5)

number of 2-faces = 14400/(10 · 2) = 720.

3. 3-face = dodecahedron (symmetry r r r5
)←→ H3)

number of 3-faces = 14400/(120 · 1) = 120.

Glue 120 of these together
along pentagons; the four
dodecahedra meeting at
each vertex need to be
bent together a bit in four
dimensions to close up.
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