Regular polyhedra and Coxeter groups

David Vogan

Introduction

Tufts University, January 25, 2019

Outline

Introduction

Ideas from linear algebra

Flags in polyhedra

Reflections and relations
Relations satisfied by reflection symmetries
Presentation and classification

Counting faces of regular polyhedra

What's the plan?

Goal: understand classification of regular polyhedra.
Path to goal:

1. Regular polyhedra $\rightsquigarrow \rightsquigarrow$ big symmetry groups.
2. Big symmetry groups $\stackrel{\text { Coxeter }}{\stackrel{ }{c}}$ generators and relations.

Analogy: matrix groups $\stackrel{\text { Serre }}{m \rightarrow}$ generators and relations. This is what you teach as Gaussian elimination.
3. So far: regular polyhedra \longleftrightarrow finite Coxeter groups.
4. Finish: classify finite Coxeter groups.

Matrix group building block: 2×2 matrices.
Coxeter group building block: $\mathbb{Z} / 2 \mathbb{Z}$.

What's a regular polyhedron?

Something really symmetrical. . . like a square

FIX one vertex inside one edge inside square.
Two building block symmetries.

s_{1} takes red vertex to adj vertex along red edge;
s_{2} takes red edge to adj edge at red vertex.

More symmetries from building blocks

Understanding all regular polyhedra

Introduce a flag as a chain of faces like vertex \subset edge in a square.
Introduce basic symmetries like s_{1}, s_{2} which change a flag as little as possible.
Find a presentation of the symmetry group.
See how to recover polyhedron from presentation of symmetry group.
Decide which presentations are possible.

Most of linear algebra

$V n$-diml vec space $\rightsquigarrow G L(V)$ invertible linear maps. complete flag in V is chain of subspaces \mathcal{F}

$$
\{0\}=V_{0} \subset V_{1} \subset \cdots \subset V_{n-1} \subset V_{n}=V, \quad \operatorname{dim} V_{i}=i .
$$

Stabilizer $B(\mathcal{F})$ called Borel subgroup of $G L(V)$.
Example
$V=k^{n}, V_{i}=\left\{\left(x_{1}, \ldots, x_{i}, 0, \ldots, 0\right) \mid x_{j} \in k\right\} \simeq k^{i}$.
Stabilizer of this flag is upper triangular matrices.
Theorem

1. $G L(V)$ acts transitively on flags.
2. Stabilizer of one flag is isomorphic to group of invertible upper triangular matrices.

Rest of linear algebra

Fix integers $\mathbf{d}=\left(0=d_{0}<d_{1}<\cdots<d_{r}=n\right)$
partial flag of type \mathbf{d} is chain of subspaces \mathcal{G}

$$
W_{0} \subset W_{1} \subset \cdots \subset V_{r-1} \subset W_{r}, \quad \operatorname{dim} W_{j}=d_{j} .
$$

Stabilizer $P(\mathcal{G})$ is a parabolic subgroup of $G L(V)$.
Example
$V=k^{n}, W_{j}=\left\{\left(x_{1}, \ldots, x_{d j}, 0, \ldots, 0\right) \mid x_{i} \in k\right\} \simeq k^{d_{j}}$.
Stabilizer is block upper triangular matrices.

Theorem

1. $G L(V)$ acts transitively on partial flags of type d.
2. Stabilizer of one flag is isomorphic to group of invertible block upper triangular matrices.
3. Consider the $n-1$ partial flags obtained by omitting one proper subspace from z fixed complete flag:

$$
\mathcal{G}_{p}=\left(V_{0} \subset \cdots \subset V_{p} \subset \cdots \subset V_{n}\right) 1 \leq \dot{p} \leq n-1 \text {. }
$$

Then $G L(V)$ is generated by the $n-1$ parabolic subgroups $P\left(\mathcal{G}_{p}\right)$, corresponding to block upper triangular matrices with a single 2×2 block.

Notation for polyhedra

Set C in \mathbb{R}^{N} is convex if

$$
c_{i} \in C, t_{i} \in[0,1], \sum t_{i}=1 \Rightarrow \sum t_{i} c_{i} \in C .
$$

Convex polyhedron P is intersection of half spaces

$$
P=\left\{v \in \mathbb{R}^{N} \mid \lambda_{i}(v) \leq a_{i}, 1 \leq i \leq M\right\} .
$$

Here $\lambda_{i} \in\left(\mathbb{R}^{N}\right)^{*}$ (dual space), $a_{i} \in \mathbb{R}$.
If P is nonempty, it generates an affine subspace

$$
S(P)=\left\{t_{1} q_{1}+\cdots+t_{r} q_{r} \mid q_{i} \in P, t_{i} \in \mathbb{R}, \sum t_{i}=1\right\} ;
$$

say P is n-dimensional if $S(P)$ is n-diml.
Interior P^{0} of P is topological interior of $P \cap S(P)$.
Boundary ∂P of P is $P-P^{0}$.

Theorem

Boundary of n-diml convex polyhedron P is finite union of ($n-1$)-diml convex polyhedra, the faces of P.

Flags

P_{n} compact n-dimensional convex polyhedron A (complete) flag \mathcal{F} in P is a chain

$$
P_{0} \subset P_{1} \subset \cdots \subset P_{n}, \quad \operatorname{dim} P_{i}=i
$$

with P_{i-1} a face of P_{i}.

Two flags in two-diml P. Symmetry group (generated by reflections in x and y axes) is transitive on edges, not transitive on flags.

Definition

P regular if symmetry group acts transitively on flags.

Adjacent flags

$$
\mathcal{F}=\left(P_{0} \subset P_{1} \subset \cdots \subset P_{n}\right), \quad \operatorname{dim} P_{i}=i
$$

complete flag in n-diml compact convex polyhedron.
A flag $\mathcal{F}^{\prime}=\left(P_{0}^{\prime} \subset P_{1}^{\prime} \subset \cdots \subset P_{n}^{\prime}\right)$ is i-adjacent to \mathcal{F} if
$P_{j}=P_{j}^{\prime}$ for all $j \neq i$, and $P_{i} \neq P_{i}^{\prime}$.

Three flags adjacent to $\mathcal{F}, i=0,1,2$.
\mathcal{F}_{0}^{\prime} : move vertex P_{0} only. \mathcal{F}_{1}^{\prime} : move edge P_{1} only.
\mathcal{F}_{2}^{\prime} : move face P_{2} only.
There is exactly one $\mathcal{F}^{\prime} i$-adjacent to \mathcal{F} (each $i=0,1, \ldots, n-1)$.

Stabilizing a flag

Lemma

Suppose $\mathcal{F}=\left(P_{0} \subset P_{1} \subset \cdots\right)$ complete flag in n-dimensional compact convex polyhedron P_{n}. Any affine map T preserving \mathcal{F} acts trivially on P_{n}.

Proof.Induction on n. If $n=-1, P_{n}=\emptyset$ and result is true.
Suppose $n \geq 0$ and the the result is known for $n-1$.
Write $p_{n}=$ center of mass of P_{n}. Since center of mass is preserved by affine transformations, $T p_{n}=p_{n}$.
By inductive hypothesis, T acts trivially on ($n-1$)-diml affine $S\left(P_{n-1}\right)$ spanned by P_{n-1}.
Easy to see that $p_{n} \notin S\left(P_{n-1}\right)$, so p_{n} and ($n-1$)-diml $S\left(P_{n-1}\right)$ must generate n-diml $S\left(P_{n}\right)$.
Since T trivial on gens, trivial on $S\left(P_{n}\right)$. Q.E.D.
Compactness matters; result fails for $P_{1}=[0, \infty)$.

Symmetries and flags

Henceforth P_{n} is cpt cvx reg polyhedron with fixed flag

$$
\mathcal{F}=\left(P_{0} \subset P_{1} \subset \cdots \subset P_{n}\right), \quad \operatorname{dim} P_{i}=i
$$

Write $p_{i}=$ center of mass of P_{i}
Theorem
There is exactly one symmetry w of P_{n} for each complete flag \mathcal{G}, characterized by $w \mathcal{F}=\mathcal{G}$.

Corollary
Define $\mathcal{F}_{i-1}^{\prime}=$ unique flag $(i-1)$-adj to $\mathcal{F}(1 \leq i \leq n)$.
There is a unique symmetry s_{i} of P_{n} char by $s_{i}(\mathcal{F})=\mathcal{F}_{i-1}^{\prime}$. It satisfies

1. $s_{i}\left(\mathcal{F}_{i-1}^{\prime}\right)=\mathcal{F}, s_{i}^{2}=1$.
2. s_{i} fixes the $(n-1)$-diml hyperplane through the n points $\left\{p_{0}, \ldots, p_{i-2}, \widehat{p_{i-1}}, p_{i}, \ldots, p_{n}\right\}$.

Examples of basic symmetries s_{i}

This is s_{1}, which changes \mathcal{F} only in P_{0}, so acts trivially on the line through p_{1} and p_{2}.

This is s_{2}, which changes \mathcal{F} only in P_{1}, so acts trivially on the line through p_{0} and p_{2}.

What's a reflection?

On vector space V (characteristic not 2), a linear
-1 eigenspace is line L_{s}; fix basis vector $\alpha^{\vee} \in V$

$$
L_{s}=\{v \in V \mid s v=-v\}=\operatorname{span}\left(\alpha^{\vee}\right) .
$$

+1 eigspace $=$ hyperplane $H_{s}=$ kernel of nonzero $\alpha \in V^{*}$

$$
\begin{gathered}
H_{s}=\{v \in V \mid s v=v\}=\operatorname{ker}(\alpha) . \\
s v=s_{\left(\alpha, \alpha^{\vee}\right)}(v)=v-2 \frac{\langle\alpha, v\rangle}{\left\langle\alpha, \alpha^{\vee}\right\rangle} \alpha^{\vee} .
\end{gathered}
$$

Extend $\left\{\alpha^{\vee}\right\}$ to basis of V with basis of H_{s} :

$$
\text { matrix of } s=\left(\begin{array}{ccc}
-1 & 0 & \cdots \\
0 & 1 & \cdots \\
& & \ddots
\end{array}\right)
$$

Orth reflections: quadratic form \langle,$\rangle identifies V \simeq V^{*}$;

$$
\alpha=\alpha^{\vee} \Rightarrow s \text { orthogonal. }
$$

Two reflections

$$
s v=v-2 \frac{\left\langle\alpha_{s}, v\right\rangle}{\left\langle\alpha_{s}, \alpha_{s}^{\vee}\right\rangle} \alpha_{s}^{\vee}, \quad t v=v-2 \frac{\left\langle\alpha_{t}, v\right\rangle}{\left\langle\alpha_{t}, \alpha_{t}^{\vee}\right\rangle} \alpha_{t}^{\vee}
$$

Assume $V=L_{s} \oplus L_{t} \oplus\left(H_{s} \cap H_{t}\right)$.
On subspace $L_{s} \oplus L_{t}$, basis $\left\{\alpha_{s}^{\vee}, \alpha_{t}^{\vee}\right\}, c_{s t}=2\left\langle\alpha_{s}, \alpha_{t}^{\vee}\right\rangle /\left\langle\alpha_{s}, \alpha_{s}^{\vee}\right\rangle$,

$$
\begin{aligned}
& s=\left(\begin{array}{cc}
-1 & -c_{s t} \\
0 & 1
\end{array}\right), t=\left(\begin{array}{cc}
1 & 0 \\
-c_{t s} & -1
\end{array}\right), \quad s t=\left(\begin{array}{cc}
-1+c_{s t} c_{t s} & c_{s t} \\
-c_{t s} & -1
\end{array}\right) . \\
& \operatorname{det}(s t)=1, \operatorname{tr}(s t)=-2+c_{s t} c_{t s},
\end{aligned}
$$

$$
\text { eigenvalues } \exp \left(\pm i \cos ^{-1}\left(-1+c_{s t} c_{t s} / 2\right)\right)
$$

Proposition

Suppose $-1+c_{s t} c_{t s} / 2=$ real part of a prim mth root of 1 , $m \geq 3$; or that $m=2$, and $c_{s t}=c_{t s}=0$. Then st has order exactly m. Otherwise st has infinite order. In particular

1. $m=2$ if and only if $c_{s t}=c_{s t}=0$;
2. $m=3$ if and only if $c_{s t} c_{t s}=1$;
3. $m=4$ if and only if $c_{s t} c_{t s}=2$;
4. $m=6$ if and only if $c_{s t} c_{t s}=3$;

Reflection symmetries

P_{n} compact convex regular polyhedron in \mathbb{R}^{n}, flag
$\mathcal{F}=\left(P_{0} \subset P_{1} \subset \cdots \subset P_{n}\right), \quad \operatorname{dim} P_{k}=k, \quad p_{k}=\operatorname{ctr}$ of mass $\left(P_{k}\right)$.
$s_{k}=$ nontriv symmetry preserving all P_{j} except P_{k-1}.
s_{k} must be orthogonal reflection in hyperplane

$$
H_{k}=S\left(p_{0}, p_{1}, \ldots, \widehat{p_{k-1}}, p_{k}, \ldots, p_{n}\right)
$$

(unique aff hyperplane containing these n points).
Write eqn of H_{k}

$$
H_{k}=\left\{v \in \mathbb{R}^{n} \mid\left\langle\alpha_{k}, v\right\rangle=c_{k}\right\} .
$$

α_{k} characterized up to positive scalar multiple by

$$
\begin{gathered}
\left\langle\alpha_{k}, p_{j}-p_{n}\right\rangle=0 \quad(j \neq k-1), \quad\left\langle\alpha_{k}, p_{k-1}-p_{n}\right\rangle>0 . \\
s_{k}(v)=v-\frac{2\left\langle\alpha_{k}, v-p_{n}\right\rangle}{\left\langle\alpha_{k}, \alpha_{k}\right\rangle} \alpha_{k} .
\end{gathered}
$$

Good coordinates

P_{n} compact convex regular polyhedron in \mathbb{R}^{n}, flag $\mathcal{F}=\left(P_{0} \subset P_{1} \subset \cdots \subset P_{n}\right), \quad \operatorname{dim} P_{i}=i, \quad p_{i}=\operatorname{ctr}$ of $\operatorname{mass}\left(P_{i}\right)$.

Translate so center of mass is at the origin: $p_{n}=0$.
Rotate p_{n-1} to $\mathbb{R}^{1} \subset \mathbb{R}^{n}: p_{n-1}=\left(a_{n}, 0, \ldots\right), a_{n}>0$.
Now hyperplane $S\left(P_{n-1}\right)$ is $\left\{x_{1}=a_{n}\right\}$.
Rotate p_{n-2} (fixing p_{n-1}) to $\mathbb{R}^{2} \subset \mathbb{R}^{n}$:
$p_{n-2}=\left(a_{n}, a_{n-1}, 0 \ldots\right), a_{n-1}>0$.
$(n-2)$-plane $S\left(P_{n-2}\right)$ is $\left\{x_{1}=a_{n}, x_{2}=a_{n-1}\right\}$.
$p_{n-k}=\left(a_{n}, \ldots, a_{n-k+1}, 0 \ldots\right), a_{n-k+1}>0$.
$(n-k)$-plane $S\left(P_{n-k}\right)=\left\{x_{1}=a_{n}, x_{2}=a_{n-1} \ldots x_{k}=a_{n-k+1}\right\}$.

Reflections in good coordinates

$P_{n} \mathrm{cpt} \mathrm{cvx}$ reg polyhedron in \mathbb{R}^{n}, flag

$$
\begin{aligned}
\mathcal{F}=\left(P_{0} \subset P_{1} \subset \cdots \subset P_{n}\right), \quad \operatorname{dim} P_{i}=i, \quad p_{i}=\operatorname{ctr} \text { of mass }\left(P_{i}\right) . \\
p_{k}=\left(a_{n}, \ldots, a_{k+1}, 0 \ldots\right), a_{k+1}>0 .
\end{aligned}
$$

$$
k \text {-plane } S\left(P_{k}\right) \text { is }\left\{x_{1}=a_{n}, x_{2}=a_{n-1} \ldots x_{n-k}=a_{k+1}\right\}
$$

Reflection symmetry s_{k} preserves all P_{j} except
$P_{k-1}(1 \leq k \leq n)$, so fixes all p_{j} except p_{k-1}.
Fixes $p_{n}=0$, so a reflection through the origin: $s_{k}=s_{\alpha_{k}}$,
α_{k} orthogonal to all p_{j} except p_{k-1}.
Solve equations: $\alpha_{k}=\left(0, \ldots, a_{k}^{-1},-a_{k-1}^{-1}, 0, \ldots, 0\right)$ (entries in coordinates $n-k+1$ and $n-k+2$).
To relate two reflections $s_{k_{1}}$ and $s_{k_{2}}$, needed

$$
\begin{gathered}
c_{k_{1}, k_{2}}=2\left\langle\alpha_{k_{1}}, \alpha_{k_{2}}\right\rangle /\left\langle\alpha_{k_{1}}, \alpha_{k_{1}}\right\rangle=0 \quad\left(\left|k_{1}-k_{2}\right|>1\right), \\
c_{k, k+1}=2\left\langle\alpha_{k}, \alpha_{k+1}\right\rangle /\left\langle\alpha_{k}, \alpha_{k}\right\rangle=-2 a_{k-1}^{2} /\left(a_{k}^{2}+a_{k-1}^{2}\right), \\
c_{k+1, k}=2\left\langle\alpha_{k+1}, \alpha_{k}\right\rangle /\left\langle\alpha_{k+1}, \alpha_{k+1}\right\rangle=-2 a_{k+1}^{2} /\left(a_{k}^{2}+a_{k+1}^{2}\right) . \\
s_{k} s_{k+1}=\operatorname{rot} \text { by } \cos ^{-1}\left(\frac{a_{k-1}^{2} a_{k+1}^{2}-a_{k-1}^{2} a_{k}^{2}-a_{k}^{2} a_{k+1}^{2}-a_{k}^{4}}{a_{k-1}^{2} a_{k+1}^{2}+a_{k-1}^{2} a_{k}^{2}+a_{k}^{2} a_{k+1}^{2}+a_{k}^{4}}\right) .
\end{gathered}
$$

Example: n-cube

$$
P_{n}=\left\{x \in \mathbb{R}^{n} \mid-1 \leq x_{i} \leq 1 \quad(1 \leq i \leq n)\right\}
$$

Choose flag $P_{k}=\left\{x \in P_{n} \mid x_{1}=\cdots=x_{n-k}=1\right\}$, ctr of mass $p_{k}=(1, \ldots, 1,0 \ldots, 0) \quad(n-k 1 \mathrm{~s})$.

$$
\begin{aligned}
& s_{k}=\text { refl in } \alpha_{k}=(0, \ldots, 1,-1, \ldots, 0)=e_{n-k+1}-e_{n-k+2} \\
& =\text { exchange coords } n-k+1, n-k+2 \quad(k \geq 2) \\
& \quad s_{1}=\text { refl in } \alpha_{1}=(0, \ldots, 0,1)=e_{n} \\
& =\text { sign change of coord } n .
\end{aligned}
$$

$$
\begin{gathered}
s_{k} s_{k+1}=\text { rot by } \cos ^{-1}\left(\frac{1^{4}-1^{4}-1^{4}-1^{4}}{1^{4}+1^{4}+1^{4}+1^{4}}\right)=2 \pi / 3 \quad(k \geq 2) \\
s_{1} s_{2}=\text { rot by } \cos ^{-1}\left(\frac{1^{4}-1^{4}}{1^{4}+1^{4}}\right)=2 \pi / 4
\end{gathered}
$$

Symm grp $=$ permutations, sign changes of coords

$$
=\left\langle s_{1}, \ldots s_{n}\right\rangle /\left\langle s_{k}^{2}=1,\left(s_{k} s_{k+1}\right)^{3}=1,\left(s_{1} s_{2}\right)^{4}=1\right\rangle
$$

Angles and coordinates

$$
\mathcal{F}=\left(P_{0} \subset P_{1} \subset \cdots \subset P_{n}\right), \quad \operatorname{dim} P_{i}=i, \quad p_{i}=\operatorname{ctr} \text { of } \operatorname{mass}\left(P_{i}\right) .
$$

$$
p_{k}=\left(a_{n}, \ldots, a_{k+1}, 0 \ldots\right), a_{k+1}>0 .
$$

Geom given by $n-1$ (strictly) positive reals $r_{k}=\left(a_{k+1} / a_{k}\right)^{2}$.
$s_{k} s_{k+1}=$ rotation by $\theta_{k} \in(0, \pi)$,

$$
\cos \left(\theta_{k}\right)=\left(\frac{r_{k}-r_{k} r_{k-1}-r_{k-1}-1}{r_{k} r_{k-1}+r_{k}+r_{k-1}+1}\right) .
$$

When $k=1$, some terms disappear:

$$
\cos \left(\theta_{1}\right)=\frac{r_{1}-1}{r_{1}+1}, \quad r_{1}=\frac{1+\cos \left(\theta_{1}\right)}{1-\cos \left(\theta_{1}\right)}
$$

These recursion formulas give all r_{k} in terms of all θ_{k}.
Next formula is

$$
r_{2}=-\frac{\cos \left(\theta_{2}\right)+\cos \left(\theta_{1}\right)}{1+\cos \left(\theta_{2}\right)} .
$$

Formula makes sense (defines strictly positive r_{2}) iff $\cos \left(\theta_{2}\right)+\cos \left(\theta_{1}\right)<0$.

Coxeter graphs

Regular polyhedron given by $n-1$ pos ratios $r_{k}=\left(a_{k+1} / a_{k}\right)^{2}$.
Symmetry group has n generators s_{1}, \ldots, s_{n},

$$
s_{k}^{2}=1, \quad s_{k} s_{k^{\prime}}=s_{k^{\prime}} s_{k}\left(\left|k-k^{\prime}\right|>1\right), \quad\left(s_{k} s_{k+1}\right)^{m_{k}}=1
$$

Here $m_{k} \geq 3$. Rotation angle for $s_{k} s_{k+1}$ must be

$$
\begin{gathered}
\theta_{k}=2 \pi / m_{k} \in\left\{120^{\circ}, 90^{\circ}, 72^{\circ}, 60^{\circ} \ldots\right\} \\
\cos \left(\theta_{k}\right) \in\left\{-\frac{1}{2}, 0, \frac{\sqrt{5}-1}{4}, \frac{1}{2}, \ldots\right\}
\end{gathered}
$$

Group-theoretic information recorded in Coxeter graph

$$
\bullet \stackrel{m_{n-1}}{\bullet} \stackrel{m_{n-2}}{\bullet} \cdot \stackrel{m_{2}}{\bullet} \stackrel{m_{1}}{\bullet}
$$

Recursion formulas give r_{k} from $\cos \left(\theta_{k}\right)=\cos \left(2 \pi / m_{k}\right)$.
Condition $\cos \left(\theta_{2}\right)+\cos \left(\theta_{1}\right)<0$ says
one of m_{k+1}, m_{k} must be 3 ; other at most 5 .

Finite Coxeter groups with one line

Same ideas lead (Coxeter) to classification of all graphs for which recursion gives positive r_{k}.

| type | diagram | G | \|G| | regular polyhedron |
| :---: | :---: | :---: | :---: | :---: |
| A_{n} | $\bullet-\bullet \cdots \bullet-$ | symmetric group S_{n+1} | $n!$ | n-simplex |
| $B C_{n}$ | $\cdot \ldots \ldots .4$ | cube group | $2^{n} \cdot n!$ | hyperoctahedron, hypercube |
| $I_{2}(m)$ | $\bullet \stackrel{m}{=}$ | dihedral group D_{m} | $2 m$ | m-gon |
| H_{3} | -.. ${ }^{5}$. | H_{3} | 120 | icosahedron, dodecahedron |
| H_{4} | .-. ${ }^{\text {. }}$ | H_{4} | 14400 | $\begin{aligned} & \text { 600-cell, } \\ & \text { 120-cell } \end{aligned}$ |
| F_{4} | $\bullet .4$ | F_{4} | 1152 | 24-cell |

For much more, see Bill Casselman's amazing website
http://www.math.ubc.ca/~cass/coxeter/crm.html

Reading geometry from the Coxeter diagram

$$
H_{4} \bullet \bullet — \bullet \stackrel{5}{=} H_{4} \quad 14400 \quad \begin{aligned}
& \text { 600-cell, } \\
& 120 \text {-cell }
\end{aligned}
$$

Read either left to right ($600-\mathrm{cell}$) or right to left (120 cell).
First k vertices \longleftrightarrow (symmetry group of) k-diml face.
k-diml face also preserved by reflections for last
($n-k-1$) vertices, which act trivially.

$$
\#(k \text {-faces })=\frac{\#(n \text {-vertex group })}{\#(\text { first } k \text {-vrtx grp }) \cdot \#(\text { last }(n-k-1) \text {-vrtx grp })}
$$

Here's the 600-cell:
0 . 0 -face $=$ point $=0$-simplex (trivial symmetry) number of vertices $=14400 /(1 \cdot 120)=120$.

1. 1-face $=$ interval $=1$-simplex $\left(\right.$ symmetry $\left.\bullet \longleftrightarrow S_{2}\right)$ number of edges $=14400 /(2 \cdot 10)=720$.
2. 2-face $=$ triangle $=2$-simplex $\left(\right.$ symmetry $\left.\bullet — \bullet \longleftrightarrow S_{3}\right)$ number of 2 -faces $=14400 /(6 \cdot 2)=1200$.
3. 3 -face $=$ tetrahedron $=3$-simplex (symmetry $\bullet — \bullet \bullet \longleftrightarrow S_{4}$) number of 3 -faces $=14400 /(24 \cdot 1)=600$.

Once more for the 120 cell

$$
H_{4} \quad \bullet \stackrel{5}{=} \bullet — \begin{array}{llll}
& H_{4} & 14400 & \begin{array}{l}
120 \text {-cell, } \\
600 \text {-cell }
\end{array}
\end{array}
$$

Read this reversed diagram left to right for the 120 cell):
0 . 0 -face $=$ point $=0$-simplex (trivial symmetry) number of vertices $=14400 /(1 \cdot 24)=600$.

1. 1-face $=$ interval $=1$-simplex (symmetry $\bullet \longleftrightarrow S_{2}$) number of edges $=14400 /(2 \cdot 6)=1200$.
2. 2 -face $=$ pentagon (symmetry $\bullet \stackrel{5}{ } \bullet \longleftrightarrow$ dihedral D_{5}) number of 2 -faces $=14400 /(10 \cdot 2)=720$.
3. 3 -face $=$ dodecahedron (symmetry $\bullet \stackrel{5}{\bullet} \bullet) \longleftrightarrow H_{3}$) number of 3 -faces $=14400 /(120 \cdot 1)=120$.

Glue 120 of these together along pentagons; the four dodecahedra meeting at each vertex need to be bent together a bit in four dimensions to close up.

