
Quaternionic groups

November 5, 2014

The point of these notes is to relate some of the quaternionic groups
discussed in class to complex matrix groups. In particular, the notation
Sp(n) for the quaternionic unitary group suggests that it has something to
do with symplectic groups. This is true, and will be explained in (0.4b).
There is some disagreement about whether symplectic groups should be
labelled with 2n (the dimension of the vector space) or n (the “rank,” which
we’ll talk about eventually). I think that for the noncompact groups 2n
wins, but for the compact groups, there is more support for n. Anyway the
result is that (0.4b) looks a bit funny, but that’s life.

Recall the division ring of quaternions

H = {a+ bi+ cj + dk | a, b, c, d ∈ R}. (0.1a)

Multiplication is defined by

i2 = j2 = k2 = −1, ij = k = −ji, jk = i = −kj, ki = j = −ik.
(0.1b)

A more succinct way to write this is

H = C[j], j2 = −1, jzj−1 = z. (0.1c)

That is, any quaternion h may be written uniquely as

h = z + jw (z, w ∈ C); (0.1d)

the multiplication rules are determined by (0.1c). There is an algebra anti-
automorphism of the quaternions given by

a+ bi+ cj + dk = a− bi− cj − dk, h1h2 = h2h1. (0.1e)

A right quaternionic vector space V is automatically a complex vector
space, just by restricting scalar multiplication to the subring C ⊂ H. An
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H-linear map from V to V is automatically C-linear, so we get an inclusion
of R-algebras

HomH(V, V ) ↪→ HomC(V, V ), (0.2a)

and an inclusion of Lie groups

GLH(V ) ↪→ GLC(V ). (0.2b)

� GLH(V ) is not a complex Lie group, even though it has real dimen-
sion divisible by 2 (even 4!).

What tells you that the complex vector space V comes by “restriction
of scalars” from a quaternionic vector space is the real-linear map

j : V → V, j(v · z) = j(v) · z, j2 = −I. (0.2c)

(By the second requirement, j−1 = −j.) We can define

σH : HomC(V, V )→ HomC(V, V ), σH(T ) = j−1Tj = −jT j. (0.2d)

Because of the two occurrences of j, σH(T ) is complex-linear, so σH is well-
defined; but the map σH itself is C-conjugate linear. Now it is more or less
obvious that

HomH(V, V ) = HomC(V, V )σH , GLH(V ) = GLC(V )σH . (0.2e)

Now let’s see how all this looks on the level of the compact subgroups.
We start therefore with a positive definite Hermitian form 〈·, ·〉 on V . Recall
that this means (in addition to bi-additivity) that

〈v · h,w〉 = h〈v, w〉, 〈v, w · h′〉 = 〈v, w〉h′ (0.3a)

and that
〈v, w〉 = 〈w, v〉. (0.3b)

(This is just like the definition of a Hermitian form on a complex vector
space, except that I’ve put the conjugate-linearity in the first variable instead
of the second. The reason is to simplify a lot of matrix formulas (in which
the noncommutativity of H matters). Some mathematicians think that one
should do the same thing with complex Hermitian forms, but I think that
goes against too much tradition.) As long as V is finite-dimensional, any H-
linear transformation H of V has an adjoint H∗ defined by the requirement

〈v,Hw〉 = 〈H∗v, w〉. (0.3c)
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The R-linear algebra antiautomorphism ∗ of HomH(V, V ) gives rise to a
group automorphism of order two

θH(g) = (g∗)−1 (g ∈ GLH(V )). (0.3d)

The group of fixed points of this involution is (very easily seen to be) the
quaternionic unitary group (of H-linear transformations preserving the Her-
mitian form):

UH(V ) = {g ∈ GLH(V ) | θH(g) = g}. (0.3e)

This kind of formula works for R and C as well: for example, if W is a
finite-dimensional real vector space with a positive-definite quadratic form,
then the adjoint operation for R (which is transpose on the level of matrices
in an orthonormal basis) satisfies

θR(g) = (g∗)−1, UR(W ) = O(W ) = {g ∈ GLR(W ) | θR(g) = g}.

The positive definite Hermitian form on the quaternionic vector space V
defines a positive definite Hermitian form on the underlying complex vector
space V , by the formula

〈v, w〉C = a+ bi whenever 〈v, w〉H = a+ bi+ cj + dk. (0.3f)

(Like the quaternionic form from which it came, this complex Hermitian
form is conjugate-linear in the first variable and linear in the second. If you
prefer a Hermitian form the way they’re usually defined, just interchange the
arguments, or take the complex conjugate.) If H ∈ HomH(V, V ) is identified
by (0.2a) with a complex linear map on V , then it’s clear from this definition
that

quaternionic adjoint of H = complex adjoint of H ∈ HomC(V, V ) (0.3g)

At the same time, we can define a complex symplectic form on V by

ω(v, w) = c− di whenever 〈v, w〉H = a+ bi+ cj + dk. (0.3h)

Equivalently,
ω(v, w) = 〈vj, w〉C. (0.3i)

(There is very little chance I got the signs exactly right in these formulas.)
Any complex-linear transformation T has a symplectic adjoint ωT defined
by

ω(Tv,w) = ω(v, (ωT )w). (0.3j)
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We can compute this using (0.3i): the result is

ωT = σH(T ∗). (0.3k)

Formally it is clear that ω(ωT ) = T , so the symplectic adjoint is an involutive
algebra antiautomorphism. In particular, this implies that

the involutions σH and ∗ commute with each other. (0.3l)

If we define an involutive automorphism by

τSp(g) = (ωg)−1 = σH ◦ θC (g ∈ GLC(V )) (0.3m)

then it is clear that the complex symplectic group is the group of fixed
points:

Sp(V, ω) = GLC(V )τSp . (0.3n)

So here is what we know.

1. GLH(V ) is the group of fixed points of the involution σH acting on
GLC(V ) (see (0.2e)).

2. The complex unitary group UC(V ) is the group of fixed points of the
involution θC acting on GLC(V ) (complex version of (0.3e)).

3. The quaternionic unitary group UH(V ) is the group of fixed points of
the involution θH acting on GLH(V ) (0.3e). This in turn is the same as
the group of fixed points of θC acting on GLH(V ) ⊂ GLC(V ) (because
of (0.3g)).

4. The involutions θC and σH of GLC(V ) commute with each other (0.3l).

5. The complex symplectic group Sp(V, ω) is the group of fixed points of
the involution τSp = σH ◦ θC (0.3n) acting on GLC(V ).

Putting these facts together, we get

UH(V ) = {g ∈ GLC(V ) | θC(g) = g and σH(g) = g}
= GLH(V ) ∩ UC(V ).

(0.4a)

We can rewrite (0.4a) as

UH(V ) = {g ∈ GL(2n,C) | θC(g) = g and τSp(g) = g}
= Sp(V, ω) ∩ UC(V ) :

(0.4b)
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the quaternionic unitary group may be identified with the complex-linear
transformations of V preserving both the complex symplectic form and the
(positive) complex Hermitian form arising from the quaternionic Hermitian
form.

If V = Hn, then UH(V ) = Sp(n), and Sp(V, ω) = Sp(2n,C); so (0.4b)
is the relationship we want between the quaternionic unitary group and the
complex symplectic group.
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