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Introduction

Want to understand the possibilities for a regular
polyhedron P, of dimension n.

Schlafli symbol is string {my,...,m,_1}.
Meaning of my: two-dimensional faces are regular my-gons.
Equivalent: my edges (“1-faces”) in a fixed 2-face.

Meaning of m.: fixed vertex C my 2-faces C fixed 3-face.
fixed k — 1-face C my1 k + 1-faces C fixed k + 2-face.

What are the possible Schlafli symbols, and why do
they characterize P,?
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octahedron Schlafli symbol {3, 4}

AN
icosahedron m Schlé&fli symbol {3,5}
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One regular 1-gon.

interval ———  Schl&fli symbol {}

Symmetry group: two elements {1, s}

There is also just one regular 0-gon:
point e Schléfli symbol undefined

Symmetry group trivial (zero gens of order 2).
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Something really symmetrical. .. like a square Introduction

FIX one vertex inside one edge inside square.
Two building block symmetries.

ﬂ g

So takes red vertex to adj vertex along red edge;
sq takes red edge to adj edge at red vertex.
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1 identity Introduction
reflectinx =0| sy Sq reflectin y = x
90° rotation | sp5q S1S9| 270° rotation
reflectin y = —x | sosiso sisest | reflectiny =0

generators So, Si;

relations s = s = 1, SoS1%081|  180° rotation
= 51505150




More symmetries from building blocks

reflectinx =0

identity

90° rotation

reflectin y = —x

generators Sy, S1;
relations s5 = &% =1,
S0S150S1 = S1S05150-

Sy reflectin y = x

S1S9| 270° rotation

s1sps1 | reflectiny =0

180° rotation

1
So
So0Sq
S0S1S0
50515051
= 51551150
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Introduction

Define a flag as a chain of faces like vertex C edge.

Introduce basic symmetries like sy, s¢ which change
a flag as little as possible.

Find a of the symmetry group.
Reconstruct the polyhedron from this presentation.

Decide which presentations are possible.
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V n-diml vec space ~» GL(V) invertible linear maps. Linear algebra

complete flag in V is chain of subspaces F
{O}ZVQCV1C"'CV”_1CV,—,:V, dmV; =i.

Stabilizer B(F) called Borel subgroup of GL(V).

Example

V=k" Vi={(x1,...,%,0,...,0) | x; € k} ~ k.
Stabilizer of this flag is upper triangular matrices.
Theorem

1. GL(V) acts transitively on flags.
2. Stabilizer of one flag is isomorphic to group of
invertible upper triangular matrices.
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Partial flag of type d is chain of subspaces G
WocCcWyC---C V4 C W, dim W, = q,.
Stabilizer P(G) is a parabolic subgroup of GL( V).

Theorem

Fix a complete flag (0 = Vo C --- C V, = V), and

consider the n — 1 partial flags
Go=(VocC---CVpC---CV,) 1<p<n—1

obtained by omitting one proper subspace.

1. GL(V) is generated by the n — 1 subgroups P(Gp).
2. P(Gp) is isomorphic to block upper-triangular
matrices with a single 2 x 2 block.

Linear algebra

So build all linear transformations from two by two
matrices and upper triangular matrices.
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Suppose P, compact n-diml convex polyhedron.
A (complete) flag F in Pis a chain
PoCcPyC---CPp, dmP; =i
with P;_4 a face of P;.

> <>

Two flags in two-diml P. Symmetry group (generated
by reflections in x and y axes) is transitive on edges,
not transitive on flags.

Flags

Example

Definition
P regular if symmetry group acts transitively on flags.
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f:(PoCP1C"'CPn), dImP,:I
complete flag in n-diml compact convex polyhedron. Flags

Aflag 7/ = (P, c P{ C --- C Py) is i-adjacent to F if
P,-:P/fforallj;éi, and P; # P;.

%%

Three flags adjacentto 7, i=0,1,2.
F5: move face P, only.

There is exactly one F’ j-adjacent to F (each
i=0,1,...,n—1).

Symmetry doesn’t matter for this!
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Proof. Induction on n. If n = —1, P, = () and result is true.
Suppose n > 0 and the the result is known for n — 1.

Write p, = center of mass of P,. Since center of mass is
preserved by affine transformations, Tp, = p;.

By inductive hypothesis, T acts trivially on n — 1-diml
affine span(P,_+1) spanned by P,_1.

Easy to see that p, ¢ span(P,_1), so p, and (n — 1)-diml
span(P,_1) must generate n-diml span(P,).

Since T trivial on gens, trivial on span(P,). Q.E.D.
Compactness matters; result fails for Py = [0, o).
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Suppose n > 0 and the the result is known for n — 1.
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Easy to see that p, ¢ span(P,_1), so p, and (n — 1)-diml
span(P,_1) must generate n-diml span(P;).
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Suppose F = (Py C Py C ---) is a complete flag in
n-dimensional compact convex polyhedron P,. Any affine  Fas
map T preserving F acts trivially on Pp.

Proof. Induction on n. If n= —1, P, = 0 and result is true.
Suppose n > 0 and the the result is known for n — 1.

Write p, = center of mass of P,. Since center of mass is
preserved by affine transformations, Tp, = p;.

By inductive hypothesis, T acts trivially on n — 1-diml
affine span(P,_1) spanned by P,_1.

Easy to see that p, ¢ span(P,_1), so p, and (n — 1)-diml
span(P,_1) must generate n-diml span(P;).

Since T trivial on gens, trivial on span(P,). Q.E.D.



Stabilizing a flag P dmengions.
David Vogan
Lemma

Suppose F = (Py C Py C ---) is a complete flag in
n-dimensional compact convex polyhedron P,. Any affine  Fas
map T preserving F acts trivially on Pp.

Proof. Induction on n. If n= —1, P, = 0 and result is true.
Suppose n > 0 and the the result is known for n — 1.

Write p, = center of mass of P,. Since center of mass is
preserved by affine transformations, Tp, = p;.

By inductive hypothesis, T acts trivially on n — 1-diml
affine span(P,_1) spanned by P,_1.

Easy to see that p, ¢ span(P,_1), so p, and (n — 1)-diml
span(P,_1) must generate n-diml span(P;).

Since T trivial on gens, trivial on span(P,). Q.E.D.
Compactness matters; result fails for Py = [0, o).
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There is exactly one symmetry w of P, for each complete
flag G, characterized by wF = G.
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Theorem
There is exactly one symmetry w of P, for each complete
flag G, characterized by wF = G.
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Define F| = unique flag (i)-adjto F (0 < i < n). There is
a unique symmetry s; of P, characterized by s;(F) = Fj.
It satisfies
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From now on P, is a compact convex regular polyhedron
with fixed flag
JT":(POCP1C"'CPn), dlmP,:I Flags
Write p; = center of mass of P;.

Theorem
There is exactly one symmetry w of P, for each complete
flag G, characterized by wF = G.

Corollary
Define F| = unique flag (i)-adjto F (0 < i < n). There is
a unique symmetry s; of P, characterized by s;(F) = Fj.
It satisfies

1. s(F)=7F, s2=1.



Symmetries and flags P dmengions.
David Vogan
From now on P, is a compact convex regular polyhedron
with fixed flag
F=(PycC Py C---CPp), dmP; =i IAEES
Write p; = center of mass of P;.

Theorem
There is exactly one symmetry w of P, for each complete
flag G, characterized by wF = G.

Corollary
Define F| = unique flag (i)-adjto F (0 < i < n). There is
a unique symmetry s; of P, characterized by s;(F) = Fj.
It satisfies
1. s(F)=7F, s2=1.
2. s; fixes the (n — 1)-diml hyperplane through the n
pOints {p0> <oy Pi-1, @7pf+1a v 7pn}-



Examples of basic symmetries s;

S
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OpP2

Po P4

Pt Po
This is s9, which changes F only in Py, so acts

trivially on the line through py and po.
v

p2 P Op2

s:\Po P4

]
Po

This is s1, which changes F only in Py, so acts
trivially on the line through pg and po.
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Examples of basic symmetries s; fieal = ey

David Vogan
So
—
° ‘
OP2 ~ OP2 Flags
[
Po P P1 Po

This is sy, which changes F only in Py, so acts
trivially on the line through p; and p..



Examples of basic symmetries s;

s
=5

QP2

Po P

OP2

P+

Regular polyhedra
in n dimensions

David Vogan

Flags

Po

This is sy, which changes F only in Py, so acts
trivially on the line through p; and p..

P2

y

3’1\P0 P4

™7 P

Po

OP2

This is s1, which changes F only in Py, so acts
trivially on the line through py and p..



What'’s a reflection?

On vector space V (characteristic not 2), a linear

map s with s> = 1, dim(—1 eigenspace) = 1.
—1 eigenspace Ls = span of nonzero vector o € V

Ls={veV|sv=—-v}=span(a”).
+1 eigenspace Hs = kernel of nonzero o € V*

Hs = {v e V| sv=v}=ker(a).

SV = S(ma\/)(V) =v -2

(@, v)

Y
(o, V)

Definition of reflection does not mention “orthogonal.”
If V has quadratic form (,) identifying V ~ V*, then

s is orthogonal <= « is proportional to "

«O>» «F»r» « >

«E>»

nae
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What'’s a reflection? e

in n dimensions

David Vogan

On vector space V (characteristic not 2), a linear
map s with s> = 1, dim(—1 eigenspace) = 1.
—1 eigenspace Ls = span of nonzero vector o € V
Ls={veV|sv=-v}=span(a").
+1 eigenspace Hs = kernel of nonzero o € V*
Hs={ve V|sv=v}=ker(a).

Reflections

a,V
SV = S(g,av)(V) = V — 2<<a, aV>> a’.
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On vector space V (characteristic not 2), a linear
map s with s> = 1, dim(—1 eigenspace) = 1.
—1 eigenspace Lg = span of nonzero vector a¥ € V _
Ls={veV|sv=-v}=span(a"). et

+1 eigenspace Hs = kernel of nonzero o € V*
Hs={ve V|sv=v}=ker(a).

(a,v)
(a, )

Definition of reflection does not mention “orthogonal.”

SV = S(a7QV)(V) =v -2




What'’s a reflection? e

David Vogan
On vector space V (characteristic not 2), a linear
map s with s> = 1, dim(—1 eigenspace) = 1.
—1 eigenspace Ls = span of nonzero vector o € V
Reflections

Ls={veV|sv=-v}=span(a").
+1 eigenspace Hs = kernel of nonzero o € V*
Hs={ve V|sv=v}=ker(a).
(a,v)
(o, )
Definition of reflection does not mention “orthogonal.”
If V has quadratic form (,) identifying V ~ V*, then

SV = S(a7QV)(V) =v -2

s is orthogonal <= « is proportional to "



. Regular polyhedra
Two reflections inn dimensions
<Oés, V> a;/, <Ozt, V> oV David Vogan

tv=v-2 .
<O‘Sva¥> !

sv=v-2
<a1’0‘}/>

Reflections



Two reflections Rt
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Assume V = L; @ L; @ (Hs N Hy).

sv=v-2 tv=v-2
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Reflections
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<a$7 a¥> s t

Assume V = L; @ L; @ (Hs N Hy).

Subspace Ls @ L; has basis {ay, o)}, cst = 2{as, o))/ {as, o );
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<Oés, V> oV <Ozt, V> oV David Vogan
<a$7 a¥> s t

Assume V = L; @ L; @ (Hs N Hy).

Subspace Ls @ L; has basis {ay, o)}, cst = 2{as, o))/ {as, o );

_ -1 cst _ 1 0 . —1 + CstCts  Cst
Sf(O 1)71‘7(@5 —1)7 Sti( Cts _1).

det(st) =1, tr(st) = —2 + CstCrs,
—1

sv=v-2 tv=v-2

<O‘f’ 0‘}/>

Reflections

st has eigenvalues z, z z4+ 2z ' = coCs — 2.



Two reflections P dmengions.
<Oés, V> oV <Ozt, V> oV David Vogan
<a$7 a¥> s t

Assume V = L; @ L; @ (Hs N Hy).

Subspace Ls @ L; has basis {ay, o)}, cst = 2{as, o))/ {as, o );

_ -1 cst _ 1 0 . —1 + CstCts  Cst
Sf(O 1)71‘7(@5 —1)7 Sti( Cts _1).

det(st) =1, tr(st) = —2 + CstCrs,
—1

sv=v-2 tv=v-2

<a1’ 0‘}/>

Reflections

st has eigenvalues z, z z4+ 2z ' = coCs — 2.

z,z ' = et? 0 =cos ' (—1 4+ cgCis/2)).



Two reflections P dmengions.
<Oés, V> oV <Ozt, V> oV David Vogan
<a$7 a¥> s t

Assume V = L; @ L; @ (Hs N Hy).

Subspace Ls @ L; has basis {ay, o)}, cst = 2{as, o))/ {as, o );

_ -1 cst _ 1 0 . —1 + CstCts  Cst
Sf(O 1)71‘7(@5 —1)7 Sti( Cts _1).

det(st) =1, tr(st) = —2 + CstCrs,
—1

sv=v-2 tv=v-2

<a1’ 0‘}/>

Reflections

st has eigenvalues z, z z4+ 2z ' = coCs — 2.

z,z ' = et? 0 =cos ' (—1 4+ cgCis/2)).



Regular polyhedra

TWO reﬂeCthnS in n dimensions
. <Oés, V> v . <Ozt, V> v David Vogan
sv=yv 27<as7a¥>as, tv=v 2<at’&tv> ‘-

Assume V = L; @ L; @ (Hs N Hy).
Subspace Ls @ L; has basis {ay, o)}, cst = 2{as, o))/ {as, o );

_ -1 cst _ 1 0 . —1 + CstCts  Cst
Sf(O 1)72‘7(@5 —1)7 Sti( Cts _1>.

det(st) =1, tr(st) = —2 + CstCrs,
st has eigenvalues z,z~!, z+ z7' = cg0s — 2.
= et 0 = cos™'(—1+ csCis/2)).

Reflections

z,z™!

Proposition

Suppose —1 + csicis/2 = ¢ + ¢~ for a primitive m" root ¢.
Then st is a rotation of order m in the plane Ls & L;. Otherwise
st has infinite order. So



Regular polyhedra

TWO reﬂeCthnS in n dimensions
. <Oés, V> v . <Ozt, V> v David Vogan
sv=yv 27<as7a¥>as, tv=v 2<at,a}/> ‘-

Assume V = L; @ L; @ (Hs N Hy).
Subspace Ls @ L; has basis {ay, o)}, cst = 2{as, o))/ {as, o );

(=1 cs A 0 _ [(—1+4csCs  Cst
=(0 ¥)m(a B) (O )

det(st) =1, tr(st) = —2 + CstCrs,
st has eigenvalues z,z~!, z+ z7' = cg0s — 2.
= et 0 = cos™'(—1+ csCis/2)).

Reflections

z,z™!

Proposition

Suppose —1 + csicis/2 = ¢ + ¢~ for a primitive m" root ¢.
Then st is a rotation of order m in the plane Ls & L;. Otherwise
st has infinite order. So

1. m=2ifandonly ifcs = ¢;s = 0;



Regular polyhedra

TWO reﬂeCthnS in n dimensions
. <Oés, V> v . <Ozt, V> v David Vogan
sVv=yv z(as,a¥> p tv=v 2<at,a}/> ¢

Assume V = L; @ L; @ (Hs N Hy).
Subspace Ls @ L; has basis {ay, o)}, cst = 2{as, o))/ {as, o );

_ -1 cst _ 1 0 . —1 + CstCts  Cst
Sf(O 1)72‘7(@5 —1)7 Sti( Cts _1>.

det(st) =1, tr(st) = —2 + CstCrs,
st has eigenvalues z,z~!, z+ z7' = cg0s — 2.
= et 0 = cos™'(—1+ csCis/2)).

Reflections

z,z™!

Proposition
Suppose —1 + csicis/2 = ¢ + ¢~ for a primitive m" root ¢.
Then st is a rotation of order m in the plane Ls & L;. Otherwise
st has infinite order. So

1. m=2ifandonly ifcs = ¢;s = 0;

2. m=3ifandonly if cstCis = 1;



Regular polyhedra

TWO refleCthnS in n dimensions
. <Oés, V> v . <Ozt, V> v David Vogan
sVv=yv 2<O€S7a¥> p tv=v 2<at,a}/> ¢

Assume V = L; @ L; @ (Hs N Hy).
Subspace Ls @ L; has basis {ay, o)}, cst = 2{as, o))/ {as, o );

_ -1 cst _ 1 0 . —1 + CstCts  Cst
Sf(O 1)72‘7(@5 —1)7 Sti( Cts _1>.

det(st) =1, tr(st) = —2 + CstCrs,
st has eigenvalues z,z~!, z+ z7' = cg0s — 2.
= et 0 = cos™'(—1+ csCis/2)).

Reflections

z,z71

Proposition
Suppose —1 + csicis/2 = ¢ + ¢~ for a primitive m" root ¢.
Then st is a rotation of order m in the plane Ls & L;. Otherwise
st has infinite order. So

1. m=2ifandonly ifcs = ¢;s = 0;

2. m=3ifandonly if cstCis = 1;

3. m=4ifandonly if cstCis = 2;



Two reflections R dimonsions.
<Oés, V> v <Ozt, V> v David Vogan
sv=v-2 , tv=v-2 .
(s, ay) {anaf) !

Assume V = L; @ L; @ (Hs N Hy).
Subspace Ls @ L; has basis {ay, o)}, cst = 2{as, o))/ {as, o );

_ -1 cst _ 1 0 . —1 + CstCts  Cst
Sf(O 1)72‘7(@5 —1)7 Sti( Cts _1>.

det(st) =1, tr(st) = —2 + CstCrs,
—1

Reflections

st has eigenvalues z, z z4+ 2z ' = coCs — 2.

1= gt 0 = cos™'(—1+ csCis/2)).

zZ,Z"

Proposition
Suppose —1 + csicis/2 = ¢ + ¢~ for a primitive m" root ¢.
Then st is a rotation of order m in the plane Ls & L;. Otherwise
st has infinite order. So

1. m=2ifandonly ifcs = ¢;s = 0;

2. m=3ifandonly if cstCis = 1;

3. m=4ifandonly if cstCis = 2;

4. m==6 ifand only if cstCis = 3;



Reflection symmetries "hdiendions.
P, cpt cvx reg polyhedron in R”, flag David Vogan

F=(PoCPyC---CP,), dimPc=k, px=ctrofmass(Ps).
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Sk = symmetry preserving all P; except Py
(0 < k < n). Reflections



Reflection symmetries P dmengions.
Pp, cpt cvx reg polyhedron in R”, flag David Vogan
F=(PoCPiC---CPpn), dimPx=k, px=ctrofmass(Px).
Sk = symmetry preserving all P; except Py
(0 < k< n). Reflections
Sk must be orthogonal reflection in hyperplane

Hy = span(po, P1, - - - Pk—1: Pk> Pk+15 - - - » Pn)
(unique affine hyperplane through these n points).



Regular polyhedra

Reflection symmetries e
Pp, cpt cvx reg polyhedron in R”, flag David Vogan
F=(PoCPiC---CPpn), dimPx=k, px=ctrofmass(Px).

Sk = symmetry preserving all P; except Py

(0 < k< n). Reflections

Sk must be orthogonal reflection in hyperplane

Hyx = span(Po, 1. - - s Pk—1, Pk Pk+1+ - - - » Pn)
(unique affine hyperplane through these n points).
Write equation of H
Hi = {v e R"| (ax, v) = ck}.



Regular polyhedra

ReﬂeCtlon Symmetrles in n dimensions
P, cpt cvx reg polyhedron in R”, flag David Vogan

F=(PoCPyC---CP,), dimPc=k, px=ctrofmass(Ps).

Sk = symmetry preserving all P; except Py
(0 < k < n). Reflections

Sk must be orthogonal reflection in hyperplane
Hyx = span(Po, 1. - - s Pk—1, Pk Pk+1+ - - - » Pn)
(unique affine hyperplane through these n points).
Write equation of H
Hi = {v e R" | (ak, V) = c}.

ay characterized up to positive scalar multiple by

<Oék7pj—pn>:0 (]#k)v <06k,pk—pn>>0~



Regular polyhedra

Reflection symmetries e
Pp, cpt cvx reg polyhedron in R”, flag David Vogan
F=(PoCPiC---CPpn), dimPx=k, px=ctrofmass(Px).

Sk = symmetry preserving all P; except Py

(0 < k< n). Reflections

Sk must be orthogonal reflection in hyperplane

Hyx = span(Po, 1. - - s Pk—1, Pk Pk+1+ - - - » Pn)
(unique affine hyperplane through these n points).
Write equation of H
Hi = {v e R"| (ax, v) = ck}.

ay characterized up to positive scalar multiple by
(ak,pj—Pn) =0 (j#k),  {ak,px—pPn) >0.

2<Oék,v—pn>
s(v)=v X 2Pl
x(V) oran)



Two reflection symmetries fieal = ey
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Pn, cpt cvx reg polyhedron in R”, flag
F=(PoCPiC---CPy), dimPx=k, px=ctrofmass(Px).

Relations
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Pn, cpt cvx reg polyhedron in R”, flag
F=(PoCPiC---CPy), dimPx=k, px=ctrofmass(Px).
sk = orthogonal reflection in hyperplane
Hy = span(po, P1, - - - Pk—1: Pk Pk+15 - - - » Pn) petatens



Two reflection symmetries e Gmensions.
David Vogan
Pn, cpt cvx reg polyhedron in R”, flag
F=(PoCPiC---CPy), dimPx=k, px=ctrofmass(Px).
sk = orthogonal reflection in hyperplane
Hy = span(po, P1, - - - Pk—1: Pk Pk+15 - - - » Pn) petatens

For 0 < k < n— 2, have seen that s,Sx,. 1 must be
rotation of some order my. 1 in a plane inside
span(Pk+2), flxmg Pyx_4.
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David Vogan
Pn, cpt cvx reg polyhedron in R”, flag
F=(PoCPiC---CPy), dimPx=k, px=ctrofmass(Px).
sk = orthogonal reflection in hyperplane
Hy = span(po, P1, - - - Pk—1: Pk Pk+15 - - - » Pn) petatens

For 0 < k < n— 2, have seen that s,Sx,. 1 must be
rotation of some order my. 1 in a plane inside
span(Pk+2), flxmg Pyx_4.



Regular polyhedra

Two reflection symmetries i s

David Vogan

Pn, cpt cvx reg polyhedron in R”, flag
F=(PoCPiC---CPy), dimPx=k, px=ctrofmass(Px).
sk = orthogonal reflection in hyperplane

Hk = Span(p07p1 yre 7pk—17l/);7pk+1 g 7pn)
For 0 < k < n— 2, have seen that s,Sx,. 1 must be
rotation of some order my. 1 in a plane inside
span(Pk+2), flxmg Pyx_4.
Proposition
Suppose P, is an n-dimensional regular polyhedron. Then the
rotation sS4 acts transitively on the k-dimensional faces of

P, that are contained between Py_y and Py ». Therefore the
Schléfli symbol of Py is {my, my, ..., mp_1}.

Relations



Regular polyhedra

Two reflection symmetries i s

David Vogan

Pn, cpt cvx reg polyhedron in R”, flag
F=(PoCPiC---CPy), dimPx=k, px=ctrofmass(Px).
sk = orthogonal reflection in hyperplane
Hy = span(po, P1, - - - Pk—1: Pk Pk+15 - - - » Pn)
For 0 < k < n— 2, have seen that s,Sx,. 1 must be

rotation of some order my. 1 in a plane inside
span(Pk+2), flxmg Pyx_4.

Proposition

Suppose P, is an n-dimensional regular polyhedron. Then the
rotation sS4 acts transitively on the k-dimensional faces of
P, that are contained between Py_y and Py ». Therefore the
Schléfli symbol of Py is {my, my, ..., mp_1}.

We turn next to computing my1.

Relations
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Translate so center of mass is at the origin: p, = 0.

Relations
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Good coordinates e dimencions
David Vogan
Pn cpt cvx reg polyhedron in R”, flag
F=(PoCcPirC---CPy), dmP; =i, p;=ctrofmass(P).
Seek to relate coordinates for P, to geometry. ..
Translate so center of mass is at the origin: p, = 0.

Relations

Rotate so center of mass of n — 1-face is on x-axis:
Pn-1=(an,0,...), ap>0.
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Pn cpt cvx reg polyhedron in R”, flag
F=(PoCcPirC---CPy), dmP; =i, p;=ctrofmass(P).

Seek to relate coordinates for P, to geometry. ..

Translate so center of mass is at the origin: p, = 0. Aeione

Rotate so center of mass of n — 1-face is on x-axis:
Pn-1=(an,0,...), ap>0.

Now P,_4 is perp. to x-axis:

Rotate around the x axis so center of mass of (n — 2)-face
isinthe x — y plane: p,_> = (an, a@n—1,0...), a,—1 > 0.
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Pn cpt cvx reg polyhedron in R”, flag
F=(PoCcPirC---CPy), dmP; =i, p;=ctrofmass(P).

Seek to relate coordinates for P, to geometry. ..

Translate so center of mass is at the origin: p, = 0. Aeione

Rotate so center of mass of n — 1-face is on x-axis:
Pn-1=(an,0,...), ap>0.

Now P,_4 is perp. to x-axis:

Rotate around the x axis so center of mass of (n — 2)-face
isinthe x — y plane: p,_> = (an, a@n—1,0...), a,—1 > 0.
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Example: n-cube
Pr={xeR"|—1<x <1

mass px = (1,...,1,0...,0)

(1<i<n)}
Choose flag Px = {x € Pp| X1 = -+- = Xp—x = 1}, ctr of
s = reflin ay = (0,

(n—k1s).
1=

ey 0) = €n—k — €n—k+1
= transpos of coords n — k,n— k + 1

(1 <k < n).
so=reflinag=(0,...,0,1) =e,
= sign change of coord n.

_ 44 _ 44 _ 44 4
SkSks1 = rot by cos”( o141

14+14+14+14):27T/3 (1— )
SoS1 = rotation by cos™’ (

714+ 14
W) =2n/4

Symmetry grp = permutations, sign changes of coords

0<j<n1<k<n-1)

«O>» «Fr <«

v
N
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-
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Example: n-cube Regular polyhecra

in n dimensions

David Vogan
Pr={xeR"|-1<x<1 (1<i<n)}
Choose flag Pk = {x € Py | xy =--- = Xp_x = 1}, ctr of
mass px = (1,...,1,0...,0) (n—k 1s).
sk =reflinax =(0,...,1,=1,...,0) = €n—k — €n—k+1
= transpos of coords n — k,n—k+1 (1 < k < n). Aelations

so=reflinag=(0,...,0,1) = e,
= sign change of coord n.

R R A R
SkSk+1 = rot by cos 1(14+14+14+14):27r/3 (1<k)

SoSi = rotation by cos™’ 11ty o /4
01 = y 14414 ) — T
Symmetry grp = permutations, sign changes of coords
= (S0, Sn-1)/(sk = 1, (SkSk 1)3 = 1»(5081)4 =1)
(0O<j<n1<k<n-1)
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Angles and coordinates fieal = ey

David Vogan
F=(PyCcPirC---CPy), dmP; =i, p;=ctrofmass(P;).
Pk = (an,...,a+1,0...), a1 >0.
Geom given by n — 1 (strictly) positive reals rk = (a1/ax)>.
SkSk+1 = rotation by 6.1 € (0,7),
—1 4 e — M1 — Mkl -
cos(6 = . Classification
(Ort) ( 1+ e + Mot + Melka

When k = 0, some terms disappear:

—1+n o 1+ cos(61)
14+n’ T 1= cos(6)

cos(f1) =

These recursion formulas give all rk in terms of all 6.

Next formula is
~cos(6) + cos(02)

1 4 cos(6-)
Formula makes sense (defines strictly positive r) iff
cos(01) + cos(h2) < 0.

ro =
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Regular polyhedra

Coxeter graphS in n dimensions

David Vogan
Regular polyhedron given by n — 1 pos ratios ’

rk = (ak+1/ak)?.
Symmetry group has n generators sg, ..., Sp_1,

s2 =1, skSk = Spsk (|k—K'|>1),  (SkSkp1)™+ =1.

Here mi.1+ > 3. Rotation angle for s,sk.+1 must be
Classification

Okt = 27r/mk+1 S {1200,900,720,600 .. .},

1 V5—1 1
cos(Bk)e{fE,O, 7 ,5,...},

Group-theoretic information recorded in Coxeter graph

Mp—1 Mp_2 mp my
° e- - o o—o

[ ]
Recursion formulas give ri from cos(6x) = cos(27/my).
Condition cos(62) + cos(61) < 0 says

one of my_4, mx must be 3; other at most 5.



Finite Coxeter groups with one line fieal = ey

. . . David Vogan
Same ideas lead (Coxeter) to classification of all graphs for
which recursion gives positive r.
type diagram G |G| reg poly
A, symm gp Spi1 n! n-simplex
4 Classification
o—e--.0—e hypercube
BCy cube group 2" nl hyperoctahedron
h(m) o, dihedral gp 2m m-gon
5 icosahedron
Ha D Hs 120 dodecahedron
5 ;
e eeeZe W taa0 8
4
F4 o—eo—eo—o F4 11 52 24-cell

For much more, see Bill Casselman’s amazing website

http://www.math.ubc.ca/~cass/coxeter/crm.html
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