References
- R. Abraham and J. Marsden, Foundations of Mechanics, Benjamin/Cummings, Reading, Massachusetts, 1978.
- J. Adams, D. Barbasch, and D. Vogan, The Langlands Classification and Irreducible Characters for Real Reductive Groups, Birkh"auser, Boston-Basel-Berlin, 1992.
- J. Adams and D. Vogan, Harish-Chandra's method of descent, to appear.
- J. Adams and D. Vogan, L-groups, projective representations, and the Langlands classification, Amer. J. Math. 114 (1992), 45-138.
- J. Adams and D. Vogan, Lifting of characters and Harish-Chandra's method of descent, to appear.
- M. Andler, Relationships of divisibility between local L-functions associated to representations of complex reductive groups.".
- A. Andreotti and H. Grauert, Theoremes de finitude pour la cohomologie des espaces complexes, Bull. Soc. Math. France 90 (1962), 193-259.
- V. Arnold, Mathematical Methods of Classical Mechanics, Springer-Verlag, New York-Heidelberg-Berlin, 1978.
- J. Arthur, Eisenstein series and the trace formula, Automorphic Forms, Representations, and L-functions, Proceedings of Symposia in Pure Mathematics, vol. 33, part 2, American Mathematical Society, Providence, Rhode Island, 1979, pp. 27-61.
- J. Arthur, On some problems suggested by the trace formula, Lie Group Representations II, R. Herb, R. Lipsman, and J. Rosenberg, eds. Lecture Notes in Mathematics, vol. 1041, Springer-Verlag, Berlin-Heidelberg-New York, 1983, pp. 1-49.
- J. Arthur, Unipotent automorphic representations: conjectures, 13-71, Orbites Unipo-|| tentes et Representations II. Groupes p-adiques et Reels, Asterisque, vol. 171172, 1989..
- M. Atiyah and I. MacDonald, Introduction to Commutative Algebra, AddisonWesley, Reading, Massachusetts, 1969.
- M. Atiyah and W. Schmid, A geometric construction of the discrete series for semisimple Lie groups, Invent. Math. 42 (1977), 1-62.
- L. Auslander and B. Kostant, Polarization and unitary representations of solvable Lie groups, Invent. Math. 14 (1971), 255-354.
- M. W. Baldoni-Silva and A. Knapp, Indefinite intertwining operators, Proc. Nat. Acad. Sci. U.S.A. 81 (1984), 1272-1275.
- D. Barbasch, The unitary dual for complex classical Lie groups, Invent. Math. 96 (1989), 103-176.
- D. Barbasch and D. Vogan, The local structure of characters, J. Funct. Anal. 37 (1980), 27-55.
- D. Barbasch and D. Vogan, Weyl group representations and nilpotent orbits, Representation Theory of Reductive Groups, P. Trombi, editor Birkh"auser, BostonBasel-Stuttgart, 1983, pp. 21-33.
- D. Barbasch and D. Vogan, Problems in primitive ideal theory, to appear in Proceedings of the Durham Conference on Enveloping Algebras.
- D. Barbasch and D. Vogan, Unipotent representations of complex semisimple Lie groups, Ann. of Math. 121 (1985), 41-110.
- V. Bargmann, Irreducible unitary representations of the Lorentz group, Ann. of Math. 48 (1947), 568-640.
- F. Bayen, M. Flato, C. Fronsdal, A. Lichnerowicz, and D. Sternheimer, Deformation theory and quantization. I. Deformation of symplectic structures, Ann. Physics 111 (1978), 61-110.
- A. Beilinson and J. Bernstein, Localisation de g-modules, C. R. Acad. Sci. Paris 292 (1981), 15-18.
- A. Beilinson, J. Bernstein, and P. Deligne, Faisceaux pervers, 5-171, Analyse et Topologie sur les Espaces Singuliers, volume 1, Asterisque, vol. 100, 1982.
- A. Beilinson, Localization of representations of reductive Lie algebras, 699-710, Proceedings of the International Congress of Mathematicians, Warsaw 1983 Amsterdam-London, 1984.
- N. Berline and M. Vergne, The equivariant index and Kirillov's character formula, Amer. J. Math. 107 (1985), 1159-1190.
- P. Bernat and J. Dixmier, Sur le dual d'un groupe de Lie, C. R. Acad. Sci. Paris 250 (1960), 1778-1779.
- J. Bernstein, P. Deligne, and D. Kazhdan, Trace Paley-Wiener theorem for reductive p-adic groups, J. Analyse Math. 47 (1986, 180-192).
- J. Bernstein, redige par P. Deligne, Le `centre' de Bernstein, Representations des Groupes Reductifs sur un Corps Local, by J. Bernstein, P. Deligne, D. Kazhdan, and M.-F. Vigneras Hermann, Paris, 1984.
- J. Bernstein, P. Deligne, D. Kazhdan, and M.-F. Vigneras, Representations des Groupes Reductifs sur un Corps Local, Hermann, Paris, 1984.
- I.N. Bernstein, I.M. Gelfand, and S.I. Gelfand, Structure of representatations generated by vectors of highest weight, Funct. Anal. Appl. 5 (1972), 1-8.
- I.N. Bernstein, I. M. Gelfand, and S.I. Gelfand, Models of representations of compact Lie groups, Funct. Anal. Appl. 9 (1975), 61-62.
- J. Bernstein and A.V. Zelevinsky, Induced representations of reductive p-adic groups, I Ann. Sci. Ecole Norm. Sup. 10 (1977), 441-472.
- F. Bien, Spherical D-modules and Representations of Reductive Lie Groups, Ph.D. dissertation, M.I.T., 1986.
- H. Boerner, Representations of groups. With special consideration for the needs of modern physics, American Elsevier Publishing Co., Inc., New York, 1970.
- A. Borel, Automorphic L-functions, Automorphic Forms Representations and Lfunctions, Proceedings of Symposia in Pure Mathematics, vol. 33, part 2, American Mathematical Society, Providence, Rhode Island, 1979, pp. 27-61.
- A. Borel, Linear Algebraic Groups, Springer-Verlag, New York, 1991.
- A. Borel et al., Intersection Cohomology, Birkh"auser, Boston-Basel-Stuttgart, 1984.
- A. Borel et al., Algebraic D-Modules, Perspectives in Mathematics, vol. 2, Academic Press, Boston, 1987.
- A. Borel and N. Wallach, Continuous Cohomology, Discrete Subgroups, and Representations of Reductive Groups, Princeton University Press, Princeton, New Jersey, 1980.
- W. Borho, Primitive vollprime Ideale in der Einh"ullenden von so(5; C), J. Algebra 43 (1976), 619-654.
- W. Borho, Definition einer Dixmier-Abbildung f"ur sl(n; C), Invent. Math. 40 (1977),|| 143-169.
- W. Borho, U"ber Schichten halbeinfacher Lie-Algebren, Invent. Math. 65 (1981), 283-317.
- W. Borho, A survey on enveloping algebras of semisimple Lie algebras, Lie Algebras and Related Topics, CMS Conference Proceedings, volume 5, D. Britten, F. Lemire, and R. Moody, eds., American Mathematical Society for CMS, Providence, Rhode Island, 1986.
- W. Borho and J.-L. Brylinski, Differential operators on homogeneous spaces I, Invent. Math. 69 (1982), 437-476.
- W. Borho and J.-L. Brylinski, Differential operators on homogeneous spaces III, Invent. Math. 80 (1985), 1-68.
- W. Borho, P. Gabriel, and R. Rentschler, Primideale in Einh"ullenden auflosbarer Lie-Algebren, Lecture Notes in Mathematics, vol. 357, Springer-Verlag, BerlinHeidelberg-New York, 1973.
- W. Borho and J.C. Jantzen, U"ber primitive Ideale in der Einh"ullenden einer halbeinfachen Lie-Algebra", Invent. Math. 39 (1977), 1-53.
- W. Borho and H. Kraft, U"ber Bahnen und deren Deformationen bei linearen Aktionen reduktiver Gruppen, Comment. Math. Helvetici 54 (1979), 61-104.
- R. Bott, Homogeneous vector bundles, Ann. of Math. 66 (1957), 203-248.
- N. Bourbaki, Groupes et algebres de Lie. Chapitres 4, 5, et 6, Masson, Paris, 1981.
- R. Brylinski and B. Kostant, Nilpotent orbits, normality, and Hamiltonian group actions, preprint.
- F. Bruhat, Sur les representations induites des groupes de Lie, Bull. Soc. Math. France 84 (1956), 97-205.
- J.- L. Brylinski and M. Kashiwara, Kazhdan-Lusztig conjecture and holonomic systems, Invent. Math. 64 (1981), 387-410.
- M. Burger, J.S. Li, and P. Sarnak, Ramanujan duals and the automorphic spectrum, Bull. Amer. Math. Soc. (N.S.) 26 (1992), 253-257.
- J. Carmona, Sur la classification des modules admissibles irreductibles 11-34, Noncommutative Harmonic Analysis and Lie Groups, J. Carmona and M. Vergne, eds., Lecture Notes in Mathematics, vol. 1020, Springer-Verlag, Berlin-Heidelberg-New York-Tokyo, 1983.
- R. Carter, Finite groups of Lie type. Conjugacy classes and complex characters, John Wiley & Sons Ltd, Chichester, England, 1985.
- W. Casselman, Canonical extensions of Harish-Chandra modules to representations of G, Can. J. Math. 41 (1989), 385-438.
- J. Cassels and A. Fr"ohlich, Algebraic Number Theory, Academic Press, London, 1967.
- C. Chevalley, The Algebraic Theory of Spinors, Columbia University Press, New York, 1954.
- D. Collingwood and W. McGovern, Nilpotent Orbits in Semisimple Lie Algebras, Van Nostrand Reinhold, New York, 1993.
- N. Conze, Quotients primitifs des algebres enveloppantes et algebres d'operateurs differentiels, C. R. Acad. Sci. Paris Ser A-B 277 (1973), A1033-A1036.
- N. Conze and J. Dixmier, Ideaux primitifs dans l'algebre enveloppante d'une algebre de Lie semi-simple, Bull. Sci. Math.(2) 96 (1972), 339-351.
- N. Conze-Berline and M. Duflo, Sur les representations induites des groupes semisimples complexes, Compositio math. 34 (1977), 307-336.
- P. Deligne and G. Lusztig, Representations of reductive groups over finite fields, Ann. of Math. 103 (1976), 103-161.
- M. Demazure, A. Grothendieck, et al., Schemas en Groupes I (SGA 3), Lecture Notes in Mathematics, vol. 151, Springer-Verlag, Berlin-Heidelberg-New York, 1970.
- Existence of star-products and formal deformations of the Poisson Lie algebra of arbitrary symplectic manifolds, Lett. Math. Phys. 7 (1983), 487-496.
- J. Dixmier, Von Neumann Algebras, translated by F. Jellett. North-Holland Publishing Co., New York, 1981.
- J. Dixmier, Algebres Enveloppantes, Gauthier-Villars, Paris-Brussels-Montreal, 1974.||
- J. Dixmier, Polarisations dans les algebres de Lie semi-simples complexes, Bull. Sci. Math.(2) 99 (1975), 45-63.
- J. Dixmier, Ideaux primitifs dans les algebres enveloppantes, J. Algebra 48 (1978), 96-112.
- D. Djokovic, Classification of nilpotent elements in simple exceptional real Lie algebras of inner type and description of their centralizers, J. Algebra 112 (1988), 503-524.
- D. Djokovic, Classification of nilpotent elements in simple real Lie algebras E6(6) and E6(-26) and description of their centralizers, J. Algebra 116 (1988), 196207.
- M. Duflo, Representations irreductibles des groupes semi-simples complexes, Analyse Harmonique sur les Groupes de Lie (Sem. Nancy-Strasbourg 1973-75) Lecture Notes in Mathematics, vol. 497, Springer-Verlag, Berlin-Heidelberg-New York-Tokyo, 1975, pp. 26-88.
- M. Duflo, Sur la classification des ideaux primitifs dans l'algebre enveloppante d'une algebre de Lie semi-simple, Ann. of Math. 105 (1977), 107-120.
- M. Duflo, Representations unitaires irreductibles des groupes semi-simples complexes de rang deux, Bull. Soc. Math. France 107 (1979), 55-96.
- M. Duflo, Representations unitaires des groupes semi-simples complexes, Group Theoretical Methods in Physics, Proc. Eighth Internat. Colloq., Kiryat Anavim,|| vol. 3, Hilger, Bristol., 1979 Ann. Israel Phys. Soc., pp. 19-34.
- M. Duflo, Theorie de Mackey pour les groupes de Lie algebriques, Acta Math. 149 (1982), 153-213.
- M. Duflo, Sur les ideaux induits dans les algebres enveloppantes, Invent. Math. 67 (1982), 385-393.
- M. Duflo, Construction de representations d'un groupe de Lie, Cours d'ete du C.I.M.E., Cortona (1980).
- M. Duflo, Construction de gros ensembles de representations unitaires irreductible d'un groupe de Lie quelconque, Operator Algebras and Group Representations, volume I Monographs Stud. Math., vol. 17 Pitman, Boston, MassachusettsLondon, 1984.
- E. B. Dynkin, Semisimple subalgebras of semisimple Lie algebras, Amer. Math. Soc. Transl., Ser. 2, 6 (1957), 111-245.
- T. J. Enright, Relative Lie algebra cohomology and unitary representations of complex Lie groups, Duke Math. J. 46 (1979), 513-525.
- T. J. Enright and N. R. Wallach, Notes on homological algebra and representations of Lie algebras, Duke Math. J. 47 (1980), 1-15.
- M. Flensted-Jensen, Discrete series for semisimple symmetric spaces, Ann. of Math. 111 (1980), 253-311.
- O. Gabber, The integrability of the characteristic variety, Amer. J. Math. 103 (1981), 445-468.
- D. Garfinkle, The annihilators of irreducible Harish-Chandra modules for SU(p; q) and other type An-1 groups, to appear.
- I.M. Gelfand, Some aspects of functional analysis and algebra, Proceedings of the International Congress of Mathematicians 1954 (Amsterdam), vol. I Erven P. Noordhoof, N.V., Groningen North Holland Publishing Co., Amsterdam, 1957, pp. 253-276.
- I.M. Gelfand and M. A. Naimark, Unitary representations of the Lorentz group, Izv. Akad. Nauk S.S.S.R. 11 (1947), 411-504.
- I.M. Gelfand and M. A. Naimark, Unitary Representations of the Classical Groups, Trudy Mat. Inst. Steklov, vol. 36, Moscow-Leningrad, 1950 German translation: Akademie-Verlag, Berlin, 1957.
- S.I. Gelfand, Weil's representation of the Lie algebra of type G2, and representations of SL3 connected with it, Funct. Anal. Appl. 14 (1980), 40-41.
- M. Gerstenhaber, On the deformation of rings and algebras, Ann. of Math. 79 (1964), 59-103.
- V. Ginsburg, Characteristic varieties and vanishing cycles, Invent. Math. 84 (1986), 327-402.
- V. Ginsburg, G-modules, Springer's representations and bivariant Chern classes, Adv. in Math. 61 (1986), 1-48.
- M. Goresky and R. MacPherson, Stratified Morse Theory, Springer-Verlag, BerlinHeidelberg-New York, 1983.
- M. Goresky and R. MacPherson, Local contribution to the Lefschetz fixed point formula, preprint.
- W. Greub, S. Halperin, and R. Vanstone, Connections, Curvature, and Cohomology. Volume III: Cohomology of principal bundles and homogeneous spaces, Pure and Applied Mathematics, Vol. 47-III, Academic Press (Harcourt Brace Jovanovich, Publishers), New York-London.
- A. Grothendieck (rediges avec la collaboration de J. Dieudonne), Elements de Geometrie Algebrique IV. Etude locale des schemas et des morphismes de schemas (Seconde Partie), Publications Mathematiques, vol. 24, 1965, Institut des Hautes Etudes Scientifiques, Le Bois-Marie, Bures-sur-Yvette, France.
- A. Guichardet, Theorie de Mackey et methode des orbites selon M. Duflo, Expo. Math. 3 (1985), 303-346.
- V. Guillemin and S. Sternberg, A generalization of the notion of polarization, Ann. Glob. Analysis and Geometry 4 (1986), 327-347.
- V. Guillemin and S. Sternberg, Geometric Asymptotics, revised edition Mathematical Surveys and Monographs, vol. 14, American Mathematical Society, Providence, Rhode Island, 1990.
- A. Guillemonat, Representations spheriques singulieres, Non-commutative Harmonic Analysis and Lie Groups, J. Carmona and M. Vergne, eds., Lecture Notes in Mathematics, vol. 1020, Springer-Verlag, Berlin-Heidelberg-New YorkTokyo, 1983.
- Harish-Chandra, Representations of semi-simple Lie groups I, Trans. Amer. Math. Soc. 75 (1953), 185-243.
- Harish-Chandra, The Plancherel formula for complex semisimple Lie groups, Trans. Amer. Math. Soc. 76 (1954), 485-528.
- Harish-Chandra, Representations of semisimple Lie groups V, Amer. J. Math. 78 (1956), 1-41.
- Harish-Chandra, Discrete series for semi-simple Lie groups I. Construction of invariant eigendistributions, Acta Math. 113 (1965), 241-318.
- Harish-Chandra, Discrete series for semi-simple Lie groups II. Explicit determination of the characters, Acta Math. 116 (1966), 1-111.
- Harish-Chandra, Harmonic analysis on reductive groups I. The theory of the constant term, J. Func. Anal. 19 (1975), 104-204.
- R. Hartshorne, Algebraic Geometry, Springer-Verlag, New York, Heidelberg, Berlin, 1977.
- M. Hashizume, Whittaker models for real reductive groups, Japan. J. Math. 5 (1979), 349-401.
- H. Hecht, D. Milicic, W. Schmid, and J. Wolf, Localization and standard modules for real semisimple Lie groups I: The duality theorem, Invent. Math. 90 (1987), 297-332.
- G. Heckman, Projections of orbits and asymptotic behaviour of multiplicities for compact connected Lie groups, Invent. Math. 67 (1982), 333-356.
- S. Helgason, Differential Geometry, Lie Groups, and Symmetric Spaces, Academic Press, New York, San Francisco, London, 1978.
- S. Helgason, Groups and Geometric Analysis, Academic Press, Orlando, Florida, 1984.
- R. Herb, Fourier inversion and the Plancherel theorem for semisimple real Lie groups, Amer. J. Math. 104 (1982), 9-58.
- W. Hesselink, Polarizations in the classical groups, Math. Z. 160 (1978), 217-234.
- V. Hinich, On the singularities of nilpotent orbits, Israel J. Math 73 (1991), 297308.
- R. Howe, On the role of the Heisenberg group in harmonic analysis, Bull. Amer. Math. Soc. (N.S.) 3 (1980), 821-843.
- R. Howe, Wave front sets of representations of Lie groups, Automorphic Forms, Representation Theory, and Arithmetic, Tata Inst. Fund. Res. Studies in Math., vol. 10 Tata Institute for Fundamental Research, Bombay, 1981.
- J.-S. Huang, The unitary dual of the universal covering group of GL(n; R), Duke Math. J. 61 (1990), 705-745.
- J.E. Humphreys, Introduction to Lie Algebras and Representation Theory, Springer-|| Verlag, Berlin-Heidelberg-New York, 1972.
- J.C. Jantzen, Zur Charakterformel gewisser Darstellungen halbeinfacher Gruppen und Lie-algebren, Math. Z. 140 (1974), 127-149.
- J.C. Jantzen, Moduln mit einem H"ochsten Gewicht, Lecture Notes in Mathematics, vol. 750, Springer-Verlag, Berlin-Heidelberg-New York, 1979.
- J.C. Jantzen, Einh"ullende Algebren halbeinfacher Lie-algebren, Springer-Verlag, Berlin-Heidelberg-New York, 1983.
- A. Joseph, The minimal orbit in a simple Lie algebra and its associated maximal ideal, Ann. Sci. Ecole Norm. Sup. (4) 9 (1976), 1-30.
- A. Joseph, Dixmier's problem for Verma and principal series modules, J. London Math. Soc.(2) 20 (1979), 193-204.
- A. Joseph, Goldie rank in the enveloping algebra of a semisimple Lie algebra I, II, J. Alg. 65 (1980), 269-316.
- A. Joseph, W-module structure in the primitive spectrum of a semisimple Lie algebra, Non-commutative Harmonic Analysis and Lie Groups (J. Carmona and M. Vergne Lecture Notes in Mathematics, eds.), vol. 728, Springer-Verlag, BerlinHeidelberg-New York, 1979, pp. 116-135.
- A. Joseph, Kostant's problem and Goldie rank, Non-commutative Harmonic Analysis and Lie Groups, J. Carmona and M. Vergne, eds., Lecture Notes in Mathematics, vol. 880, Springer-Verlag, Berlin-Heidelberg-New York, 1981, pp. 249-266.
- A. Joseph, On the classification of primitive ideals in the enveloping algebra of a semisimple Lie algebra, Lie Group Representations I, R. Herb, R. Lipsman and J. Rosenberg, eds. Lecture Notes in Mathematics, vol. 1024, Springer-Verlag, Berlin-Heidelberg-New York, 1983, pp. 30-76.
- A. Joseph, On the associated variety of a primitive ideal J. Algebra 93 (1985), 509-523.
- A. Joseph, The primitive spectrum of an enveloping algebra, Orbites Unipotentes et Representations III. Orbites et Faisceaux pervers, Asterisque, vol. 173-174, 1989, pp. 13-53.
- M. Kashiwara, Index theorem for a maximally overdetermined system of linear differential equations, Proc. Japan Acad. 49 (1973), 803-804.
- M. Kashiwara, Systems of Microdifferential Equations, Progress in Mathematics, vol. 34 Birkh"auser, Boston-Basel-Stuttgart, 1983.
- M. Kashiwara and T. Kawai, On holonomic systems of microdifferential equations. III -Systems with regular singularities- Publ. RIMS, Kyoto Univ. 17 (1981), 813-979.
- M. Kashiwara and T. Kawai, Microlocal analysis, preprint, Research Institute for Mathematical Sciences, (1983).
- M. Kashiwara and P. Schapira, Microlocal Study of Sheaves, Asterisque, vol. 128, 1985.
- D. Kazhdan, Connection of the dual space of a group with the structure of its closed subgroups, Funct. Anal. Appl. 1 (1967), 63-65.
- D. Kazhdan and G. Lusztig, Representations of Coxeter groups and Hecke algebras, Invent. Math. 53 (1979), 165-184.
- D. Kazhdan and G. Lusztig, Schubert varieties and Poincare duality, Geometry of the Laplace operator, Proceedings of Symposia in Pure Mathematics, vol. 36, American Mathematical Society, Providence, Rhode Island, 1980, pp. 185-203.
- D. Kazhdan and G. Lusztig, Proof of the Deligne-Langlands conjecture for Hecke algebras, Invent. Math. 87 (1987), 153-215.
- A. Kirillov, Unitary representations of nilpotent Lie groups, Uspehi Mat. Nauk. 17 (1962), 57-110.
- A. Kirillov, Elements of the Theory of Representations, translated by E. Hewitt, Springer-Verlag, Berlin-Heidlberg-New York, 1976.
- A. Knapp, Weyl group of a cuspidal parabolic, Ann. Sci. Ecole Norm. Sup. 8 (1975), 275-294.
- A. Knapp, Representation Theory of Real Semisimple Groups: an Overview Based on Examples, Princeton University Press, Princeton, New Jersey, 1986.
- A. Knapp, Lie Groups, Lie Algebras, and Cohomology, Mathematical Notes 34, Princeton University Press, Princeton, New Jersey, 1988..
- A. Knapp and B. Speh, The role of basic cases in classification: theorems about unitary representations applicable to SU(N,2), Non-commutative Harmonic Analysis and Lie Groups, J. Carmona and M. Vergne, eds., Lecture Notes in Mathematics, vol. 1020, Springer-Verlag, Berlin-Heidelberg-New York-Tokyo, 1983, pp. 119-160.
- A. Knapp and E. Stein, Singular integrals and the principal series. IV, Proc. Nat. Acad. Sci. U.S.A. 72 (1975), 2459-2461.
- A. Knapp and E. Stein, Intertwining operators for semisimple groups II, Invent. Math. 60 (1980), 9-84.
- A. Knapp and D. Vogan, Cohomological Induction and Unitary Representations, Princeton University Press, Princeton, New Jersey, 1995.
- A. Knapp and G. Zuckerman, Classification theorems for representations of semisimple Lie groups, Non-commutative Harmonic Analysis, J. Carmona and M. Vergne, eds., Lecture Notes in Mathematics, vol. 587, Springer-Verlag, Berlin-Heidelberg-New York, 1977, pp. 138-159.
- A. Knapp and G. Zuckerman, Classification of irreducible tempered representations of semisimple Lie groups Ann. of Math. 116 (1982), 389-501.
- M. Kneser, Galois-Kohomologie halbeinfacher algebraischer Gruppen "uber p-adischen K"orpern. II, Math. Z. 89 (1965), 250-272.
- K. Koike, On the decomposition of tensor products of the representations of the classical groups: by means of the universal characters, Adv. in Math. 74 (1989), 57-86.
- B. Kostant, The principal three-dimensional subgroup and the Betti numbers of a complex simple Lie group, Amer. J. Math. 81 (1959), 973-1032.
- B. Kostant, Lie algebra cohomology and the generalized Borel-Weil theorem, Ann. of Math. 74 (1961), 329-387.
- B. Kostant, Orbits, symplectic structures, and representation theory, Proceedings of the United States-Japan Seminar in Differential Geometry, Kyoto, Japan, 1965, Nippon Hyoronsha, Tokyo, 1966, p. 71.
- B. Kostant, On the existence and irreducibility of certain series of representations, Bull. Amer. Math. Soc. 75 (1969), 627-642.
- B. Kostant, Quantization and unitary representations, Lectures in Modern Analysis and Applications, (C. Taam, ed.), Lecture Notes in Mathematics, vol. 170, Springer-Verlag, Berlin-Heidelberg-New York, 1970.
- B. Kostant, On the tensor product of a finite and an infinite dimensional representation, J. Func. Anal. 20 (1975), 257-285.
- B. Kostant, Symplectic spinors, Geometria Simplettica e Fisica Matematica. Symposia Mathematica XIV, Istituto Nazionale di Alta Matematica., Academic Press, London and New York, 1974, pp. 139-152.
- B. Kostant, On Whittaker vectors and representation theory, Invent. Math. 48 (1979), 101-184.
- B. Kostant, Coadjoint orbits and a new symbol calculus for line bundles, Conference on Differential Geometric Methods in Theoretical Physics (G. Denardo and H.D. Doebner, eds.). World Scientific, Singapore, 1983.
- B. Kostant, The principle of triality and a distinguished unitary representation of SO(4; 4), Differential Geometrical Methods in Theoretical Physics (K. Bleuler and M. Werner, eds.). Kluwer Academic Publishers, Dordrecht-Boston, 1988, pp. 65-109.
- B. Kostant and S. Rallis, Orbits and representations associated with symmetric spaces, Amer. J. Math. 93 (1971), 753-809.
- R. Kottwitz, Sign changes in harmonic analysis on reductive groups, Trans. Amer. Math. Soc. 278 (1983), 289-297.
- R. Kottwitz, Stable trace formula: cuspidal tempered terms, Duke Math. J. 51 (1984), 611-650.
- R. Kottwitz, Shimura varieties and l-adic representations 161-209, Automorphic Forms, Shimura Varieties, and L-functions, vol. I, L. Clozel and J. Milne, eds. Perspectives in Mathematics, vol. 10 Academic Press, San Diego, 1990.
- H. Kraft and C. Procesi, Closures of conjugacy classes of matrices are normal, Invent. Math. 53 (1979), 227-247.
- H. Kraft and C. Procesi, On the geometry of conjugacy classes in classical groups, Comm. Math. Helv. 57(4) (1982), 539-602.
- S. Kumaresan, On the canonical k-types in the irreducible unitary g-modules with non-zero relative cohomology, Invent. Math. 59 (1980), 1-11.
- J.-P. Labesse and R.P. Langlands, L-indistinguishability for SL(2), Canad. J. Math. 31 (1979), 726-785.
- S. Lang, SL(2,R), Addison-Wesley.
- S. Lang, Rapport sur la Cohomologie des Groupes, Benjamin, New York, 1966.
- R.P. Langlands, Representations of abelian algebraic groups, preprint, Yale University, (1968).
- R.P. Langlands, On the classification of representations of real algebraic groups, Representation Theory and Harmonic Analysis on Semisimple Lie Groups, P. Sally and D. Vogan, eds. Mathematical Surveys and Monographs, vol. 31, American Mathematical Society, Providence, Rhode Island, 1989, pp. 101-170.
- R.P. Langlands, Stable conjugacy: definitions and lemmas, Canad. J. Math. 31 (1979)), 700-725.
- R.P. Langlands and D. Shelstad, On the definition of transfer factors, Math. Ann. 278 (1987)), 219-271.
- J. Lepowsky, Algebraic results on representations of semisimple Lie groups, Trans. Amer. Math. Soc. 176 (1973)), 1-44.
- T. Levasseur and S.P. Smith, Primitive ideals and nilpotent orbits in type G2, J. Algebra 114 (1988)), 81-105.
- J.-S. Li, Singular unitary representations of classical groups Invent. Math. 97 (1989)), 237-255.
- G. Lion and M. Vergne, The Weil Representation, Maslov Index, and Theta Series, Birkh"auser, Boston-Basel-Berlin, 1980.
- O. Loos, Symmetric Spaces, vol I Benjamin, New York-Amsterdam, 1969.
- G. Lusztig, A class of irreducible representations of a Weyl group, Proc. Kon. Nederl. Akad., A, 82 (1982)), 323-335.
- G. Lusztig, Characters of Reductive Groups over a Finite Field. Annals of Mathematics Studies, vol. 107, Princeton University Press, Princeton, New Jersey, 1984.
- G. Lusztig, Intersection cohomology complexes on a reductive group, Invent. Math. 75 (1984)), 205-272.
- G. Lusztig, Character sheaves I, Adv. in Math. 56 (1985)), 193-237.
- G. Lusztig and N. Spaltenstein, Induced unipotent classes, J. London Math. Soc.(2) 19 (1979)), 41-52.
- G. Lusztig and D. Vogan, Singularities of closures of K-orbits on flag manifolds, Invent. Math. 71 (1983)), 365-379.
- I. Macdonald, Symmetric functions and Hall polynomials, Oxford Mathematical Monographs, Clarendon Press, Oxford University Press, New York, 1995.
- G. Mackey, Theory of Unitary Group Representations, University of Chicago Press, Chicago, 1976.
- R. MacPherson, Chern classes for singular algebraic varieties, Ann. of Math. 100 (1974)), 423-432.
- G. Margulis, Discrete Subgroups of Semisimple Lie Groups, Springer-Verlag, BerlinHeidelberg-New York, 1991.
- T. Matsuki, The orbits of affine symmetric spaces under the action of minimal parabolic subgroups, J. Math. Soc. Japan 31 (1979), 331-357.
- Y. Matsushima, On Betti numbers of compact locally symmetric Riemannian manifolds, Jour. Diff. Geom. 1, 99-109.
- H. Matsumura, Commutative Ring Theory, translated by M. Reid, Cambridge University Press, Cambridge, 1986.
- F.I. Mautner, Unitary representations of locally compact groups I, Ann. of Math. 51 (1950)), 1-25.
- F.I. Mautner, Unitary representations of locally compact groups II, Ann. of Math. 52 (1951)), 528-556.
- W. McGovern, Rings of regular functions on nilpotent orbits and their covers, Inv. Math. 97 (1989), 209-217.
- W. McGovern, Unipotent representations and Dixmier algebras, Compositio math. 69 (1989)), 241-276.
- W. McGovern, Completely prime maximal ideals and quantization, to appear in Memoirs of the AMS.
- W. McGovern, Rings of regular functions on nilpotent orbits II: model algebras and orbits, Comm. Alg. 22(3) (1994), 765-772.
- D. Milicic, On C*-algebras with bounded trace, Glasnik Mat. 8 (28) (1973)), 7-22.
- D. Milicic, On structure of dual of semisimple groups, Ph.D. dissertation, University of Zagreb, (1973).
- D. Milicic, The dual spaces of almost connected reductive groups, Glasnik Mat. 9 (29) (1974)), 273-288.
- C. Moeglin, Ideaux primitifs completement premiers de l'algebre enveloppante gl(n; C), J. Alg. 106 (1987)), 287-366.
- C. Moeglin, Modeles de Whittaker et ideaux primitifs completement premiers dans les algebres de lie semi-simples complexes II, Math. Scand. 63 (1988)), 5-35.
- C. Moeglin, Orbites unipotentes et spectre discret non ramifie: le cas des groupes classiques deployes, Compositio Math. 77 (1991), 1-54.
- C. Moeglin, M.-F. Vigneras, and J.-L. Waldspurger, Correspondances de Howe sur un Corps p-adique, Lecture Notes in Mathematics, vol. 1291, Springer-Verlag, Berlin-Heidelberg-New York, 1987.
- G. D. Mostow, Self-adjoint groups, Ann. of Math.(2) 62 (1955)), 44-55.
- B. J. M"uller, Localization in non-commutative Noetherian rings, Canad. J. Math. 28 (1976)), 600-610.
- M. A. Naimark, On the description of all unitary representations of the complex classical groups I, Mat. Sb. 35 (1954)), 317-356.
- M. A. Naimark, On the description of all unitary representations of the complex classical groups II, Mat. Sb. 37 (1955)), 121-140.
- E. Nelson, Analytic vectors, Ann. of Math. 70 (1959)), 572-615.
- T. Oshima and T. Matsuki, A description of discrete series for semisimple symmetric spaces, Advanced Studies in Pure Mathematics, vol. 4: Group Representations and Systems of Differential Equations Kinokuniya, Tokyo, and NorthHolland, Amsterdam-New York-Oxford, 1984.
- K. R. Parthasarathy, R. Ranga Rao, and V. S. Varadarajan, Representations of complex semi-simple Lie groups and Lie algebras, Ann. of Math. 85 (1967)), 383-429.
- H. Ozeki and M. Wakimoto, On polarizations of certain homogeneous spaces, Hiroshima Math. J. 2 (1972)), 445-482.
- D. I. Panyushev, Rationality of singularities and the Gorenstein property of nilpotent orbits, Functional Anal. Appl. 25 (1991), 225-226.
- R. Parthasarathy, Dirac operator and the discrete series, Ann. of Math. 96 (1972), 1-30.
- R. Parthasarathy, A generalization of the Enright-Varadarajan modules, Comp. Math. 36, 53-73.
- R. Parthasarathy, Criteria for the unitarizability of some highest weight modules, Proc. Indian Acad. Sci. 89 (1980)), 1-24.
- F. Peter and H. Weyl, Die Vollst"andigkeit der primitiven Darstellungen einer geschlossenen kontinuierlichen Gruppe, Math. Ann. 97 (1927)), 737-755.
- Pontriagin, Topological Groups, translated by E. Lehmer., Princeton University Press, Princeton, New Jersey, 1939.
- L. Pukanszky, The Plancherel formula for the universal covering group of SL(2; R), Math. Ann. 156 (1964)), 96-143.
- J. Rawnsley, W. Schmid, and J. Wolf, Singular unitary representations and indefinite harmonic theory, J. Funct. Anal. 51 (1983)), 1-114.
- R. Rentschler, Comportement de l'application de Dixmier par rapport a l'antiautomorphism principal pour les algebres de Lie resolubles, C. R. Acad. Sci. Paris 282 (1976)), 555-557.
- R. Richardson, Conjugacy classes in parabolic subgroups of semi-simple algebraic groups, Bull. London Math. Soc. 6 (1974)), 21-24.
- L. Rothschild and J. Wolf, Representations of semisimple Lie groups associated to nilpotent coadjoint orbits, Ann. Sci. Ecole Norm. Sup. (4) 7 (1974)), 155-173.
- S. Salamanca-Riba, On the unitary dual of some classical Lie groups, Compositio Math. 68 (1988), 251-303.
- M. Sato, M. Kashiwara, and T. Kawai, Hyperfunctions and pseudodifferential equations, Lecture Notes in Mathematics, vol. 287, Springer-Verlag, Berlin-Heidelberg-New York, 1973, pp. 265-529.
- W. Schmid, Homogeneous complex manifolds and representations of semisimple Lie groups," Ph.D. dissertation, University of California at Berkeley, Berkeley, (1967).
- W. Schmid, Homogeneous complex manifolds and representations of semisimple Lie groups, Representation Theory and Harmonic Analysis on Semisimple Lie Groups (P. Sally and D. Vogan, eds.), Mathematical Surveys and Monographs 31, American Mathematical Society, Providence, Rhode Island, 1989, pp. 223286.
- W. Schmid, Die Randwerte holomorpher Funktionen auf hermitesch symmetrischen R"aumen, Invent. Math. 9 (1969-1970), 61-80.
- W. Schmid, L2 cohomology and the discrete series, Ann. of Math. 103 (1976), 375-394.
- W. Schmid, Some properties of square-integrable representations of semisimple Lie groups, Ann. of Math. 102 (1975), 535-564.
- W. Schmid, On the characters of the discrete series (the Hermitian symmetric case), Invent. Math. 30 (1975), 47-144.
- W. Schmid, Two character identities for semisimple Lie groups, Non-commutative Harmonic Analysis and Lie groups, J. Carmona and M. Vergne, eds., Lecture Notes in Mathematics, vol. 587, Springer-Verlag, Berlin-Heidelberg-New York, 1977, pp. 196-225.
- W. Schmid, Discrete series, These proceedings.
- W. Schmid and J. Wolf, A vanishing theorem for open orbits on complex flag manifolds, Proc. Amer. Math. Soc. 92 (1984), 461-464.
- J. Schwartz, The determination of the admissible orbits in the real classical groups, Ph.D. dissertation, Massachusetts Institute of Technology, Cambridge, Massachusetts, 1987.
- J. Sekiguchi, Remarks on nilpotent orbits of a symmetric pair, J. Math. Soc. Japan 39 (1987), 127-138.
- I. Shafarevich, Basic Algebraic Geometry, translated by K. Hirsch., Springer-Verlag,|| Berlin, Heidelberg, New York, 1977.
- J.P. Serre, Local Fields, Springer-Verlag, New York, Heidelberg, Berlin, 1979.
- D. Shale, Linear symmetries of free boson fields, Trans. Amer. Math. Soc. 103 (1962)), 149-167.
- D. Shelstad, Characters and inner forms of a quasi-split group over R, Compositio Math. 39 (1979)), 11-45.
- D. Shelstad, L-indistinguishability for real groups, Math. Ann. 259 (1982)), 385-430.
- D. Shelstad, Orbital Integrals, Endoscopic Groups, and L-indistinguishability for Real Groups, Publ. Math. de l'Universite de Paris, 1983.
- N. Spaltenstein, On the fixed point set of a unipotent element on the variety of Borel subgroups, Topology 16 (1977)), 203-204.
- B. Speh, Some results on principal series for GL(n,R), Ph.D. dissertation, Massachusetts Institute of Technology, Cambridge, Massachusetts, June, (1977).
- B. Speh, Unitary representations of SL(n,R) and the cohomology of congruence subgroups, Non-commutative Harmonic Analysis and Lie groups, J. Carmona and M. Vergne, eds., Lecture Notes in Mathematics, vol. 880, Springer-Verlag, Berlin-Heidelberg-New York, 1981, pp. 483-505.
- B. Speh, The unitary dual of GL(3,R) and GL(4,R), Math. Ann. 258 (1981)), 113-133.
- B. Speh and D. Vogan, Reducibility of generalized principal series representations, Acta Math. 145 (1980)), 227-299.
- T.A. Springer, Reductive groups, Automorphic Forms Representations and Lfunctions, Proceedings of Symposia in Pure Mathematics, vol. 33, part 1, American Mathematical Society, Providence, Rhode Island, 1979, pp. 3-28.
- T.A. Springer, Seminaire d'algebre Paul Dubreil et Marie-Paul Malliavin, 36eme annee (Paris, vol. 1146, Springer-Verlag, Berlin-New York, 1985, 1983-1984), pp. 299-316, Lecture Notes in Mathematics.
- E.M. Stein, Analysis in matrix spaces and some new representations of SL(n,C), Ann. of Math. 86 (1967)), 461-490.
- D. Sternheimer, Phase-space representations, Lectures in Applied Mathematics 21 (1985), American Mathematical Society, Providence, Rhode Island,.
- M. Tadic, The topology of the dual space of a reductive group over a local field, Glasnik Mat. 18 (38) (1983)), 259-279.
- M. Tadic, Topology of unitary dual of nonarchimedean GL(n), Duke Math. J. 55 (1987)), 385-422.
- M. Tadic, Geometry of dual spaces of reductive groups (non-archimedean case), J. Analyse Math. 51 (1988)), 139-181.
- J. Tate, Number theoretic background, Automorphic Forms Representations and L-functions, Proceedings of Symposia in Pure Mathematics, vol. 33, part 2, American Mathematical Society, Providence, Rhode Island, 1979, pp. 3-26.
- P. Torasso, Quantification geometrique, operateurs d'entrelacement et representations unitaires de SL3(R), Acta Math. 150 (1983)), 153-242.
- M. Tsuchikawa, On the representations of SL(3,C), III, Proc. Japan Acad. 44 (1968)), 130-132.
- I. Vakhutinski, Unitary representations of GL(3,R), Mat. Sb. 75 (1968)), 303-320.
- G. van Dijk, Invariant eigendistributions on the tangent space of a rank one semisimple symmetric space Math. Ann. 268 (1984)), 405-416.
- V. S. Varadarajan, Harmonic Analysis on Real Reductive Groups, Lecture Notes in Mathematics, vol. 576, Springer-Verlag, Berlin-Heidelberg-New York, 1977.
- M. Vergne, Instantons et correspondance de Kostant-Sekiguchi, C. R. Acad. Sci. Paris Ser. I Math. 320 (1995), 901-906.
- D. N. Verma, Structure of certain induced representations of complex semi-simple Lie algebras dissertation, Yale University, (1966).
- D. Vogan, Gelfand-Kirillov dimension for Harish-Chandra modules, Invent. Math. 48 (1978)), 75-98.
- D. Vogan, The algebraic structure of the representations of semisimple Lie groups I, Ann. of Math. 109 (1979)), 1-60.
- D. Vogan, Irreducible characters of semisimple Lie groups I, Duke Math. J. 46 (1979)), 61-108.
- D. Vogan, Irreducible characters of semisimple Lie groups II. The Kazhdan-Lusztig conjectures, Duke Math. J. 46 (1979)), 805-859.
- D. Vogan, A generalized tau-invariant for the primitive spectrum of a semsimple Lie algebra, Math. Ann. 242 (1979)), 209-244.
- D. Vogan, Singular unitary representations, Non-commutative Harmonic Analysis and Lie groups, J. Carmona and M. Vergne, eds., Lecture Notes in Mathematics, vol. 880, Springer-Verlag, Berlin-Heidelberg-New York, 1981, pp. 506-535,.
- D. Vogan, Representations of Real Reductive Lie Groups Birkh"auser, Boston-BaselStuttgart, 1981.
- D. Vogan, Irreducible characters of semisimple Lie groups III. Proof of the Kazhdan-Lusztig conjectures in the integral case, Invent. Math. 71 (1983)), 381-417.
- D. Vogan, Irreducible characters of semisimple Lie groups IV. Character-multiplicity duality, Duke Math. J. 49 (1982)), 943-1073.
- D. Vogan, Understanding the unitary dual, Lie Group Representations I, R. Herb, R. Lipsman and J. Rosenberg, eds. Lecture Notes in Mathematics, vol. 1024, Springer-Verlag, Berlin-Heidelberg-New York, 1983, pp. 264-286.
- D. Vogan, Unitarizability of certain series of representations, Ann. of Math. 120 (1984)), 141-187.
- D. Vogan, The unitary dual of GL(n) over an archimedean field, Invent. Math. 83 (1986)), 449-505.
- D. Vogan, The orbit method and primitive ideals for semisimple Lie algebras, Lie Algebras and Related Topics, CMS Conference Proceedings, volume 5, D. Britten, F. Lemire, and R. Moody, eds., American Mathematical Society for CMS, Providence, Rhode Island, 1986.
- D. Vogan, Representations of reductive Lie groups, 245-266, Proceedings of the International Congress of Mathematicians 1986, volume I, American Mathematical Society, Providence, Rhode Island, 1987.
- D. Vogan, Unitary Representations of Reductive Lie Groups. Annals of Mathematics Studies, Princeton University Press, Princeton, New Jersey, 1987.
- D. Vogan, Irreducibility of discrete series representations for semisimple symmetric spaces, Representations of Lie groups, Kyoto, Hiroshima, 1986 (K. Okamoto and T. Oshima, eds.), Advanced Studies in Pure Mathematics, volume 14, Kinokuniya Company, Ltd., Tokyo, 1988, pp. 191-221.
- D. Vogan, Noncommutative algebras and unitary representations, The Mathematical Heritage of Hermann Weyl, R. O. Wells, Jr., ed., Proceedings of Symposia in Pure Mathematics, vol. 48, American Mathematical Society, Providence, Rhode Island, 1988.
- D. Vogan, Dixmier algebras, sheets, and representation theory, 333-395, Operator Algebras, Unitary Representations, Enveloping Algebras, and Invariant Theory (A. Connes, M. Duflo, A. Joseph, and R. Rentschler, eds.), Birkh"auser, Boston, MA, 1990.
- D. Vogan, Associated varieties and unipotent representations, Harmonic Analysis on Reductive Groups (W. Barker and P. Sally, eds.), Birkh"auser, Boston-BaselBerlin, 1991.
- D. Vogan, The local Langlands conjecture, 305-379, Representation Theory of Groups and Algebras, (J. Adams et al., eds.), Contemporary Mathematics 145, American Mathematical Society, Providence, Rhode Island, 1993.
- D. Vogan, Unitary representations of reductive Lie groups and the orbit method preprint.
- D. Vogan, Unipotent representations and cohomological induction, 47-70, The Penrose Transform and Analytic Cohomology in Representation Theory (M. Eastwood, J. Wolf, and R. Zierau, eds.), Contemporary Mathematics 154, American Mathematical Society, Providence, Rhode Island, 1993.
- D. Vogan, The unitary dual of G2, Invent. math. 116 (1994)), 677-791.
- D. Vogan and N. Wallach, Intertwining operators for real reductive groups, Adv. in Math. 82 (1990)), 203-243.
- D. Vogan and G. Zuckerman, Unitary representations with non-zero cohomology, Compositio Math. 53 (1984)), 51-90.
- J. von Neumann, Die eindeutigkeit der Schr"oderschen Operatoren, Math. Ann. 104 (1931)), 570-578.
- T. Vust, Operation de groupes reductifs dans un type de c^ones presques homogenes, Bull. Soc. Math. France 102 (1974)), 317-333.
- N. Wallach, Harmonic Analysis on Homogeneous Spaces, Marcel Dekker, New York, 1973.
- N. Wallach, On the unitarizability of derived functor modules, Invent. Math. 78 (1984)), 131-141.
- N. Wallach, Real Reductive Groups I, Academic Press, San Diego, 1988.
- N. Wallach, Real Reductive Groups II, Academic Press, San Diego, 1992.
- F. Warner, Foundations of Differentiable Manifolds and Lie Groups, Scott, Foresman and Company, Glenview, IL, 1971..
- Harmonic Analysis on Semisimple Lie Groups, vols. I and II., Springer-Verlag, Berlin, Heidelberg, New York, 1972.
- A. Weil, L'integration dans les Groupes Topologiques et ses Applications, Actual. Sci. Ind., vol. 869, Hermann et Cie., Paris, 1940.
- A. Weil, Sur certaines groupes d'operateurs unitaires, Acta Math. 111 (1964)), 143211.
- A. Weil, Basic Number Theory, Springer-Verlag, New York, Heidelberg, Berlin, 1974.
- H. Weyl, Theorie der Darstellung kontinuierlicher Gruppen. I, II, III, Math. Z. 24 (1925, 328-376), 377-395.
- E. Wigner, On unitary representations of the inhomogeneous Lorentz group, Ann. of Math. 40 (1939), 149-204.
- H. Wong, Dolbeault cohomologies and Zuckerman modules associated with finite rank representations, Ph.D. dissertation, Harvard University, 1991.
- A. Zelevinsky, Induced representations of reductive p-adic groups II. On irreducible representations of GL(n), Ann. Scient. Ecole Norm. Sup. 13 (1980), 165-210.
- A. Zelevinsky, A p-adic analogue of the Kazhdan-Lusztig conjecture, Funct. Anal. Appl. 15 (1981)), 9-21.
- A. Zelevinsky, Two remarks on graded nilpotent classes, Russian Math. Surveys 40 (1985)), 249-250.
- D. Zhelobenko, Harmonic Analysis on Complex Semisimple Lie Groups. Mir, Moscow, 1974.
- R. Zierau, Unitarity of certain Dolbeault cohomology representations, The Penrose Transform and Analytic Cohomology in Representation Theory (M. Eastwood, J. Wolf, and R. Zierau, eds.), Contemporary Mathematics, vol. 154, American Mathematical Society, Providence, Rhode Island, 1993, pp. 239-259.
- G. Zuckerman, Tensor products of finite and infinite dimensional representations of semisimple Lie groups, Ann. of Math. 106 (1977), 295-308.