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The talk in one line

Want to understand the possibilities for a regular
polyhedron Pn of dimension n.
Schläfli symbol is string {m1, . . . ,mn−1}.
Meaning of m1: two-dimensional faces are regular m1-gons.

Equivalent: m1 edges (“1-faces”) in a fixed 2-face.

Meaning of m2: fixed vertex ⊂ m2 2-faces ⊂ fixed 3-face.
...

fixed k − 1-face ⊂ mk+1 k + 1-faces ⊂ fixed k + 2-face.
...

What are the possible Schläfli symbols, and why do
they characterize Pn?
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Dimensions one and zero

One regular 1-gon.

interval Schläfli symbol {}

Symmetry group: two elements {1, s}

There is also just one regular 0-gon:
point s Schläfli symbol undefined

Symmetry group trivial (zero gens of order 2).
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s s

FIX one vertex inside one edge inside square.
Two building block symmetries.

s0 takes red vertex to adj vertex along red edge;
s1 takes red edge to adj edge at red vertex.
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s0 takes red vertex to adj vertex along red edge;
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More symmetries from building blocks
.

r r
r r

1 identity

reflect in x = 0 rr
r r

s0 r r
r r

s1 reflect in y = x

90◦ rotation rr
r r

s0s1

r
rr
r

s1s0 270◦ rotation

reflect in y = −x

r
r
r

rs0s1s0

r
rr
r

s1s0s1 reflect in y = 0

r
r

r
rs0s1s0s1
= s1s0s1s0

180◦ rotation

Presentation:
generators s0, s1;
relations s2

0 = s2
1 = 1,

s0s1s0s1 = s1s0s1s0.
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Understanding all regular polyhedra

Define a flag as a chain of faces like vertex ⊂ edge.

Introduce basic symmetries like s0, s1 which change
a flag as little as possible.

Find a presentation of the symmetry group.

Reconstruct the polyhedron from this presentation.

Decide which presentations are possible.
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Most of linear algebra

V n-diml vec space GL(V ) invertible linear maps.
complete flag in V is chain of subspaces F
{0} = V0 ⊂ V1 ⊂ · · · ⊂ Vn−1 ⊂ Vn = V , dim Vi = i .

Stabilizer B(F) called Borel subgroup of GL(V ).
Example
V = kn, Vi = {(x1, . . . , xi ,0, . . . ,0) | xi ∈ k} ' k i .
Stabilizer of this flag is upper triangular matrices.
Theorem

1. GL(V ) acts transitively on flags.
2. Stabilizer of one flag is isomorphic to group of

invertible upper triangular matrices.
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Rest of linear algebra

Fix integers d = (0 = d0 < d1 < · · · < dr = n)
Partial flag of type d is chain of subspaces G

W0 ⊂W1 ⊂ · · · ⊂ Vr−1 ⊂Wr , dim Wj = dj .

Stabilizer P(G) is a parabolic subgroup of GL(V ).

Theorem
Fix a complete flag (0 = V0 ⊂ · · · ⊂ Vn = V ), and
consider the n − 1 partial flags

Gp = (V0 ⊂ · · · ⊂ V̂p ⊂ · · · ⊂ Vn) 1 ≤ p ≤ n − 1
obtained by omitting one proper subspace.

1. GL(V ) is generated by the n − 1 subgroups P(Gp).
2. P(Gp) is isomorphic to block upper-triangular

matrices with a single 2× 2 block.

So build all linear transformations from two by two
matrices and upper triangular matrices.



Regular polyhedra
in n dimensions

David Vogan

Introduction

Linear algebra

Flags

Reflections

Relations

Classification

Rest of linear algebra

Fix integers d = (0 = d0 < d1 < · · · < dr = n)
Partial flag of type d is chain of subspaces G

W0 ⊂W1 ⊂ · · · ⊂ Vr−1 ⊂Wr , dim Wj = dj .

Stabilizer P(G) is a parabolic subgroup of GL(V ).

Theorem
Fix a complete flag (0 = V0 ⊂ · · · ⊂ Vn = V ), and
consider the n − 1 partial flags

Gp = (V0 ⊂ · · · ⊂ V̂p ⊂ · · · ⊂ Vn) 1 ≤ p ≤ n − 1
obtained by omitting one proper subspace.

1. GL(V ) is generated by the n − 1 subgroups P(Gp).
2. P(Gp) is isomorphic to block upper-triangular

matrices with a single 2× 2 block.

So build all linear transformations from two by two
matrices and upper triangular matrices.



Regular polyhedra
in n dimensions

David Vogan

Introduction

Linear algebra

Flags

Reflections

Relations

Classification

Rest of linear algebra

Fix integers d = (0 = d0 < d1 < · · · < dr = n)
Partial flag of type d is chain of subspaces G

W0 ⊂W1 ⊂ · · · ⊂ Vr−1 ⊂Wr , dim Wj = dj .

Stabilizer P(G) is a parabolic subgroup of GL(V ).

Theorem
Fix a complete flag (0 = V0 ⊂ · · · ⊂ Vn = V ), and
consider the n − 1 partial flags

Gp = (V0 ⊂ · · · ⊂ V̂p ⊂ · · · ⊂ Vn) 1 ≤ p ≤ n − 1
obtained by omitting one proper subspace.

1. GL(V ) is generated by the n − 1 subgroups P(Gp).
2. P(Gp) is isomorphic to block upper-triangular

matrices with a single 2× 2 block.

So build all linear transformations from two by two
matrices and upper triangular matrices.



Regular polyhedra
in n dimensions

David Vogan

Introduction

Linear algebra

Flags

Reflections

Relations

Classification

Rest of linear algebra

Fix integers d = (0 = d0 < d1 < · · · < dr = n)
Partial flag of type d is chain of subspaces G

W0 ⊂W1 ⊂ · · · ⊂ Vr−1 ⊂Wr , dim Wj = dj .

Stabilizer P(G) is a parabolic subgroup of GL(V ).

Theorem
Fix a complete flag (0 = V0 ⊂ · · · ⊂ Vn = V ), and
consider the n − 1 partial flags

Gp = (V0 ⊂ · · · ⊂ V̂p ⊂ · · · ⊂ Vn) 1 ≤ p ≤ n − 1
obtained by omitting one proper subspace.

1. GL(V ) is generated by the n − 1 subgroups P(Gp).
2. P(Gp) is isomorphic to block upper-triangular

matrices with a single 2× 2 block.

So build all linear transformations from two by two
matrices and upper triangular matrices.



Regular polyhedra
in n dimensions

David Vogan

Introduction

Linear algebra

Flags

Reflections

Relations

Classification

Rest of linear algebra

Fix integers d = (0 = d0 < d1 < · · · < dr = n)
Partial flag of type d is chain of subspaces G

W0 ⊂W1 ⊂ · · · ⊂ Vr−1 ⊂Wr , dim Wj = dj .

Stabilizer P(G) is a parabolic subgroup of GL(V ).

Theorem
Fix a complete flag (0 = V0 ⊂ · · · ⊂ Vn = V ), and
consider the n − 1 partial flags

Gp = (V0 ⊂ · · · ⊂ V̂p ⊂ · · · ⊂ Vn) 1 ≤ p ≤ n − 1
obtained by omitting one proper subspace.

1. GL(V ) is generated by the n − 1 subgroups P(Gp).
2. P(Gp) is isomorphic to block upper-triangular

matrices with a single 2× 2 block.

So build all linear transformations from two by two
matrices and upper triangular matrices.



Regular polyhedra
in n dimensions

David Vogan

Introduction

Linear algebra

Flags

Reflections

Relations

Classification

Rest of linear algebra

Fix integers d = (0 = d0 < d1 < · · · < dr = n)
Partial flag of type d is chain of subspaces G

W0 ⊂W1 ⊂ · · · ⊂ Vr−1 ⊂Wr , dim Wj = dj .

Stabilizer P(G) is a parabolic subgroup of GL(V ).

Theorem
Fix a complete flag (0 = V0 ⊂ · · · ⊂ Vn = V ), and
consider the n − 1 partial flags

Gp = (V0 ⊂ · · · ⊂ V̂p ⊂ · · · ⊂ Vn) 1 ≤ p ≤ n − 1
obtained by omitting one proper subspace.

1. GL(V ) is generated by the n − 1 subgroups P(Gp).
2. P(Gp) is isomorphic to block upper-triangular

matrices with a single 2× 2 block.

So build all linear transformations from two by two
matrices and upper triangular matrices.



Regular polyhedra
in n dimensions

David Vogan

Introduction

Linear algebra

Flags

Reflections

Relations

Classification

Rest of linear algebra

Fix integers d = (0 = d0 < d1 < · · · < dr = n)
Partial flag of type d is chain of subspaces G

W0 ⊂W1 ⊂ · · · ⊂ Vr−1 ⊂Wr , dim Wj = dj .

Stabilizer P(G) is a parabolic subgroup of GL(V ).

Theorem
Fix a complete flag (0 = V0 ⊂ · · · ⊂ Vn = V ), and
consider the n − 1 partial flags

Gp = (V0 ⊂ · · · ⊂ V̂p ⊂ · · · ⊂ Vn) 1 ≤ p ≤ n − 1
obtained by omitting one proper subspace.

1. GL(V ) is generated by the n − 1 subgroups P(Gp).
2. P(Gp) is isomorphic to block upper-triangular

matrices with a single 2× 2 block.

So build all linear transformations from two by two
matrices and upper triangular matrices.



Regular polyhedra
in n dimensions

David Vogan

Introduction

Linear algebra

Flags

Reflections

Relations

Classification

Flags

Suppose Pn compact n-diml convex polyhedron.
A (complete) flag F in P is a chain

P0 ⊂ P1 ⊂ · · · ⊂ Pn, dim Pi = i

with Pi−1 a face of Pi .

Example

Two flags in two-diml P. Symmetry group (generated
by reflections in x and y axes) is transitive on edges,
not transitive on flags.

Definition
P regular if symmetry group acts transitively on flags.
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Adjacent flags

F = (P0 ⊂ P1 ⊂ · · · ⊂ Pn), dim Pi = i

complete flag in n-diml compact convex polyhedron.
A flag F ′ = (P ′0 ⊂ P ′1 ⊂ · · · ⊂ P ′n) is i-adjacent to F if
Pj = P ′j for all j 6= i , and Pi 6= P ′i .

s
@@

s
@@

s
s s
@@

s
s

Three flags adjacent to F , i = 0,1,2.

Symmetry doesn’t matter for this!
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Three flags adjacent to F , i = 0,1,2.
F ′2: move face P2 only.
There is exactly one F ′ i-adjacent to F (each
i = 0,1, . . . ,n − 1).
Symmetry doesn’t matter for this!



Regular polyhedra
in n dimensions

David Vogan

Introduction

Linear algebra

Flags

Reflections

Relations

Classification

Stabilizing a flag

Lemma
Suppose F = (P0 ⊂ P1 ⊂ · · · ) is a complete flag in
n-dimensional compact convex polyhedron Pn. Any affine
map T preserving F acts trivially on Pn.

Proof. Induction on n. If n = −1, Pn = ∅ and result is true.

Suppose n ≥ 0 and the the result is known for n − 1.

Write pn = center of mass of Pn. Since center of mass is
preserved by affine transformations, Tpn = pn.

By inductive hypothesis, T acts trivially on n − 1-diml
affine span(Pn−1) spanned by Pn−1.

Easy to see that pn /∈ span(Pn−1), so pn and (n − 1)-diml
span(Pn−1) must generate n-diml span(Pn).

Since T trivial on gens, trivial on span(Pn). Q.E.D.
Compactness matters; result fails for P1 = [0,∞).
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Proof. Induction on n. If n = −1, Pn = ∅ and result is true.

Suppose n ≥ 0 and the the result is known for n − 1.

Write pn = center of mass of Pn. Since center of mass is
preserved by affine transformations, Tpn = pn.

By inductive hypothesis, T acts trivially on n − 1-diml
affine span(Pn−1) spanned by Pn−1.

Easy to see that pn /∈ span(Pn−1), so pn and (n − 1)-diml
span(Pn−1) must generate n-diml span(Pn).

Since T trivial on gens, trivial on span(Pn). Q.E.D.
Compactness matters; result fails for P1 = [0,∞).
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Symmetries and flags

From now on Pn is a compact convex regular polyhedron
with fixed flag

F = (P0 ⊂ P1 ⊂ · · · ⊂ Pn), dim Pi = i
Write pi = center of mass of Pi .

Theorem
There is exactly one symmetry w of Pn for each complete
flag G, characterized by wF = G.

Corollary
Define F ′i = unique flag (i)-adj to F (0 ≤ i < n). There is
a unique symmetry si of Pn characterized by si(F) = F ′i .
It satisfies

1. si(F ′i ) = F , s2
i = 1.

2. si fixes the (n − 1)-diml hyperplane through the n
points {p0, . . . ,pi−1, p̂i ,pi+1, . . . ,pn}.
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Examples of basic symmetries si

s s
ep2e
p1

e
p0

ss
−→

 

s0 s s
ep2e
p1

e
p0

s s
This is s0, which changes F only in P0, so acts
trivially on the line through p1 and p2.s s

�
�
�
�
�
�ep2e

p1
e
p0

ss
↖

s1

 

s s
ep2ep1 e

p0
ss

This is s1, which changes F only in P1, so acts
trivially on the line through p0 and p2.
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What’s a reflection?

On vector space V (characteristic not 2), a linear
map s with s2 = 1, dim(−1 eigenspace) = 1.
−1 eigenspace Ls = span of nonzero vector α∨ ∈ V

Ls = {v ∈ V | sv = −v} = span(α∨).

+1 eigenspace Hs = kernel of nonzero α ∈ V ∗

Hs = {v ∈ V | sv = v} = ker(α).

sv = s(α,α∨)(v) = v − 2
〈α, v〉
〈α, α∨〉

α∨.

Definition of reflection does not mention “orthogonal.”
If V has quadratic form 〈, 〉 identifying V ' V ∗, then

s is orthogonal⇐⇒ α is proportional to α∨.
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Two reflections
sv = v − 2

〈αs, v〉
〈αs, α∨s 〉

α∨s , tv = v − 2
〈αt , v〉
〈αt , α∨t 〉

α∨t .

Assume V = Ls ⊕ Lt ⊕ (Hs ∩ Ht).
Subspace Ls ⊕ Lt has basis {α∨s , α∨t }, cst = 2〈αs, α

∨
t 〉/〈αs, α

∨
s 〉;

s =

(
−1 cst

0 1

)
, t =

(
1 0
cts −1

)
, st =

(
−1 + cstcts cst

cts −1

)
.

det(st) = 1, tr(st) = −2 + cstcts,

st has eigenvalues z, z−1, z + z−1 = cstcts − 2.

z, z−1 = e±iθ, θ = cos−1(−1 + cstcts/2)).
Proposition
Suppose −1 + cstcts/2 = ζ + ζ−1 for a primitive mth root ζ.
Then st is a rotation of order m in the plane Ls ⊕ Lt . Otherwise
st has infinite order. So

1. m = 2 if and only if cst = cts = 0;
2. m = 3 if and only if cstcts = 1;
3. m = 4 if and only if cstcts = 2;
4. m = 6 if and only if cstcts = 3;
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〈αt , α∨t 〉

α∨t .

Assume V = Ls ⊕ Lt ⊕ (Hs ∩ Ht).
Subspace Ls ⊕ Lt has basis {α∨s , α∨t }, cst = 2〈αs, α

∨
t 〉/〈αs, α

∨
s 〉;

s =

(
−1 cst

0 1

)
, t =

(
1 0
cts −1

)
, st =

(
−1 + cstcts cst

cts −1

)
.

det(st) = 1, tr(st) = −2 + cstcts,

st has eigenvalues z, z−1, z + z−1 = cstcts − 2.

z, z−1 = e±iθ, θ = cos−1(−1 + cstcts/2)).
Proposition
Suppose −1 + cstcts/2 = ζ + ζ−1 for a primitive mth root ζ.
Then st is a rotation of order m in the plane Ls ⊕ Lt . Otherwise
st has infinite order. So

1. m = 2 if and only if cst = cts = 0;
2. m = 3 if and only if cstcts = 1;
3. m = 4 if and only if cstcts = 2;
4. m = 6 if and only if cstcts = 3;



Regular polyhedra
in n dimensions

David Vogan

Introduction

Linear algebra

Flags

Reflections

Relations

Classification

Two reflections
sv = v − 2

〈αs, v〉
〈αs, α∨s 〉

α∨s , tv = v − 2
〈αt , v〉
〈αt , α∨t 〉

α∨t .

Assume V = Ls ⊕ Lt ⊕ (Hs ∩ Ht).
Subspace Ls ⊕ Lt has basis {α∨s , α∨t }, cst = 2〈αs, α

∨
t 〉/〈αs, α

∨
s 〉;

s =

(
−1 cst

0 1

)
, t =

(
1 0
cts −1

)
, st =

(
−1 + cstcts cst

cts −1

)
.

det(st) = 1, tr(st) = −2 + cstcts,

st has eigenvalues z, z−1, z + z−1 = cstcts − 2.

z, z−1 = e±iθ, θ = cos−1(−1 + cstcts/2)).
Proposition
Suppose −1 + cstcts/2 = ζ + ζ−1 for a primitive mth root ζ.
Then st is a rotation of order m in the plane Ls ⊕ Lt . Otherwise
st has infinite order. So

1. m = 2 if and only if cst = cts = 0;
2. m = 3 if and only if cstcts = 1;
3. m = 4 if and only if cstcts = 2;
4. m = 6 if and only if cstcts = 3;



Regular polyhedra
in n dimensions

David Vogan

Introduction

Linear algebra

Flags

Reflections

Relations

Classification

Two reflections
sv = v − 2

〈αs, v〉
〈αs, α∨s 〉

α∨s , tv = v − 2
〈αt , v〉
〈αt , α∨t 〉

α∨t .

Assume V = Ls ⊕ Lt ⊕ (Hs ∩ Ht).
Subspace Ls ⊕ Lt has basis {α∨s , α∨t }, cst = 2〈αs, α

∨
t 〉/〈αs, α

∨
s 〉;

s =

(
−1 cst

0 1

)
, t =

(
1 0
cts −1

)
, st =

(
−1 + cstcts cst

cts −1

)
.

det(st) = 1, tr(st) = −2 + cstcts,

st has eigenvalues z, z−1, z + z−1 = cstcts − 2.

z, z−1 = e±iθ, θ = cos−1(−1 + cstcts/2)).
Proposition
Suppose −1 + cstcts/2 = ζ + ζ−1 for a primitive mth root ζ.
Then st is a rotation of order m in the plane Ls ⊕ Lt . Otherwise
st has infinite order. So

1. m = 2 if and only if cst = cts = 0;
2. m = 3 if and only if cstcts = 1;
3. m = 4 if and only if cstcts = 2;
4. m = 6 if and only if cstcts = 3;



Regular polyhedra
in n dimensions

David Vogan

Introduction

Linear algebra

Flags

Reflections

Relations

Classification

Two reflections
sv = v − 2

〈αs, v〉
〈αs, α∨s 〉

α∨s , tv = v − 2
〈αt , v〉
〈αt , α∨t 〉

α∨t .

Assume V = Ls ⊕ Lt ⊕ (Hs ∩ Ht).
Subspace Ls ⊕ Lt has basis {α∨s , α∨t }, cst = 2〈αs, α

∨
t 〉/〈αs, α

∨
s 〉;

s =

(
−1 cst

0 1

)
, t =

(
1 0
cts −1

)
, st =

(
−1 + cstcts cst

cts −1

)
.

det(st) = 1, tr(st) = −2 + cstcts,

st has eigenvalues z, z−1, z + z−1 = cstcts − 2.

z, z−1 = e±iθ, θ = cos−1(−1 + cstcts/2)).
Proposition
Suppose −1 + cstcts/2 = ζ + ζ−1 for a primitive mth root ζ.
Then st is a rotation of order m in the plane Ls ⊕ Lt . Otherwise
st has infinite order. So

1. m = 2 if and only if cst = cts = 0;
2. m = 3 if and only if cstcts = 1;
3. m = 4 if and only if cstcts = 2;
4. m = 6 if and only if cstcts = 3;



Regular polyhedra
in n dimensions

David Vogan

Introduction

Linear algebra

Flags

Reflections

Relations

Classification

Two reflections
sv = v − 2

〈αs, v〉
〈αs, α∨s 〉

α∨s , tv = v − 2
〈αt , v〉
〈αt , α∨t 〉

α∨t .

Assume V = Ls ⊕ Lt ⊕ (Hs ∩ Ht).
Subspace Ls ⊕ Lt has basis {α∨s , α∨t }, cst = 2〈αs, α

∨
t 〉/〈αs, α

∨
s 〉;

s =

(
−1 cst

0 1

)
, t =

(
1 0
cts −1

)
, st =

(
−1 + cstcts cst

cts −1

)
.

det(st) = 1, tr(st) = −2 + cstcts,

st has eigenvalues z, z−1, z + z−1 = cstcts − 2.

z, z−1 = e±iθ, θ = cos−1(−1 + cstcts/2)).
Proposition
Suppose −1 + cstcts/2 = ζ + ζ−1 for a primitive mth root ζ.
Then st is a rotation of order m in the plane Ls ⊕ Lt . Otherwise
st has infinite order. So

1. m = 2 if and only if cst = cts = 0;
2. m = 3 if and only if cstcts = 1;
3. m = 4 if and only if cstcts = 2;
4. m = 6 if and only if cstcts = 3;



Regular polyhedra
in n dimensions

David Vogan

Introduction

Linear algebra

Flags

Reflections

Relations

Classification

Reflection symmetries
Pn cpt cvx reg polyhedron in Rn, flag

F = (P0 ⊂ P1 ⊂ · · · ⊂ Pn), dim Pk = k , pk = ctr of mass(Pk ).

sk = symmetry preserving all Pj except Pk
(0 ≤ k < n).
sk must be orthogonal reflection in hyperplane

Hk = span(p0,p1, . . . ,pk−1, p̂k ,pk+1, . . . ,pn)

(unique affine hyperplane through these n points).
Write equation of Hk

Hk = {v ∈ Rn | 〈αk , v〉 = ck}.
αk characterized up to positive scalar multiple by

〈αk ,pj − pn〉 = 0 (j 6= k), 〈αk ,pk − pn〉 > 0.

sk (v) = v − 2〈αk , v − pn〉
〈αk , αk 〉

αk .
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Two reflection symmetries

Pn cpt cvx reg polyhedron in Rn, flag

F = (P0 ⊂ P1 ⊂ · · · ⊂ Pn), dim Pk = k , pk = ctr of mass(Pk ).

sk = orthogonal reflection in hyperplane
Hk = span(p0,p1, . . . ,pk−1, p̂k ,pk+1, . . . ,pn)

For 0 ≤ k ≤ n − 2, have seen that sksk+1 must be
rotation of some order mk+1 in a plane inside
span(Pk+2), fixing Pk−1.

Proposition
Suppose Pn is an n-dimensional regular polyhedron. Then the
rotation sk sk+1 acts transitively on the k-dimensional faces of
Pn that are contained between Pk−1 and Pk+2. Therefore the
Schläfli symbol of Pn is {m1,m2, . . . ,mn−1}.

We turn next to computing mk+1.
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Good coordinates

Pn cpt cvx reg polyhedron in Rn, flag
F = (P0 ⊂ P1 ⊂ · · · ⊂ Pn), dim Pi = i , pi = ctr of mass(Pi).

Seek to relate coordinates for Pn to geometry. . .

Translate so center of mass is at the origin: pn = 0.

Rotate so center of mass of n − 1-face is on x-axis:
pn−1 = (an,0, . . .), an > 0.

Now Pn−1 is perp. to x-axis: span(Pn−1) = {x1 = an}.
Rotate around the x axis so center of mass of (n− 2)-face
is in the x − y plane: pn−2 = (an,an−1,0 . . .), an−1 > 0.

Now span(Pn−2) = {x1 = an, x2 = an−1}.
...

pn−k = (an, . . . ,an−k+1,0 . . .), an−k+1 > 0.

span(Pn−k ) = {x1 = an, x2 = an−1 . . . xk = an−k+1}.



Regular polyhedra
in n dimensions

David Vogan

Introduction

Linear algebra

Flags

Reflections

Relations

Classification

Good coordinates

Pn cpt cvx reg polyhedron in Rn, flag
F = (P0 ⊂ P1 ⊂ · · · ⊂ Pn), dim Pi = i , pi = ctr of mass(Pi).

Seek to relate coordinates for Pn to geometry. . .

Translate so center of mass is at the origin: pn = 0.

Rotate so center of mass of n − 1-face is on x-axis:
pn−1 = (an,0, . . .), an > 0.

Now Pn−1 is perp. to x-axis: span(Pn−1) = {x1 = an}.
Rotate around the x axis so center of mass of (n− 2)-face
is in the x − y plane: pn−2 = (an,an−1,0 . . .), an−1 > 0.

Now span(Pn−2) = {x1 = an, x2 = an−1}.
...

pn−k = (an, . . . ,an−k+1,0 . . .), an−k+1 > 0.

span(Pn−k ) = {x1 = an, x2 = an−1 . . . xk = an−k+1}.



Regular polyhedra
in n dimensions

David Vogan

Introduction

Linear algebra

Flags

Reflections

Relations

Classification

Good coordinates

Pn cpt cvx reg polyhedron in Rn, flag
F = (P0 ⊂ P1 ⊂ · · · ⊂ Pn), dim Pi = i , pi = ctr of mass(Pi).

Seek to relate coordinates for Pn to geometry. . .

Translate so center of mass is at the origin: pn = 0.

Rotate so center of mass of n − 1-face is on x-axis:
pn−1 = (an,0, . . .), an > 0.

Now Pn−1 is perp. to x-axis: span(Pn−1) = {x1 = an}.
Rotate around the x axis so center of mass of (n− 2)-face
is in the x − y plane: pn−2 = (an,an−1,0 . . .), an−1 > 0.

Now span(Pn−2) = {x1 = an, x2 = an−1}.
...

pn−k = (an, . . . ,an−k+1,0 . . .), an−k+1 > 0.

span(Pn−k ) = {x1 = an, x2 = an−1 . . . xk = an−k+1}.



Regular polyhedra
in n dimensions

David Vogan

Introduction

Linear algebra

Flags

Reflections

Relations

Classification

Good coordinates

Pn cpt cvx reg polyhedron in Rn, flag
F = (P0 ⊂ P1 ⊂ · · · ⊂ Pn), dim Pi = i , pi = ctr of mass(Pi).

Seek to relate coordinates for Pn to geometry. . .

Translate so center of mass is at the origin: pn = 0.

Rotate so center of mass of n − 1-face is on x-axis:
pn−1 = (an,0, . . .), an > 0.

Now Pn−1 is perp. to x-axis: span(Pn−1) = {x1 = an}.
Rotate around the x axis so center of mass of (n− 2)-face
is in the x − y plane: pn−2 = (an,an−1,0 . . .), an−1 > 0.

Now span(Pn−2) = {x1 = an, x2 = an−1}.
...

pn−k = (an, . . . ,an−k+1,0 . . .), an−k+1 > 0.

span(Pn−k ) = {x1 = an, x2 = an−1 . . . xk = an−k+1}.



Regular polyhedra
in n dimensions

David Vogan

Introduction

Linear algebra

Flags

Reflections

Relations

Classification

Good coordinates

Pn cpt cvx reg polyhedron in Rn, flag
F = (P0 ⊂ P1 ⊂ · · · ⊂ Pn), dim Pi = i , pi = ctr of mass(Pi).

Seek to relate coordinates for Pn to geometry. . .

Translate so center of mass is at the origin: pn = 0.

Rotate so center of mass of n − 1-face is on x-axis:
pn−1 = (an,0, . . .), an > 0.

Now Pn−1 is perp. to x-axis: span(Pn−1) = {x1 = an}.
Rotate around the x axis so center of mass of (n− 2)-face
is in the x − y plane: pn−2 = (an,an−1,0 . . .), an−1 > 0.

Now span(Pn−2) = {x1 = an, x2 = an−1}.
...

pn−k = (an, . . . ,an−k+1,0 . . .), an−k+1 > 0.

span(Pn−k ) = {x1 = an, x2 = an−1 . . . xk = an−k+1}.



Regular polyhedra
in n dimensions

David Vogan

Introduction

Linear algebra

Flags

Reflections

Relations

Classification

Good coordinates

Pn cpt cvx reg polyhedron in Rn, flag
F = (P0 ⊂ P1 ⊂ · · · ⊂ Pn), dim Pi = i , pi = ctr of mass(Pi).

Seek to relate coordinates for Pn to geometry. . .

Translate so center of mass is at the origin: pn = 0.

Rotate so center of mass of n − 1-face is on x-axis:
pn−1 = (an,0, . . .), an > 0.

Now Pn−1 is perp. to x-axis: span(Pn−1) = {x1 = an}.
Rotate around the x axis so center of mass of (n− 2)-face
is in the x − y plane: pn−2 = (an,an−1,0 . . .), an−1 > 0.

Now span(Pn−2) = {x1 = an, x2 = an−1}.
...

pn−k = (an, . . . ,an−k+1,0 . . .), an−k+1 > 0.

span(Pn−k ) = {x1 = an, x2 = an−1 . . . xk = an−k+1}.



Regular polyhedra
in n dimensions

David Vogan

Introduction

Linear algebra

Flags

Reflections

Relations

Classification

Good coordinates

Pn cpt cvx reg polyhedron in Rn, flag
F = (P0 ⊂ P1 ⊂ · · · ⊂ Pn), dim Pi = i , pi = ctr of mass(Pi).

Seek to relate coordinates for Pn to geometry. . .

Translate so center of mass is at the origin: pn = 0.

Rotate so center of mass of n − 1-face is on x-axis:
pn−1 = (an,0, . . .), an > 0.

Now Pn−1 is perp. to x-axis: span(Pn−1) = {x1 = an}.
Rotate around the x axis so center of mass of (n− 2)-face
is in the x − y plane: pn−2 = (an,an−1,0 . . .), an−1 > 0.

Now span(Pn−2) = {x1 = an, x2 = an−1}.
...

pn−k = (an, . . . ,an−k+1,0 . . .), an−k+1 > 0.

span(Pn−k ) = {x1 = an, x2 = an−1 . . . xk = an−k+1}.



Regular polyhedra
in n dimensions

David Vogan

Introduction

Linear algebra

Flags

Reflections

Relations

Classification

Good coordinates

Pn cpt cvx reg polyhedron in Rn, flag
F = (P0 ⊂ P1 ⊂ · · · ⊂ Pn), dim Pi = i , pi = ctr of mass(Pi).

Seek to relate coordinates for Pn to geometry. . .

Translate so center of mass is at the origin: pn = 0.

Rotate so center of mass of n − 1-face is on x-axis:
pn−1 = (an,0, . . .), an > 0.

Now Pn−1 is perp. to x-axis: span(Pn−1) = {x1 = an}.
Rotate around the x axis so center of mass of (n− 2)-face
is in the x − y plane: pn−2 = (an,an−1,0 . . .), an−1 > 0.

Now span(Pn−2) = {x1 = an, x2 = an−1}.
...

pn−k = (an, . . . ,an−k+1,0 . . .), an−k+1 > 0.

span(Pn−k ) = {x1 = an, x2 = an−1 . . . xk = an−k+1}.



Regular polyhedra
in n dimensions

David Vogan

Introduction

Linear algebra

Flags

Reflections

Relations

Classification

Good coordinates

Pn cpt cvx reg polyhedron in Rn, flag
F = (P0 ⊂ P1 ⊂ · · · ⊂ Pn), dim Pi = i , pi = ctr of mass(Pi).

Seek to relate coordinates for Pn to geometry. . .

Translate so center of mass is at the origin: pn = 0.

Rotate so center of mass of n − 1-face is on x-axis:
pn−1 = (an,0, . . .), an > 0.

Now Pn−1 is perp. to x-axis: span(Pn−1) = {x1 = an}.
Rotate around the x axis so center of mass of (n− 2)-face
is in the x − y plane: pn−2 = (an,an−1,0 . . .), an−1 > 0.

Now span(Pn−2) = {x1 = an, x2 = an−1}.
...

pn−k = (an, . . . ,an−k+1,0 . . .), an−k+1 > 0.

span(Pn−k ) = {x1 = an, x2 = an−1 . . . xk = an−k+1}.



Regular polyhedra
in n dimensions

David Vogan

Introduction

Linear algebra

Flags

Reflections

Relations

Classification

Good coordinates

Pn cpt cvx reg polyhedron in Rn, flag
F = (P0 ⊂ P1 ⊂ · · · ⊂ Pn), dim Pi = i , pi = ctr of mass(Pi).

Seek to relate coordinates for Pn to geometry. . .

Translate so center of mass is at the origin: pn = 0.

Rotate so center of mass of n − 1-face is on x-axis:
pn−1 = (an,0, . . .), an > 0.

Now Pn−1 is perp. to x-axis: span(Pn−1) = {x1 = an}.
Rotate around the x axis so center of mass of (n− 2)-face
is in the x − y plane: pn−2 = (an,an−1,0 . . .), an−1 > 0.

Now span(Pn−2) = {x1 = an, x2 = an−1}.
...

pn−k = (an, . . . ,an−k+1,0 . . .), an−k+1 > 0.

span(Pn−k ) = {x1 = an, x2 = an−1 . . . xk = an−k+1}.



Regular polyhedra
in n dimensions

David Vogan

Introduction

Linear algebra

Flags

Reflections

Relations

Classification

Reflections in good coordinates
Pn cpt cvx reg polyhedron in Rn, flag
F = (P0 ⊂ P1 ⊂ · · · ⊂ Pn), dim Pi = i , pi = ctr of mass(Pi).

pk = (an, . . . ,ak+1,0 . . .),ak+1 > 0.

Reflection symmetry sk (0 ≤ k < n) preserves all Pj

except Pk , so fixes all pj except pk .

Fixes pn = 0, so a reflection through the origin: sk = sαk ,
αk orthogonal to all pj except pk .

Solve: αk = (0, . . . ,0,ak ,−ak+1,0, . . . ,0) (entries in
coordinates n − k and n − k + 1; α0 = (0, . . . ,0,1).

sk1 sk2 = sk2 sk1 , |k1 − k2| > 1.

s0s1 = rotation by cos−1
(
−a2

1 + a2
2

a2
1 + a2

2

)
.

sk sk+1 = rot by cos−1

(
−a4

k+1 − a2
k a2

k+1 − a2
k+1a2

k+2 + a2
k a2

k+2

a4
k+1 + a2

k a2
k+1 + a2

k+1a2
k+2 + a2

k a2
k+2

)
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Example: n-cube

Pn = {x ∈ Rn | −1 ≤ xi ≤ 1 (1 ≤ i ≤ n)}.

Choose flag Pk = {x ∈ Pn | x1 = · · · = xn−k = 1}, ctr of
mass pk = (1, . . . ,1,0 . . . ,0) (n − k 1s).

sk = refl in αk = (0, . . . , 1,−1, . . . , 0) = en−k − en−k+1

= transpos of coords n − k , n − k + 1 (1 ≤ k < n).
s0 = refl in α0 = (0, . . . ,0,1) = en

= sign change of coord n.

sk sk+1 = rot by cos−1
(
−14 − 14 − 14 + 14

14 + 14 + 14 + 14

)
= 2π/3 (1 ≤ k)

s0s1 = rotation by cos−1
(
−14 + 14

14 + 14

)
= 2π/4

Symmetry grp = permutations, sign changes of coords

= 〈s0, . . . sn−1〉/〈s2
k = 1, (sk sk+1)

3 = 1, (s0s1)
4 = 1〉

(0 ≤ j < n, 1 ≤ k < n − 1)
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Angles and coordinates

F = (P0 ⊂ P1 ⊂ · · · ⊂ Pn), dim Pi = i , pi = ctr of mass(Pi).

pk = (an, . . . ,ak+1,0 . . .), ak+1 > 0.
Geom given by n − 1 (strictly) positive reals rk = (ak+1/ak )

2.

sk sk+1 = rotation by θk+1 ∈ (0, π),

cos(θk+1) =

(
−1 + rk − rk+1 − rk rk+1

1 + rk + rk+1 + rk rk+1

)
.

When k = 0, some terms disappear:

cos(θ1) =
−1 + r1

1 + r1
, r1 =

1 + cos(θ1)

1− cos(θ1)
.

These recursion formulas give all rk in terms of all θk .

Next formula is
r2 = −cos(θ1) + cos(θ2)

1 + cos(θ2)
.

Formula makes sense (defines strictly positive r2) iff
cos(θ1) + cos(θ2) < 0.
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1 + rk + rk+1 + rk rk+1

)
.

When k = 0, some terms disappear:

cos(θ1) =
−1 + r1

1 + r1
, r1 =

1 + cos(θ1)

1− cos(θ1)
.

These recursion formulas give all rk in terms of all θk .
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Coxeter graphs
Regular polyhedron given by n − 1 pos ratios
rk = (ak+1/ak )

2.
Symmetry group has n generators s0, . . . , sn−1,

s2
k = 1, sk sk ′ = sk ′sk (|k − k ′| > 1), (sk sk+1)

mk+1 = 1.
Here mk+1 ≥ 3. Rotation angle for sk sk+1 must be

θk+1 = 2π/mk+1 ∈ {120◦, 90◦, 72◦, 60◦ . . .},

cos(θk ) ∈
{
−1

2
, 0,

√
5− 1
4

,
1
2
, . . .

}
,

Group-theoretic information recorded in Coxeter graph

s s s s s s. . .mn−1 mn−2 m2 m1

Recursion formulas give rk from cos(θk ) = cos(2π/mk ).
Condition cos(θ2) + cos(θ1) < 0 says

one of mk+1, mk must be 3; other at most 5.
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Finite Coxeter groups with one line
Same ideas lead (Coxeter) to classification of all graphs for
which recursion gives positive rk .

type diagram G |G| reg poly

An
r r. . . r r

symm gp Sn+1 n! n-simplex

BCn
r r. . . r r4

cube group 2n · n! hypercube
hyperoctahedron

I2(m) r m r dihedral gp 2m m-gon

H3 r r r5
H3 120 icosahedron

dodecahedron

H4 r r r r5
H4 14400 600-cell

120-cell

F4 r 4r r r F4 1152 24-cell

For much more, see Bill Casselman’s amazing website
http://www.math.ubc.ca/∼cass/coxeter/crm.html
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