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1. Introduction. Suppose G is a Lie group, g its Lie algebra, and g* the dual vector space. It is a
classical idea of Kirillov and Kostant (see [10] and [11]) that irreducible unitary representations of G are
related to the orbits of G on g*. This idea finds its purest form in

Theorem 1.1 (Kirillov [10]). Suppose G is a connected and simply connected nilpotent Lie group. Then
there is a bijection from the set g* /G of coadjoint orbits of G to the set G of equivalence classes of irreducible
unitary representations of G.

For other groups there are complications even with regard to what is true (never mind what one can
prove). We recall very briefly a few of these. First, not every coadjoint orbit can correspond to a represen-
tation: one has to impose an appropriate “integrality” requirement on the orbit. This complication occurs
already for G the circle group.

Second, one needs a little more information beyond the orbit itself: very roughly speaking, something
like a local coefficient system on the orbit. This complication occurs in semidirect product groups K x V
(with K compact and V' a vector group on which K acts) whenever the isotropy groups of the K action on
V can be disconnected. More serious problems in this direction were found by Rothschild and Wolf in [17].
They gave an example in the split real group of type G in which two representations of different infinitesimal
characters could be attached to the same coadjoint orbit.

Third, the same unitary representation may arise from each of several coadjoint orbits. Exactly when this
complication occurs depends on exactly how the correspondence from orbits to representations is defined.
In the approach we will follow (due mostly to Duflo) the simplest example has G = SU(2); the trivial
representation is attached to the orbit {0} and also to the orbit of the half-sum of positive roots.

Fourth, some unitary representations are not attached to any coadjoint orbit. This complication appears
first for SL(2,R), where the complementary series representations are not attached to orbits.

Fifth, the unitary representations attached to some coadjoint orbits are not irreducible. The simplest
way that this happens is that the representation is zero. With Duflo’s version of the correspondence, this
happens for G = U(3), in the following way. Coadjoint orbits for U(3) are parametrized by decreasing
sequences of three real numbers. Consider the orbit O parametrized by (b,—1/2,—1/2), with b a real
number greater than —1/2. These orbits are all isomorphic to CP?, the complex projective plane. Duflo’s
integrality condition (admissibility, as defined in section 6) amounts to b € Z. The representation Duflo
attaches to Oy is the space of holomorphic sections of the b — 1 tensor power of a standard line bundle. For
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b— 1> 0, this space is S*~!(C?®), a symmetric power of the standard representation of U(3); but for b = 0
there are no holomorphic sections, so the representation is zero. Of course a more interesting possibility is
that the representation is actually reducible. The simplest example I know of this phenomenon occurs in
the complex form of the exceptional group Gs, for a singular elliptic coadjoint orbit. The representation
attached to such an orbit is always a unitary degenerate series representation (induced from a non-trivial
one-dimensional character of a parabolic subgroup). One such induced representation is reducible.

Finally, when G is not of type I there are terrible complications, because irreducible unitary represen-
tations of G are no longer such a natural class of objects to consider. This is first apparent in the work of
Auslander and Kostant [3], who established a version of Theorem 1.1 for solvable Lie groups.

In light of all these complications, what one might hope for along the lines of Theorem 1.1 for general
Lie groups is something like this.

Problem 1.2. Suppose G is a type I Lie group. Find a construction attaching to each pair (X,7) a
unitary representation w(X,7) of G. Here X is an orbit of G on g* satisfying an appropriate integrality
hypothesis, and 7 is some appropriate additional structure. The representations (X, 7) should be close to
irreducible, and they should include most of the interesting irreducible unitary representations of G.

We will eventually refine the statement of this problem substantially (see Problem 6.3). But we can discuss
ideas for the solution of the problem without a clearer statement, and this we do next. The classical strategy,
known as geometric quantization, is this. A coadjoint orbit X carries a natural G-invariant symplectic
structure. (The definition will be recalled in Corollary 2.13.) There are various standard constructions of
unitary representations of G, beginning with some data D and leading to a unitary representation (D).
Attached to such a construction it is often possible to find a symplectic manifold Y (D) with a G action. The
idea of geometric quantization can be phrased in this way: given a coadjoint orbit X, one tries to find data
D so that X ~ Y (D) (as symplectic manifolds with G action). If this can be done, then one says that 7(D)
is the unitary representation associated to X. To use this idea to solve Problem 1.2, one must show that
every (appropriately integral) coadjoint orbit is isomorphic to some Y (D), and that 7(D) is independent of
the choice of D (subject to the condition X ~ Y (D)).

Here is an example. One standard construction of a unitary representation begins with an action of
G on a smooth manifold M. (A good example to keep in mind is the action of G = SL(2,R) on the real
projective space M = RP! of lines through the origin in R?. Thus M is just a circle, but the action of G is
interesting and complicated.) To get a unitary representation we need a Hilbert space, and it is natural to
consider something like L?( M), the space of square-integrable functions on M. To define this space we must
choose a measure on M. In order to get a natural action of G on L?(M) by unitary operators, the measure
must be preserved by the action of G. In many examples (including the action of SL(2,R) on the circle
described above) there is no nice G-invariant measure. To circumvent this problem, one can introduce the
real line bundle DY/2(M) of half-densities on M. (The precise definition will be recalled in Definition 5.5.)
For us the central fact is that the tensor product of this bundle with itself is the density bundle D*(M),
whose sections are the (signed) smooth measures on M:

DY2(M) @ DY?(M) ~ D' (M) (1.3)(a)

Here the tensor product is of line bundles on M.

Consider now the space S of compactly supported smooth sections of ’Dé/ 2(M ). (The subscript C
denotes complexification.) If s; and sz belong to S, then it follows from (1.3)(a) that s;33 is a compactly
supported section of DL(M); that is, it is a compactly supported complex-valued density on M. We may
therefore define a pre-Hilbert space structure on S by

(s1,82) = /M 5152 (1.3)(b)

The completion of this pre-Hilbert space is written L2(M, D'/?), the space of square-integrable half-densities
on M. Each element g of G (and indeed each diffeomorphism of M) acts on the space S and preserves the
inner product; so we get a unitary representation

n(M):G — U(L*(M, D'?)) (1.3)(c)
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of G. (We write U(H) for the group of unitary operators on a Hilbert space H.) Now geometric quantization
asks that we find attached to M a symplectic manifold with a G action. The candidate we choose is the
cotangent bundle:

Y (M) =T*(M). (1.3)(d)

Geometric quantization says that if a coadjoint orbit X is isomorphic to the cotangent bundle T*(M) of a
G-manifold M, then we should attach to X the unitary representation of G on half-densities on M. This
is reasonable statement as far as it goes, but it doesn’t go very far. The action of G on T*(M) preserves
the zero section M C T*(M), so it is never transitive unless M is discrete. Since a coadjoint orbit is by
definition a homogeneous space, it can be isomorphic to a cotangent bundle only if it is discrete.

Fortunately it is possible to generalize this construction in many ways. The simplest is to consider in
addition to M a Hermitian line bundle £ over M, equipped with an action of G preserving the metric. Then
L ® DY?(M) is a complex line bundle on M; write S(M, L) for the space of compactly supported smooth
sections. If o1 and o3 belong to S(M, L), then we can write o; = [; ® s;; here I; is a compactly supported
section of £ and s; a nowhere vanishing section of D/2(M). Then (l1,15) . is a compactly supported complex-
valued function on M and s s is a smooth density; so the product is a compactly supported complex-valued
density. We may therefore define a pre-Hilbert space structure on S(M, L) by

(01,02) = /M(ll,lz)asﬁz- (1.4)(a)

The completion of this pre-Hilbert space is written L>(M, £ ® D'/?). We get a unitary representation
(M, L):G — U(L*(M, £ @ D'/?)) (1.4)(b)

The philosophy of geometric quantization requires also a symplectic manifold attached to M and L.
This is provided by a construction of Kostant (see [13] or [21], Proposition 4.6). From a Hermitian line
bundle £ on a real manifold M one can construct the twisted cotangent bundle

Y(M, L) = T*(M,L). (1.4)(c)

This is a fiber bundle over M with a natural symplectic structure w(£); it is an affine bundle over the
cotangent bundle. In particular, the fiber T;% (M, L) over m in M is an affine space for the vector space
T (M); that is, it is a copy of T (M) with the origin forgotten. Sections of T*(M, L) are certain special
connections on £. We can now formulate

Philosophy of Geometric Quantization (first form). Suppose that a coadjoint orbit X for a Lie
group G is isomorphic to a twisted cotangent bundle T*(M, L) (with M a smooth G-manifold and £ a
Hermitian line bundle on M). Then the unitary representation 7(M, L) is attached to X.

This philosophy has some content: the proof of Kirillov’s Theorem 1.1 shows that every coadjoint orbit
for a connected nilpotent Lie group is a twisted cotangent bundle. For more complicated groups the full
power of geometric quantization requires considering not just the real analysis construction of (1.4)(b) but
also some complex-analytic analogues; but for the purposes of this introduction the present statement will
suffice.

The geometric part of the geometric quantization approach to Problem 1.2 is therefore this: given a
coadjoint orbit X, find a twisted cotangent bundle T*(M, £) to which X is isomorphic (as a symplectic
G-space). To understand how to do that, we need to know a little more about the geometry of T*(M, L).
The main point is that the fibers T)% (M, L) are Lagrangian submanifolds; that is, the tangent space to a
fiber is always a maximal isotropic subspace for the symplectic form. In this way the symplectic manifold
T*(M, L) has a foliation with Lagrangian leaves; the base manifold M may be identified with the space of
leaves.

The idea now is to find a parallel structure in our coadjoint orbit X. Let us fix a base point f € X,
with isotropy group Gy; then

X ~G/Gy. (1.5)(a)
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We would like to find a G-invariant Lagrangian foliation of X. Since X is homogeneous, the space of
leaves must be homogeneous. The whole foliation will therefore be determined as soon as we know the leaf
Ay through the base point f; the other leaves will just be the translates g - Ay. The purely set-theoretic
requirement that X be the disjoint union of these translates imposes a very strong constraint on Ay: it
implies that there must be a subgroup H D Gy with

The requirement that Ay be an isotropic submanifold is a further condition on H: it must be a Lie group,
and

flim.e1 =0 (1.5)(c)

That is, f must define a one-dimensional representation of the Lie algebra of H. In the presence of (1.5)(c),
the assumption that Ay is Lagrangian is equivalent to

dim H/Gy = %dim G/G;. (1.5)(d)

In order for the space of leaves to be a nice manifold M, we need H to be a closed subgroup of G; and in
order for M to carry an appropriate G-equivariant Hermitian line bundle, we need a one-dimensional unitary

representation R
TEH, dr = 2mif. (1.5)(e).

(Notice that if H is connected and simply connected, then (1.5)(c) guarantees the existence of a unique 7
with differential 27if.)

Conversely, suppose that X ~ G/Gy is given, and that we can find a closed subgroup H D Gy together
with a unitary character 7 of H, satisfying (1.5)(c)—(e). Then 7 defines a Hermitian line bundle £ on
M = G/H, and one can show that some open set in T*(M, £) is G-equivariantly symplectomorphic to a
covering space of X. We will say that X is locally isomorphic to T*(M,L). In this way the geometric
problem of relating coadjoint orbits to twisted cotangent bundles is reduced to the group-theoretic problem
of finding appropriate subgroups H.

When G is a nilpotent group, the family of subgroups of G is rather rich; that is why one can find a
group H making each coadjoint orbit a twisted cotangent bundle. As G becomes more complicated, the
supply of subgroups dwindles. For reductive groups, one has the following remarkable result.

Theorem 1.6 (Ozeki and Wakimoto [16]) Suppose G is a reductive Lie group and f € g*; write G¢ for
the isotropy group. Suppose b D gy is a Lie subalgebra of g such that

i) the linear functional f vanishes on [h,b]; and
i) dimb/g(f) = 5 dimg/g;.
Then b must be a parabolic subalgebra of g. In particular, the dimension of the coadjoint orbit G - f
must be exactly twice the codimension of a parabolic subalgebra.

Ozeki and Wakimoto are actually much more precise about the relationship between f and b.

Corollary 1.7. Suppose G is a reductive Lie group, and X is a coadjoint orbit for G. Assume that the
dimension of X is not equal to twice the codimension of any parabolic subalgebra of g. Then X is not locally
isomorphic to a twisted cotangent bundle T*(M, L) for G.

The dimensions appearing in Corollary 1.7 are easy to compute. One finds, for example

Corollary 1.8. Suppose G is a split simple group over R or C, not of type A; and suppose X is a
coadjoint orbit of minimal non-zero dimension. Then X is not locally isomorphic to a twisted cotangent
bundle for G.

For these coadjoint orbits, the philosophy of geometric quantization as described above does not suggest a
representation to attach to X. Our goal in this paper is to find an appropriate extension of that philosophy.
The main idea, taken from [8] and [7], is to replace the Lagrangian foliation considered in (1.5) by a family
of Lagarangian submanifolds which are allowed to overlap. Here is a formal definition.
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Definition 1.9 (Guillemin-Sternberg and Ginsburg; see [8], Definition 2.1, and [7], A.1). Suppose X is
a symplectic manifold. A Lagrangian covering of X is a diagram of smooth manifolds and smooth maps

Z

X M

subject to the two conditions below.

a) The diagram is a double fibration ([9], page 340). That is, the maps 7 and p are fibrations, and 7 x p
is an embedding of Z in X x M.

This condition allows us to identify each fiber L,, = p~1(m) with a subset of X, and each fiber M, = 7~ 1(z)
with a subset of M.

b) Each fiber L,, is a Lagrangian submanifold of X.

If X carries a symplectic action of G, then we say that the Lagrangian covering is equivariant if Z and
M carry actions of G making = and p G-maps. It is called homogeneous if Z is a homogeneous space (in
which case X and M must be as well).

Just as in the setting of (1.4) and (1.5), the manifold M is indexing a collection of Lagrangian subman-
ifolds that cover X. The first observation, due essentially to Ginzburg, is that nice Lagrangian coverings
often exist.

Theorem 1.10 (see [7], end of Appendix A). Suppose G is a compler reductive Lie group, and X =
G- f C g* is a coadjoint orbit. Then there is an equivariant Lagrangian covering of X (Definition 1.9) with
M =G/Q a partial flag variety for G.

A proof will be given in section 8; the main ingredient is a dimension estimate due to Spaltenstein in
[19].

We turn now to a discussion of representation theory. In the setting of (1.5), the space of the represen-
tation was (roughly speaking) a space of sections of a line bundle £pr on M = G/H. We want to describe
this space in terms of the symplectic manifold X = G/G. To do that, we first pull back the line bundle to a
line bundle £Lx on X; Lx is induced by the character 7x = 7|g ; of Gy. Because Lx is pulled back from M
by the projection p: X — M, it makes sense to speak of sections of £Lx that are “constant along the fibers of
p.” These fibers are just the leaves of the Lagrangian foliation of X. Sections of £j; may be identified with
sections of Lx constant along the leaves of our specified Lagrangian foliation.

Suppose now that we are in the setting of Definition 1.9, and that G is acting compatibly on X, Z,
and M. In order to have a parallel construction in the setting of Definition 1.9, we need first of all a
(G-equivariant) line bundle

Ly — M. (1.11)(a)

(Henceforth we will omit mention of the assumed G-equivariance of the structures introduced.) We can then
define £z to be the pullback of L to Z by the fibration p:

Lz =p"(Lm)- (1.11)(b)

The representation we want will be on a space of sections of Ljs; equivalently, on a space of sections of
Lz that are constant along the fibers of p. Recall that these fibers may be identified with Lagrangian
submanifolds of X; so already we have a construction reminiscent of (1.5).

The full space of sections of Ly is too large to carry the representation we want, however. In Definition
1.9, suppose that X has dimension 2n, and that the fibers of 7 have dimension d. Then Z has dimension
2n + d. Since the fibers of p are Lagrangian in X, they have dimension n; so M has dimension n + d.
The philosophy of geometric quantization says that X should correspond to a representation of “functional
dimension” n; that is, to something like a space of sections of a line bundle on an n-dimensional manifold.
If d is not zero, M is too large. (If d = 0, then Z is a covering of X, and so inherits from it a symplectic
structure. The map p provides a nice Lagrangian foliation of Z, and we are (at least in the homogeneous
case) very close to the setting (1.5).) So we need a way to pick out a nice subspace of sections of L.
Carrying this out in detail will occupy most of this paper; for the moment we offer only a brief sketch.
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There is a fiber bundle B = B(X) over X for which the fiber B, over z is the variety of Lagrangian
subspaces of T, (X). (Thus B, is a compact manifold of dimension n(n + 1)/2.) We define a bundle map
over X

T:Z = B (1.11)(c)

as follows. Suppose z € Z; write x = 7(z) € X and m = p(m) € M. Then the fiber L,, of p over m is a
Lagrangian submanifold of X containing z; so its tangent space T,(L,,) is a Lagrangian subspace of T, (X).
We set 7(2) = Typ(Lm).

Since each point of B is an n-dimensional real vector space, there is a tautological n-dimensional real
vector bundle over B. Taking its top exterior power and complexifying provides a line bundle Dg — B. (The
D stands for determinant.) Roughly speaking, we need a square root £z of Dg. A little more precisely, we
need a twisted version of Kostant’s “symplectic spinors” on the base symplectic manifold X (see [12]). This
is an infinite-dimensional vector bundle

Sx = X; (1.11)(d)

the fiber over x may be identified with the smooth part of the metaplectic representation attached to the
symplectic vector space T (X), tensored with a one-dimensional twist. When X is a coadjoint orbit, a G-
equivariant family of twisted symplectic spinors will be specified by an “admissible orbit datum” in the sense
of Duflo (Definition 6.2). The reducibility of the metaplectic representation gives a natural decomposition
S = Seven @ §°, From these twisted spinors we will construct the line bundle £g, and an embedding

smooth sections of S¢V¢™ — smooth sections of Lp (1.11)(e)

Now we can use the map 7: Z — B to pull Lz back to Z. The last ingredient we will need is an isomorphism

T(Lp) =~ L. (110

Using the embedding (1.11)(e) we can identify S¢?¢” with a space of sections of £Lg. These sections may be
pulled back using 7 to sections of 7*(Lp) over Z, and then identified with sections of £z using (1.11)(f).
Write Wge™ for the resulting space of sections of £z. Then the (smooth) representation of G we want to
consider is on the space

W™ N (smooth sections of £yr) (1.11)(9)

inside sections of £z. The problem of constructing a unitary structure on this space we will leave to a future
paper. (Even to guarantee the existence of an invariant Hermitian form requires an additional assumptions
on Ly.)

2. Symplectic and Poisson manifolds. We begin by recalling the definition of symplectic manifold.

Definition 2.1. A symplectic manifold is a smooth manifold X endowed with a 2-form wx, subject to
the following conditions. Recall first of all that a 2-form may be regarded as a smoothly varying family of
skew-symmetric bilinear forms w, on the various tangent spaces T,(X). We impose two conditions on wx.

a) Each form w, is non-degenerate; that is, for every non-zero tangent vector v € T, (X) there is a vector
w € T(X) so that wg (v, w) # 0.
b) The 2-form wx is closed.

Condition (a) is equivalent to the assumption that dim X = 2n is even, and that the nth exterior power
w' is a nowhere-vanishing volume form on X.

This definition may be made equally well in several other categories. We can define a complex symplectic
manifold, which is a complex manifold endowed with a holomorphic 2-form satisfying analogues of (a) and
(b); or a complex symplectic algebraic variety, which is a smooth complex algebraic variety endowed with an
algebraic 2-form. We will invoke these generalizations as needed.

Any bilinear form on a vector space may be interpreted as a linear map from the vector space to its
dual. On a symplectic manifold we therefore have maps from tangent spaces to cotangent spaces

T2 To(X) 2 T7(X),  7(®)(w) = we(w,v). (2.2)(a)



The non-degeneracy hypothesis on wx means that these maps are all isomorphisms, so they define a bundle
isomorphism
x:T(X) - T*(X) (2.2)(b)

from the tangent bundle to the cotangent bundle. If f € C*°(X) is a (real-valued) smooth function, then df
is a 1-form; that is, a smooth section of the cotangent bundle. We may therefore define

& =17 1(df), (22)(c)

a smooth section of the tangent bundle; that is, & is a vector field on X. It is called the Hamiltonian vector
field of f. By inspection of the definitions, we see that £y has the following characteristic property: if v is
any vector field on X, then

wx (7,€5) =7~ f; (2.2)(d)

both sides are smooth functions on X.
Using the Hamiltonian vector fields, we can now define the Poisson bracket of smooth functions f and
g on the symplectic manifold X:

{f,9} =& -9=dg(&s) = wx(&,8) = =& - f- (2.2)(e)

Here the second expression may be taken as the definition; the remainining equalities are the definition of
dg and (2.2)(d).

Proposition 2.3. Suppose (X,wx) is a symplectic manifold.

i) The Poisson bracket (2.2)(e) defines a Lie algebra structure on C*°(X).
i) The map f — &5 is a Lie algebra homomorphism from C*(X) to the Lie algebra of vector fields on X.
Its kernel consists of the locally constant functions on X.
iii) For each f € C*(X), the endomorphism g — {f,g} is a derivation of C*(X). That is, it is linear in
g, and
{f,gh} ={f,g}h+ g{f,h}.

i) If we identify derivations of C°°(X) with vector fields on X, then bracket with f corresponds to the
Hamiltonian vector field & :

{f,9}=&5-9

The elementary proof may be found in [2], Chapter 8 or [1], Chapter 3; both references use a different
sign convention from ours. The Jacobi identity for the Lie algebra structure amounts to the fact that wx is
closed. Of course (iv) is just the definition of the Poisson bracket given in (2.2)(e). One may also interpret
it as defining the Hamiltonian vector field &; in terms of the Poisson bracket.

For most of what we do, the Poisson bracket is more fundamental than the symplectic structure. At
the same time, a Poisson bracket can be defined even on some singular spaces (like closures of nilpotent
coadjoint orbits) where a symplectic structure does not make sense. We therefore recall a few highlights
from the theory of Poisson spaces.

Definition 2.4. A Poisson algebra A over a field F is a commutative algebra (with 1) over F' endowed
with a Poisson bracket
{{}AxA— A
subject to the following conditions.

a) The Poisson bracket makes A a Lie algebra over F. That is, it is bilinear, skew-symmetric, and satisfies
the Jacobi identity

{fAg: h}y={{f,9},h} + {9, {f.h}}  (f.9,h € A).
b) For each f € A, the endomorphism &; of A defined by
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is a derivation:

{f,gh} = {f,g}h + g{f, h}.

We call £ the Hamiltonian vector field of f. The Jacobi identity for the Poisson bracket says that the
map
A — Der A, fe=é&

is a Lie algebra homomorphism. (Recall that the commutator of two derivations of A is a derivation; this
defines the Lie algebra structure on Der A.)

A Poisson manifold is a smooth manifold X endowed with a real Poisson algebra structure on C*°(X).
An affine Poisson algebraic variety (over F) is an affine algebraic variety X endowed with a Poisson algebra
structure on the algebra R(X) of regular functions on X. A Poisson algebraic variety is a an algebraic
variety for which the sheaf of rings is a sheaf of Poisson algebras. More generally, a Poisson space is a ringed
space in which the sheaf of rings is a sheaf of Poisson algebras.

There is a small consistency problem to worry about in the last definitions: whether an affine Poisson
algebraic variety X is a Poisson algebraic variety. In fact it is, essentially because Poisson structures localize
well: after inverting an element h, one can (and is forced to) define

{f/h,g/h} = (h{f, g} = f{h, g} — g{f,h}) /1°.

In this way a Poisson structure on an algebra gives rise to Poisson structures on all localizations; so the
Poisson structure on R(X) makes the sheaf of rings on X into a sheaf of Poisson algebras. Similar remarks
apply in the setting of manifolds: a Poisson structure on C*°(X) gives rise to one on the sheaf of germs of
smooth functions. In this case the key fact is that the Poisson bracket is local: that if f vanishes near z,
then all Poisson brackets {f, h} also vanish near x.

Let us see how to recover something close to a symplectic structure from a Poisson structure. To
fix ideas we will concentrate on the case of algebraic varieties, but it is easy to give a parallel discussion
for manifolds. What we will see is that a Poisson structure on X provides a foliation of “most” of X by
symplectic manifolds; Poisson brackets are computed by restricting to the leaves and using the symplectic
Poisson brackets there.

Suppose therefore that A is a Poisson algebra over F. Write X = Spec A; then A can be thought of as
an algebra of functions on X. A closed point z of X is a maximal ideal m, C A. Write

Fy = A/mg, (2.6)(a)
an extension field of F. Recall that the Zariski cotangent space of X at x is the F}, vector space
T;(X) = mg/mg. (2.6)(d)

It is clear from (b) in Definition 2.4 that
{mzami} Cmg. (2:6)(c)

The Poisson bracket therefore descends to a skew-symmetric F-bilinear pairing
{}oTI(X) x THX) = Fo,  {f+mig+m}={fg}+m, (2.6)(d)

using the identifications (2.6)(a) and (2.6)(b). Write R, for the radical of {, },; the form {, }, descends to
a non-degenerate skew-symmetric form on T /R,. The Zariski tangent space at z is the dual space

T.(X) = (T; (X))" (2.6)(e)
Using the form {, }, each cotangent vector v defines a tangent vector 6(v):

5(v)(w) ={w,v}z  (v,w € T;(X)). (2.6)(/)



Write S, C T,(X) for the image of §, and R C T,,(X) for the annihilator of R, in T,. Then
Se C Ry = (T;(X)/Rq)* (2.6)(9)
On the other hand, the map § factors to an isomorphism
0:THX)/Ry =~ Sy (2.6)(h)

If S, is finite-dimensional, it follows that S, = R;; so we can use J to transfer the skew-symmetric form
{,}+ to a non-degenerate skew-symmetric form w, on S,. (In the case of a symplectic manifold, the map &
is just the inverse of the map 7 of (2.2)(b).)

Suppose now that X is an irreducible complex affine algebraic variety, with A the algebra of regular
functions. Then all the Zariski cotangent spaces are finite-dimensional, of dimension at least equal to the
dimension n of X. Equality holds exactly on the smooth part X of X, which is a dense open subset. Write
2r(z) for the rank of the bilinear form {, },. It is easy to check that each point  has an open neighborhood
U, with r(y) > r(z) for all y € U,. Consequently the rank function assumes its maximum value r on a dense
open subset U of X,;. On Uy, the subspaces R, define a subbundle of the cotangent bundle of rank n — 2r.
The annihilators of these spaces define a subbundle R* = S of the tangent bundle TU,, of rank 2r. It is
not difficult to see that the fiber S, consists precisely of the values at  of all Hamiltonian vector fields &;.
Recall that we have defined non-degenerate skew-symmetric forms w, on each fiber S,.

We now do a little holomorphic differential geometry on X. Since the Hamiltonian vector fields are
closed under Lie bracket, it follows easily that the distribution S is integrable; that is, that the family of
smooth vector fields with values in S is closed under Lie bracket. The Frobenius theorem therefore provides
a smooth foliation of Us by complex submanifolds of dimension 2r. Writing S for the submanifold through
z, we have T, S = S,. It is not difficult to check that the forms w, define a holomorphic symplectic structure
on S, and that the corresponding Poisson brackets fit together to give the original Poisson bracket on Uy, as
we wished to show.

Poisson manifolds have sometimes been defined in such a way that the nice open set Uy is all of X. This
approach excludes interesting behavior that we want to consider, however.

We record one consequence of these ideas: a characterization of symplectic manifolds among Poisson
manifolds.

Proposition 2.7. Suppose X is a smooth Poisson manifold. The following conditions are equivalent.

a) The Poisson bracket arises from a symplectic structure wx on X.

b) For every x € X, the radical R, C T;(X) of {, }» is zero (cf. (2.6)(d)).

¢) For every x € X, the subspace Sy C T,(X) is all of T,(X).

d) For every x € X, the collection {&(x)|f € C™(X)} of values at x of Hamiltonian vector fields is all of
T,(X).

We leave the proof to the reader. Of course there is a parallel statement for algebraic varieties.

Here is a fundamental example. Suppose g is a finite-dimensional real Lie algebra. Let {Xi,...,X,}
be a basis of g, and {\1,..., Ay} the dual basis of the dual vector space g*. Each \; gives rise to a vector
field aixi on g*. We define a Poisson bracket on C*(g*) by

.9} = XA, XD g3 52 28)(@

(Notice that this bracket preserves the subspace S(g) of polynomial functions on g*. It therefore makes g*
into a real affine Poisson algebraic variety.) Among the axioms for a Poisson algebra, the only difficult one to
check is the Jacobi identity. To compute the iterated Poisson brackets appearing there, we need to compute
the derivative
ON([ X, X;])
OAq.
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The function being differentiated is linear, so the derivative is constant; it is A¢([X;, X;]). Therefore

0 O0g Oh d%’9g Oh g 0O%h
ol = X M XD (3 XD g% S8 + 330 (o gt + gt 5 ).

Py25%,J

The other iterated brackets in the Jacobi identity are similar. The terms involving second derivatives cancel
for easy reasons. The remaining term is

0f Og Oh
Y A XD AKX XD 3073 3y
vt OAp OA; O
Now for any Y € g we have
Y =) A(V)X,.
q
Inserting this above gives
0f 0g Oh
X, [Xi, X;]]) o =2 ——.
gjjm o X XD g3 o o

Now it is more or less obvious that the contribution of these terms to the Jacobi identity for the Poisson
bracket vanishes because of the Jacobi identity for g.

Although the expression (2.8)(a) for the Poisson bracket is very attractive, there is a less symmetric
formulation that offers more information. The Lie algebra g acts on g* by the coadjoint action:

(ad”*(Y) - 7)(X) = —7(ad(Y)(X)) = 7([X, Y]).

In this way every element Y of g defines a vector field on g*. By abuse of notation, we will still call this
vector field Y. One computes easily that

YO = LA X)) 5

Using this formula, we can rewrite (2.8)(a) as
of

2.8)(1)
== gt

Here the action of X; is the coadjoint action.

Suppose G is a Lie group with Lie algebra g. The conclusion we want to draw from (2.8)(b) is this.
Suppose S C g* is preserved by the coadjoint action of G. Let g be any smooth function on g* vanishing
on S, and f any smooth function. Then we claim that the Poisson bracket {f, g} also vanishes on S. The
reason is that X;-g may be computed at X by differentiating g along the path Ad*(exp(tX;))-A. If X belongs
to S, then this path is contained in S; so g vanishes on the path, and the derivative is zero. The first formula
in (2.8)(b) therefore shows that {f, g} vanishes at A.

What follows is that the Poisson bracket on C*°(g*) descends to the algebra of restrictions to S of
smooth functions on g*. Here is a formal setting for this fact.

Definition 2.9. Suppose A is a Poisson algebra. An ideal J C A is called a Poisson ideal if {A,J} C J.
In this case the quotient algebra A/.J inherits a Poisson algebra structure.

There is a minor technical point about restricting smooth functions that should be addressed as well.
Definition 2.10. Suppose M is a smooth manifold and S C M. A function f on S is said to be
smooth if for every s € S there is a neighborhood Uy of s in M and a smooth function f; € C*°(U,) with the
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property that fs|v,ns = flu.ns- In this way S becomes a ringed space: the value of the sheaf on an open
set V.C Sis C®(V)

If S is closed then a partition of unity argument shows that C*°(S) = C*°(M)|s.

Proposition 2.11. Suppose G is a Lie group, S C g* is an Ad"(G)-stable subset, and U C g* is
open. Then the ideal Js(U) of smooth functions on U wvanishing on SN U is a Poisson ideal in C®(U).
Consequently C>®(S) is a Poisson algebra; and the ringed space (S,C*) is a Poisson space.

Suppose now that G is an algebraic group (over R or C) and X C g* is an Ad*(G)-stable subvariety.
Then X is an affine Poisson algebraic variety, with algebra of functions

R(X) = 5(g)/(Jx N S(g))-

This is clear from the discussion after (2.8)(b).
Fix A € g*. Using (2.8)(b) it is easy to check that the space Sy defined in (2.6)(g) is just the set of
values at A of the coadjoint action vector fields. This is precisely the tangent space to the orbit through A:

Sy ={ad*(Y)|Y € g} =T\ (G - \). (2.12)(a)

The formula (2.8)(b) also shows that if Y is regarded as a (linear) function on g*, then the derivation (Poisson
bracket with V') is just the coadjoint action of Y:

&y = ad*(Y). (2.12)(b)

(This is clearest for the basis vectors X;, but it follows at once for all Y € g.)

Corollary 2.13. Suppose G is a Lie group, and X is an orbit of the coadjoint action of G on g*.
Then the Poisson structure on X provided by Proposition 2.11 is actually a symplectic structure. At a point
X € X, the symplectic form on T\(X) is given by

wr(éy,éz) =AY, 2]) (Y, Zeg).

Sketch of proof. We give X its topology as a homogeneous space for G, to make it a manifold. In order
to apply Proposition 2.11 we need to assume that this agrees with the subspace topology from g*. This is
automatic if G is reductive, so we omit a discussion of the minor modification of Proposition 2.11 needed
for the general case. At any rate, we find on X the structure of a Poisson manifold. By the construction
in Proposition 2.11, the Hamiltonian vector fields on X are just the restrictions to X of Hamiltonian vector
fields on g*. By (2.12), these span all the tangent spaces to X. By Proposition 2.7, it follows that X is
symplectic. To compute the form explicitly, we use the ideas in (2.6). They show that

wy (§7(2), & (2)) = {f, 9}(2) (2.14)(a)

whenever f and g belong to the maximal ideal m, of functions vanishing at x. Poisson bracket with a
constant is zero; so both sides of (2.14) are unchanged if we add constants to f and g. Therefore (2.14)
is true for all f and g. In the case of a coadjoint orbit, we take Y and Z to be linear functions on g*
corresponding to elements of g; then the conclusion is that

wx(§v,&z) = {Y, Z}(A). (2.14)(b)
Finally, notice that the Poisson bracket of Y and Z is just the linear functional [Y, Z]:
{v,2} = 1v,7] (214)(c)
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This is clear from (2.7)(a) if Y and Z belong to the basis of g, and the general case is immediate from
bilinearity. Now the formula for wy in the proposition follows from (2.14)(b) and (2.14)(c). Q.E.D.

3. Hamiltonian G-spaces and moment maps. In this section we recall a little of the general theory
of Poisson spaces with Lie group actions. Since Lie groups are assembled from one-parameter subgroups,
it is helpful to begin by examining one-parameter groups of automorphisms. We are mostly interested in
motivating the definition of Hamiltonian actions, so there is no need to strive for maximum generality. We
begin therefore with a Poisson manifold X and a one-parameter group {U|t € R} of automorphisms of X.
This means first of all that each U; is a smooth automorphism of X, and that UUs = Uzys. We can make
U; an algebra automorphism of C*°(X) by (Ugf)(z) = f(U—¢z); then the last requirement is that these
automorphisms preserve the Poisson bracket.

We now have a homomorphism R — End(C*(X)). A sensible requirement to impose on the original
automorphisms Uy is that this should be differentiable. This is equivalent to the differentiability of the map

Rx X — X, (t,z) = U(z).

The derivative at 0 of Uy is an endomorphism £(U) of C*°(X): the defining relation is
d
E(Utfﬂt:o =£U)(f)- (3.1)(a)

By differentiating the requirement that U; is an algebra automorphism, we find that £(U) is a derivation:

§U)(fg) = EU)(fg + FEU)(g)- (3-1)(b)

This means that £(U) is a vector field on X. Differentiating the requirement that U; preserve Poisson
brackets shows that £(U) is a derivation of the Poisson bracket:

EU){S,9h) = U1, 9} +{F,£U)(9)}- 3.1)(¢)
We can recover Uy from £(U) by solving the differential equation
L) = WA, Vo) = /. (31)()

This follows immediately from (3.1)(a) and the composition law for U;.) Conversely, suppose £(U) is an
endomorphism of C*(X) satisfying (3.1)(b) and (3.1)(c), and Uy is a family of endomorphisms of C*°(X)
satisfying (3.1)(d). Then Uy is a one-parameter group of Poisson algebra automorphisms of C*°(X). This
identifies smooth one-parameter groups U of automorphisms of the Poisson algebra C'°°(X) with certain
vector fields £(U) satisfying (3.1)(c). (Not all vector fields appear, because the differential equation (3.1)(d)
may not have a solution for all ¢.) But it certainly suggests that we should look for interesting vector fields
satisfying (3.1)(c).

If f € C*(X), then the Hamiltonian vector field {; of Definition 2.4 satisfies (3.1)(c). If there is a
corresponding one-parameter group U (f); of automorphisms of X, then the automorphisms must preserve
each leaf of the symplectic foliation (of an open subset of X) discussed in (2.6). More general Poisson
automorphisms may permute these leaves. It is natural to regard the automorphisms attached to Hamiltonian
vector fields as “inner.” Here is a definition.

Definition 3.2. Suppose X is a Poisson manifold (Definition 2.4) endowed with a smooth action of a
Lie group G by Poisson automorphisms. We say that the action is Hamiltonian (or that X is a Hamiltonian
G-space) if we are given a linear map
j:g = C™(X)
with the following properties.

a) The map ji intertwines the adjoint action of G with its action on C*°(X).

12



b) For every Y € g, write Y; for the one-parameter group of automorphisms of X given by the action of
exp(tY). Then the corresponding vector field £(Y) on X (cf. (3.1)) is the Hamiltonian vector field
attached to the function i(Y) on X.

The assumption is slightly stronger than the requirement that each one-parameter subgroup in G be
generated by a Hamiltonian vector field. By differentiating the requirement in (a) and using (b), we find
that i must be a Lie algebra homomorphism.

A linear map from a finite-dimensional vector space into C*° (X)) is precisely the same thing as a smooth
map from X to the dual vector space. In the setting of Definition 3.2, we define the moment map for the
Hamiltonian G-space to be

wX =gt w@)Y)=pY)z) (YegzeX). (3.3)(a)

The same formula shows how to define i in terms of pu. The first condition in Definition 3.2 may be
immediately reformulated in terms of u: it just says

1 intertwines the action of G on X with the coadjoint action on g*. (3.3)(b)
For the second condition, recall that the smooth map pu gives a pullback map on smooth functions:
p:C>®(g*) —» C=(X).

We know that fi is a Lie algebra homomorphism. This turns out to be equivalent to the requirement that
p* preserve Poisson brackets:

{wfwgt =pf9y  (f,9€C®(g") (33)(c)

(That (3.3)(c) implies that g is a Lie algebra homomorphism is obvious from (2.14)(c). For the other
direction, we try to prove (3.3)(c) at a point x € X, say with u(z) = A. We can find “Taylor” expansions
for f and g at A, as

F=a+Y ai(Xi = AX)) + D (Xi = MX))X; — MX)) fis
i i<j

here a and a; are constants, and f;; are smooth functions. Of course there is a similar expansion for g, and
we can pull them all back to X by p*. Now use these expansions to compute Poisson brackets at x. The
constants like a and A\(X;) drop out. The linear terms satisfy

" (Xa), " (X;)} = p*{Xs, X;}

because pu*(X;) = fi(X;), and we are assuming that f is a Lie algebra homomorphism. The quadratic terms
belong to the square of the maximal ideal of functions vanishing at x, and so don’t contribute to the Poisson
bracket at x (compare (2.6)(c)). The conclusion is that (3.3)(c) holds at the point z.) Finally, we can
obviously write condition (b) of Definition 3.2 as

for every Y € g, the vector field on X induced by Y is the Hamiltonian vector field &,+y. (3.3)(d)

We have shown that Definition 3.2 is equivalent to

Definition 3.4. Suppose X is a Poisson manifold endowed with a smooth action of a Lie group G
by Poisson automorphisms. We say that the action is Hamiltonian if we are given a smooth G-equivariant
Poisson mapping (the moment map)

wX — gt

with the following property: for every Y € g, write £(Y) for the vector field on X induced by the one-
parameter group of automorphisms given by the action of exp(tY’). Then

‘f(Y) = §H*Y-
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Here on the right we regard Y as a linear functional on g*, pull it back to a smooth function on X via u,
and then form the corresponding Hamiltonian vector field.

In light of (3.1)(d), this condition on p may be reformulated as follows: for every smooth function f on
X, we have
d .
E(f(exp(—tY) - 7)) |t=0 = {1"Y, f}.

The notion of Hamiltonian G-space extends readily to some singular spaces. The best general theory
of such spaces is in the algebraic setting, so we begin with that. Suppose X is a complex affine Poisson
algebraic variety, with R(X) its ring of regular functions. (This means that R(X) is a complex Poisson
algebra that is finitely generated as a commutative algebra.) If G is an algebraic group, then an algebraic
action of G on X is just an algebraic action of G on R(X) by Poisson algebra automorphisms:

G x R(X) - R(X). (3.5)(a)

To say that this action is algebraic means that every element of R(X) belongs to a finite-dimensional G-
invariant subspace V' C R(X), and that the corresponding homomorphism from G to GL(V) is algebraic.
Such a homomorphism has a differential, which is a Lie algebra homomorphism from g to End(V). (The
Lie algebra structure on End(V') is commutator of linear transformations.) The action of G on R(X) may
therefore be differentiated to get a Lie algebra homomorphism

&g — End(R(X)). (3.5)(b)
Because G acts by algebra automorphisms, £ acts by derivations:

§Y)(f9) = (€Y)fg+ F(E(Y)g) (3-5)(c)

Similarly, ¢ acts by Poisson algebra derivations:

EY)({f,9}) =LYV, 9} + {1, £(YV)g}- (3-5)(d)

Definition 3.6. Suppose X is a complex affine Poisson algebraic variety, and G is an algebraic group
acting algebraically on X by Poisson automorphisms. Write

&g — End(R(X))
for the differential of this action. We say that the action is Hamiltonian if we are given a linear map
f:g = R(X)

with the following properties.

a) The map f intertwines the adjoint action of G with its action on R(X).
b) For every Y € g, the endomorphism £(Y') of R(X) is the Hamiltonian vector field attached to a(Y):

E(Y) = &uy)-

Just as in the setting of manifolds, this definition may conveniently be recast in terms of moment maps.

Definition 3.7. Suppose X is a complex affine Poisson algebraic variety, and G is an algebraic group
acting algebraically on X by Poisson automorphisms. We say that the action is Hamiltonian if we are given
an algebraic G-equivariant Poisson mapping (the moment map)

wX —g*
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with the following property: the differential £ of the G action on X is given by

f(Y) = §M*Y-

Here on the right we regard Y as a linear function on g*, pull it back to a regular function on X via p, then
form the corresponding Hamiltonian vector field.

Similarly we can define Hamiltonian actions on general algebraic varieties. To define a Hamiltonian
action on a general Poisson space, we need to know how to differentiate the group action on the sheaf of
rings, in order to write a condition like (b) in Definition 3.6. As usual we avoid trying to write the most
general natural definition, since we do not know what that might be.

In the philosophy of geometric quantization, Hamiltonian G-spaces are the (crudest) classical analogues
of unitary representations of G. Corresponding to irreducible representations are the homogeneous Hamil-
tonian G-spaces. These were classified by Kostant.

Proposition 3.8 ([11], Theorem 5.4.1.) Suppose X is a homogeneous Hamiltonian Poisson G-manifold
(Definition 3.4). Then the moment map p exhibits X as a covering of a coadjoint orbit G - f C g*; so X is
actually a symplectic manifold.

Proof. Fix x € X, and write G, for the isotropy group at z; so X ~ G/G,. Define f = u(z) € g*,
and write G for the isotropy group; then G, C Gy since u is G-equivariant. It remains to show that G,
is open in Gy; that is, that the two groups have the same Lie algebra. For Y € g, we regard Y as a linear
function on g*, and pull it back to a smooth function p*Y on X. By the definition of Hamiltonian action,
this map from g to C*°(X) is a Lie algebra homomorphism. Exactly as in the proof of Corollary 2.13, we
may therefore compute

We (gu*Ya gu*Z) = :U’*([Ya Z])(:U)
=[Y, Z)(u(x)) = 1Y, Z](f)
= wy(€y,€z)-

Suppose now that Y € gy. Then & (f) belongs to the radical of the form wy, so the preceding equation
implies that &,+v(z) belongs to the radical of w,. Because w, is non-degenerate on the values at z of
Hamiltonian vector fields (see the discussion after (2.6)), it follows that £,y (z) = 0. By Definition 3.2(b),
it follows that the vector field {(Y") vanishes at z; that is, that ¥ € g,. The other containment g, C g¢ is
clear. Q.E.D.

Here is a standard way to construct Hamiltonian G-spaces. Suppose M is a manifold with a smooth
action of G. This means in particular that we are given a Lie algebra homomorphism ¢ from g to vector fields
on M. Now let X = T*M be the cotangent bundle of M with its standard symplectic structure. The action
of G by diffeomorphisms of M automatically lifts to an action of G by symplectomorphisms of X. Now each
vector field 7 on M may be identified with a smooth function fr on X; the value of f, at the cotangent
vector (m,v) is given by evaluating the tangent vector 7(m) on the covector v. This mapping sends Lie
bracket of vector fields to Poisson bracket of functions on X. The map f for the Hamiltonian G-space X
(Definition 3.2) sends Y € g to the function f¢(yy. One can check that this map makes X a Hamiltonian
G-space; of course the difficult part is condition (b) of Definition 3.2. The corresponding moment map pu
sends the cotangent vector (m,v) to the linear functional Y — (£(Y)(m),v) on g. Here the pairing on the
right is between tangent vectors and covectors at m.

4. Lagrangian subspaces. A central notion in symplectic geometry is that of Lagrangian submanifold.
In this section we will consider how to extend that notion to Poisson spaces. We begin with the simplest
linear setting, and gradually generalize it.

Definition 4.1. Suppose F' is a field, W is a finite-dimensional F-vector space, and w is a non-
degenerate skew-symmetric bilinear form on W. (We say that the pair (W,w) is a symplectic vector space
over F.) The symplectic group of W is the group Sp(W) of F-linear transformations of W preserving w. In
analogy with (2.2), we define a linear isomorphism

W = W, 7(v)(w) = w(w,v). (4.1)(a)



Suppose V' C W is any subspace. Set
Vi ={weW|ww,V) =0}, (4.1)(b)

the preimage under 7 of the annihilator of V' in W*. If we need to emphasize the dependence on w, we may
write V. Then 7 factors to a linear isomorphism

Tv: WV = V* (4.1)(e)

From this it follows that
dimV + dim V+ = dim W. (4.1)(d)

Evidently (V+)+ D V; because (4.1)(d) shows that these spaces have the same dimension, we get
(VHt=V. (4.1)(e)
Dually, the restriction of 7 to V' provides an isomorphism
Sv:V = (W/VH)*. (4.1)(f)

This map is the transpose of 7y .

We say that a subspace I C W is isotropic if I C I+; that is, if w|r = 0. We say C is co-isotropic if
C+ C C; that is, if C+ is isotropic. We say L is Lagrangian if it is both isotropic and co-isotropic; that is,
if Lt = L.

Definition 4.2. Suppose (W, w) is a symplectic vector space over F' of dimension 2n. The Lagrangian
Grassmannian is the collection B(W) of Lagrangian subspaces of W; it is a subset of the Grassmannian of
all n-dimensional subspaces L of W, defined by the algebraic condition w|r = 0.

Fix a Lagrangian subspace L of W. The Siegel parabolic subgroup defined by L is the isotropy group

P(L) = {g € Sp(W)|gL C L}. (4.2)(a)
Tts unipotent radical is the normal subgroup
U(L)={g € P(L)|g|r =1dr}. (4.2)(b)
Obviously restriction to L defines an inclusion
p(L): P(L)/U(L) — GL(L). (4.2)(c)
We will see in Proposition 4.4 that p(L) is an isomorphism. We define the determinant character of P(L) by
x(L): P(L) = F*,  x(L)(p) = det(p|) = det(p(L)(p))- (4.2)(d)
Recall from (4.1)(f) the isomorphism 6r:L — (W/L)*. If uw € U(L), w € W, and v € L, then
w((u—1)w,v) = w(w, (vt —1)v) = w(w,0) = 0. Consequently (u—1)w € L+ = L,sou—1 € Homp(W/L, L).
In light of the isomorphism &y, this gives
u—1¢€ Homp(W/L,L) ~ Homp(W/L,(W/L)*). (4.2)(e)

That is, u — 1 gives rise to a bilinear form on the vector space W/L. By inspection of the definition of dr,
the form is

By(v+ Lw+ L) = w(w, (u— 1)o). (4.2)(f)

Proposition 4.3. Suppose (W,w) is a finite-dimensional symplectic vector space over F, L is a La-

grangian subspace, and u € U(L) (cf. (4.2)(b)). Then the bilinear form B, on W/L defined by (4.2)(f) is

symmetric.
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Conversely, suppose B is any symmetric bilinear form on W/L. Identify B with a linear map
Tp € Homp(W/L,(W/L)*), Te(v+ L)(w+ L) = B(v+ L,w+ L);
and further identify Tg as an element of
Homp(W/L,L) C Homp (W, W)
using (4.2)(e). Explicitly, Tg is characterized as an endomorphism of W by the property
w(w,Tpv) = B(v+ L,w+ L) (v,w e W).

Then ug = 1+ Tg belongs to the subgroup U(L) of Sp(W), and the corresponding bilinear form is B.
In this way U(L) is naturally isomorphic with the (additive) group of symmetric bilinear forms on W/L.

Proof. To see that the form B, is symmetric, we use (4.2)(f) and the fact that u preserves w to compute

By(v+ Lyw+ L) =ww, (u—1)v) = —ww,v) + w(w,uv)
= —w(uw, uw) + w(w,uv) = —w((u — Nw,uwv) = —w(uv, (u — 1)w).

Now (4.2)(e) says that (u — 1)w € L, and that uv — v € L. Since w is zero on L, we can replace uv by v in
the last formula without affecting the value. It is then precisely B, (w + L,v + L), as we wished to show.

For the converse, the last formula certainly defines the endomorphism Ts of W; T is zero on L and
carries W into L. The symmetry of B implies that w(w,Tpv) = w(v,Tpw) = —w(Tsw,v). Since Ty
takes values in L, where w vanishes, we also have w(Tsw,Trv) = 0. Together these properties imply that
w((1+Te)w,(1+ Ts)v) = w(w,v), and therefore that u =1+ Ty € Sp(W). Since T annihilates L, u acts
trivially there; so u € U(L). The remaining assertions are easy. Q.E.D.

Proposition 4.4. Suppose (W,w) is a finite-dimensional symplectic vector space over F. Then the
Lagrangian Grassmannian B(W) is a homogeneous space for Sp(W). The isotropy group at a Lagrangian
subspace L is the Siegel parabolic subgroup P(L) (Definition 4.2). The map p(L) of (4.2)(c) is surjective.
More precisely, we can find a second Lagrangian subspace L' C W so that LN L' = 0. In this case the inter-
section of the two Siegel parabolics is naturally isomorphic to GL(L), and the isomorphism is implemented
by restriction to L.

Proof. It is convenient to begin near the end and work backwards. So fix L; we seek a second Lagrangian
subspace L' with L N L' = 0. Here is a way to construct one. First choose a basis {p1,...,pn} of L. We
want to choose elements {qi,...,qn} of W so that

w(pi, 4j) = di; (4.5)(a)

and
w(gi,gj) =0, i< (4.5)(d)

We will do this by induction on j; that is, we suppose that g1,...,¢;—1 have been chosen satisfying (4.5),
and we try to choose g;. Now (4.1)(f) guarantees that (4.5)(a) will be satisfied for some element g} of W in
fact it says that q§ is uniquely determined modulo L. That means that we may modify q;- by an element of
L without affecting (4.5)(a). We therefore define

4 =d;+ > wgig)pi (4.5)(c)
i<j

Then it is easy to see that (4.5)(b) is satisfied for j.
Define L' to be the span of {g1,...,q,}. By (4.5)(b), L' is isotropic; so it is Lagrangian by dimension.
It is clear from (4.5)(a) that 77 (Definition 4.1) maps L' isomorphically onto L*; that is, that the restriction
of w to L x L' defines
I'~L* (4.5)(d)
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Because the pairing of L with itself is zero, it follows that L N L' = 0. By dimension counting, we get
W~LeL ~Leo L. (4.5)(e)
In this last picture, the symplectic form on W is given by
w((v, ), (@, X)) = XN(v) — A (v,v" € L\, N € L) (4.5)(f)

We want to compute P(L) N P(L'). The stabilizer of L and L' in GL(W) is GL(L) x GL(L'). Using
(4.5)(d), this can be written as GL(L) x GL(L*). The question is which elements of the product preserve
the symplectic form w. Using (4.5)(f), we see immediately that if T' € GL(L) and S € GL(L*), then (T, S)
preserves w if and only if

(SX)(Tv) = X (v) (N eL*veV).

This in turn means that S must be the inverse of the transpose of T'. That is,
P(L)NP(L') = {(T,'T™")| T € GL(L)}. (4.5)(9)

This proves the last claim in the proposition, and also the surjectivity of (4.2)(c).

Finally, we must show that B(W) is homogeneous for Sp(W). Suppose L; and L, are any two Lagrangian
subspaces. For each of them choose a Lagrangian complement L} as in (4.5), so that we have natural
isomorphisms

Li~L!

and so on as above. Let T be any linear isomorphism from L; onto Lo; such a T exists since Ly and L» have
the same dimension. Let S be the induced (inverse transpose) isomorphism from L} to L3; equivalently,
from L} to Lj. Then (T,S) defines a linear isomorphism from W = L; & L] onto W = L, & L}; that is,
an element g € GL(W). Using the descriptions (4.5)(f) for w, we see that g € Sp(W). By construction
g- Ly = Ly, as we wished to show. Q.E.D.

Corollary 4.6. Suppose (W,w) is a 2n-dimensional symplectic vector space over F, and L C W is
Lagrangian. Then the Siegel parabolic P(L) acts transitively on the set

B(W)or = {L' € BW)|L'nL =0}

of Lagrangian complements to L. The stabilizer in P(L) of one such Lagrangian L' is a Levi subgroup
GL(L) of P(L); this is a complement for the normal subgroup U(L) of Definition 4.2. Consequently U(L)
acts simply transitively on B(W)o,r, which is therefore (algebraically) isomorphic to an F wvector space of
dimension n(n + 1)/2.

Proof. Suppose L} and L}, are Lagrangian complements to L. In the argument at the end of the proof of
Proposition 4.4, take Ly = Lo = L; then the element g € Sp(W) constructed there preserves L, and carries
Ly to Ly. It is even clear that we can choose g to be the identity on L; that is, g € U(L). The remaining
assertions are now clear from Propositions 4.4 and 4.3. Q.E.D.

Although we will make no use of it, we mention in passing a description of the other orbits of P(L) on
B(W).

Proposition 4.7. In the setting of Corollary 4.6, define
BW), ={L'€e BW)|dim(LNL')=r}.
Similarly, for each subspace S of L, define
BW)s,,={L' e BW)|LnL =S}

a) For S and L as above, the quotient Ws = S+ /S inherits from W a natural non-degenerate symplectic
form. The subspace Lg = L/S of Ws is Lagrangian. If S has dimension r, then Wg has dimension
2(n —r).
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b) Each L' € B(W)gs,1, defines a Lagrangian complement L's = L'/S for Lg in Ws. This correspondence
provides an algebraic isomorphism

B(W)s,L ~B(Ws)o,Ls-

¢) The set B(W)g,r, is an orbit of U(L). It is algebraically isomorphic to an F vector space of dimension
m=r)(n—r+1)/2.

d) The set B(W),,r is an orbit of P(L). It is algebraically isomorphic to a vector bundle of dimension
(n—=7)(n —r+1)/2 over the Grassmannian of r-dimensional subspaces of L. The base space is a
projective algebraic variety of dimension r(n —r), so B(W), 1 has dimension (n —r)(n+r +1)/2. It
is of codimension (r? +1)/2 in B(W).

Because we will not use the result, we leave the elementary proof to the reader.

The preceding linear algebra can be thought of as infinitesimal symplectic geometry; we will apply it to
tangent and cotangent spaces of symplectic manifolds (or algebraic varieties). In order to treat simultaneously
the case of Poisson manifolds, we need to weaken the assumptions in Definition 4.1. The most obvious way
to do that is to drop the assumption that w is non-degenerate. Perhaps surprisingly, it is also important
to examine the case when w is non-degenerate, but is defined only on a subspace. The two possibilities are
related by duality (of vector spaces). We begin with the second.

Definition 4.8. Suppose F is a field. A degenerate symplectic vector space over F' is a triple (V, W, w)
subject to the following conditions.

a) The space V is a finite-dimensional F-vector space, and W is a subspace.
b) The form w is a non-degenerate skew-symmetric bilinear form on W.

The symplectic group of V is the group Sp(V) of F-linear automorphisms of V' preserving the subspace
W and the form w. It maps (by restriction of linear transformations from V to W) surjectively to Sp(W).
Suppose S C V is any subspace. Set

St ={weW|w(w,SNW) = 0}.

Notice that S+ C W. We say that a subspace I C V is isotropic if INW C I*; that is, if INW is isotropic in
W in the sense of Definition 4.1. We say that C is co-isotropic if C+ C C; that is, if C N W is a co-isotropic
subspace of W in the sense of Definition 4.1. We say L is Lagrangian if it is both isotropic and co-isotropic;
that is, if L N'W is a Lagrangian subspace of W in the sense of Definition 4.1.

The definition of isotropic is not entirely an obvious one; it might seem natural to consider instead the
condition I C I'*, meaning that I is an isotropic subspace of W. We might call this strongly isotropic, since
it is more restrictive than the condition in Definition 4.8. The definition of Lagrangian would then change as
well; a strongly Lagrangian subspace of V is a Lagrangian subspace of W. But the definition we have given
seems well suited to representation theory.

Definition 4.9. Suppose F is a field. A degenerate cosymplectic vector space over F is a pair (U,n)
subject to the following conditions.

a) The space U is a finite-dimensional F-vector space.
b) The form 7 is a (possibly degenerate) skew-symmetric bilinear form on U.

The symplectic group of U is the group Sp(U) of F-linear automorphisms of U preserving the form 7).
Define R C U to be the radical of 7:

R={ueU|n(u,U) =0}

Then 7 defines a non-degenerate symplectic form on the quotient space W = U/R. Every element of Sp(U)
preserves the subspace R, and so we get a quotient map

Sp(U) = Sp(W).
This map is surjective.

19



Suppose T' C U is any subspace. Set
T+ ={u€eU|n(u,T)=0}.

Notice that T+ D R. We say that a subspace I C U is isotropic if I C It; that is, if I/(I N R) is isotropic in
U/R in the sense of Definition 4.1. We say that C is co-isotropic if C+ /R C C/(RNC); that is, if C/(RNC)
is a co-isotropic subspace of U/R in the sense of Definition 4.1. We say L is Lagrangian if it is both isotropic
and co-isotropic; that is, if L/(RN L) is a Lagrangian subspace of U/R in the sense of Definition 4.1.

Again we could have changed the definition of co-isotropic by requiring C*+ C C; that is, that C D R, and
C/R be co-isotropic in U/R. We could call this requirement strongly co-isotropic, and get a corresponding
notion of strongly Lagrangian.

We have said that Definitions 4.8 and 4.9 differ by duality of vector spaces. Here is a more precise
formulation. Suppose (V,W,w) is a degenerate symplectic vector space. Define U = V* to be the dual
vector space. There is an order-reversing bijection from subspaces of V' to subspaces of U, sending a subspace
SCVto

St={\eV*|XS) =0} (4.10)(a)

Then restriction of linear functionals to S defines an isomorphism

S*~U/S*. (4.10)(b)
Now let R = W be the subspace of U corresponding to W C V, so that

W* ~U/R. (4.10)(c)

The non-degenerate symplectic form w on W defines via the duality isomorphism ryw: W — W* (cf. (4.1)(a))
a non-degenerate symplectic form n on U/R. We regard n as a symplectic form on U with radical R.
Then (U,n) is a degenerate cosymplectic vector space. It is easy to construct the inverse correspondence,
and we leave that to the reader. The duality correspondence S + St carries isotropic to co-isotropic, co-
isotropic to isotropic, and Lagrangian to Lagrangian. Taking inverse transpose defines a natural isomorphism
GL(V) =~ GL(U); this isomorphism restricts to an isomorphism of Sp(V') onto Sp(U).

We can now explain the sense in which degenerate symplectic and cosymplectic vector spaces are in-
finitesimal versions of Poisson spaces. To fix ideas we discuss affine Poisson algebraic varieties; as usual it is
a simple matter to modify the discussion for other nice Poisson spaces.

Proposition 4.11. Suppose X is an affine Poisson algebraic variety over F, with ring of regular
functions R(X). Suppose x € X is a closed point; that is, a mazimal ideal my; C R(X). Set F, = R(X)/m,,
a finite extension field of F'.

a) The bilinear form {,}, of (2.6)(d) makes the Zariski cotangent space Ty (X) into a degenerate cosym-
plectic vector space over F.

b) Define S, C T(X) to be the space of values at x of Hamiltonian vector fields defined by functions in

m, (cf. (2.6)); and define a non-degenerate symplectic form w; on S, as in (2.6). Then (T,(X), Sy, wy) is

a degenerate symplectic vector space over F,. It is dual to the degenerate cosymplectic vector space Ty (X)

of (a).
This is more or less obvious from the definitions (see also the discussion at (2.6)).
We can now begin to consider non-linear versions of the notion of co-isotropic subspace. An algebraic
subvariety Y of X is specified by an ideal
J(Y) C R(X), R(Y)=R(X)/J(Y). (4.12)(a)

(We are ignoring the Poisson structure for the moment.) Now suppose we are in the setting of Proposition
4.11, and that z is also a point of Y; that is,

J(Y) C m,. (4.12)(b)
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Then J(Y) defines a natural subspace of T;(X) by

T3 .(X) = J(Y)/(J(Y) Nm3) = T7 (X). (4.12)(c)
Its annihilator is a subspace of the tangent space at x:

To(Y) = {X € To(X) | ATy, (X)) = 0} (4.12)(d)

As the notation indicates, this subspace may be naturally identified with the tangent space at  to Y. One
way to think of the reason is in terms of the short exact sequence

0Ty, (X) =T, (X) = T;(Y) 0. (4.12)(e)

Proposition 4.13. In the setting of Proposition /.11, suppose Y is an algebraic subvariety of X defined
by an ideal J(Y) C R(X). Assume that J(Y) C mg, and define subspaces of tangent and cotangent spaces
as in (4.12) above. Then the following conditions are equivalent.

a) {JY),JY)} Cm,.
b) Ty ,(X) is an isotropic subspace of the degenerate cosymplectic vector space T;(X) (Definition 4.9).
c) T,(Y) is a co-isotropic subspace of the degenerate symplectic vector space T (X) (Definition 4.8).

Proof. The equivalence of (a) and (b) is clear from the definition of the degenerate symplectic form {, },
in (2.6)(d). The equivalence of (b) and (c) is a general feature of the duality relationship between Definitions
4.8 and 4.9, as explained in (4.10): a subspace S of a degenerate symplectic vector space V is co-isotropic if
and only if its annihilator S+ C V* is isotropic in V*. Q.E.D.

Definition 4.14. Suppose X is an affine Poisson algebraic variety over F', and Y is a subvariety
corresponding to an ideal J(Y) C R(X). We say that Y (or J(Y)) is co-isotropic if {J(Y),J(Y)} C J(Y).
(Similar definitions apply to Poisson structures on more general ringed spaces.)

The point of Proposition 4.13 is that this terminology is reasonable. Here is a precise statement.

Proposition 4.15. Suppose X is an affine Poisson algebraic variety over F, and Y is a co-isotropic
subvariety corresponding to an ideal J(Y). If my is any mazimal ideal containing J(Y), then Tp(Y) is a
co-isotropic subspace of the degenerate symplectic vector space Tp(X).

Conversely, suppose that' Y is any subvariety of X, corresponding to an ideal J(Y); and assume that
T.(Y) is co-isotropic in T,(X) whenever J(Y) C m,. If J(Y) is the intersection of the mazimal ideals
containing it (that is, if J(Y) is a radical ideal) then'Y is co-isotropic.

Proof. This is immediate from Proposition 4.13 and Definition 4.14. Q.E.D.
Example 4.16. If r, s, and f belong to a Poisson algebra R(X), then

{rf,sf} = (r{f,s} +s{r, f} + f{r,sH .

From this formula it follows that the ideal (f) generated by f is always co-isotropic. A similar argument
shows that if J has a collection of generators that is closed under Poisson bracket, then J is co-isotropic.

Suppose V is a degenerate symplectic vector space over F'. We make V into an algebraic variety with
algebra of functions R(V) = S(V*) (the symmetric algebra of V*). The construction of (4.10) provides a
degenerate symplectic form 1 on V*. It turns out that there is a unique Poisson algebra structure on S(V*)
characterized by

A ut =0, p;

the function on the right is the constant function. If 7' C V is any linear subspace, then we can regard 7T as
a subvariety defined by the ideal
J(T)={AeV*|XT)=0).

Then it is easy to check that T is a co-isotropic subvariety (Definition 4.14) if and only if it is a co-isotropic
subspace (Definition 4.8).
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Finally, we turn to the “dual” notion of isotropic subvariety. Here is the classical definition.

Definition 4.17. In the setting and notation of (4.12), assume that Y is reduced. Recall from (2.6) the
symplectic vector space S, C T(X) inside each tangent space to X. We say that Y is isotropic if at every
smooth point z of Y, T, )Y is an isotropic subspace of the degenerate symplectic vector space T, X (Defintion
4.8). That is, we require that the intersection T, (Y) NS, is an isotropic subspace of S,.

We say that Y is Lagrangian if it is both isotropic and co-isotropic; that is, if T,,(Y) NS, is Lagrangian
in S, at every smooth point x of Y.

Even for a symplectic manifold X, the tangent space condition of Definition 4.17 can fail at singular
points of Y (where T, Y has larger dimension). For this reason, we would like to have a definition more
along the lines of Definition 4.14. We have not done all the checking needed to verify the equivalence with
Definition 4.17, but here is a possibility. In the setting and notation of (4.12), define

JY)* ={f e RX)[{f,J(Y)} Cc J(Y)} (4.18)(a)

If fe JY)® and z € Y, then the value {¢(z) at  of the Hamiltonian vector field {; belongs to T,(Y').
(Here is the reason. By(4.12), we must show that {(z) annihilates the subspace of T;(X) spanned by
functions in J. If g is any function in m,, then the value of {;(z) on the corresponding tangent vector is
{f,9} +m; € R(X)/m,. If g € J, then the first bracket is in J C m,, so we get zero as required.) Recalling
from (2.6) that S, denotes the space of Hamiltonian tangent vectors at x, we have therefore shown that

{&r(@) | f € J(Y)} C Sa NTo(Y). (4.18)(b)
What we have not verified is a partial converse:
if Y is reduced, then equality holds in (4.18)(b) at every smooth point of Y. (4.18)(c)

Assuming this to be the case, an argument along the lines of Proposition 4.13 proves that Definition 4.17 is
equivalent to

Definition 4.19. Suppose X is an affine Poisson algebraic variety over F', and Y is a subvariety
corresponding to an ideal J(Y). Define J(Y)¢ as in (4.18) above. We say that Y (or J(Y)) is isotropic if
{J(YV), J(Y)} C J(Y).

In any case the requirement in Definition 4.17 certainly implies the one in Definition 4.19. In this paper
we will use only Definition 4.17.

5. The metaplectic representation. In this section we recall the construction of the metaplectic
or oscillator representation. A convenient reference for most of this material is [14]; original sources include
[18] and [23].

Definition 5.1. Suppose F is a field of characteristic not equal to 2, and (W, w) is a finite-dimensional
symplectic vector space over F. The Heisenberg group of Wis the set H(W) =W x F with group law

(w,s) - (v,t) = (w+v,s+t+ww,v)/2)) (5.1)(a)

The center of H(W) is the subgroup F, and this is also the commutator subgroup; so H(W) is a two-
step unipotent algebraic group over F, with H(W)/F ~ W. The group Sp(W) (Definition 4.1) acts by
automorphisms on H (W), by acting trivially on F.

If V is any subspace of W, then H(V) =V x F is a subgroup of H(V), and its centralizer is H(V"').
(Taking V =0 or V = W, we get the previous claim that F' is the center of H(W).) If I is isotropic, then
H(I) is abelian; and if L is Lagrangian, then H(L) is a maximal abelian subgroup of H(W).

Assume now that F is a finite or local field. Then H(W) has a natural locally compact topology. Fix
once and for all a non-trivial additive unitary character x of F. (It is traditional and convenient to assume
that x(t) = exp(2wit) if F' = R, but we will carry x along in the notation as a reminder of the importance
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of this choice.) If L is any Lagrangian subspace of W, then x extends to a character of the abelian group
H(L) by
x(L)(w,s) =x(s) (weLseF). (5.1)(b)

The Schrédinger representation of H(W) attached to L is the unitarily induced representation

Ox,L = Indggg)x(L).

We may omit the subscript x when no confusion can result.

We will return in a moment to a careful discussion of the space of o, . Essentially it is the Hilbert
space of square-integrable sections of the line bundle on H(W)/H (L) ~ W/L induced by the character x(L).
The first thing to observe is that the center F' of H(W) acts in a Schrédinger representation by the scalar
x. This property turns out to be characteristic.

Theorem 5.2 (Stone and von Neumann; see [14], Theorem 1.3.3, or [15], Théoréme 2.1.2 and Lemme
2.1.8). Suppose W is a symplectic vector space over a finite or local field F of characteristic not 2, and x is
a non-trivial additive unitary character of F.

a) The representations oy, of H(W) (Definition 5.1) are all irreducible and equivalent.
b) Suppose o, is any unitary representation of H(W) with the property that oy (t) = x(t)Id for t € F.
Then oy, is unitarily equivalent to a multiple of oy ..

Corollary 5.3 (Segal-Shale-Weil) In the setting of Theorem 5.2, fix a Schridinger representation (o, H)
of HW) (associated to the character x of F). Suppose g € Sp(W). Then there is a unitary automorphism
T(g) of H satisfying

ox(g-h) =T(9)ox(WT(9)~"  (h € HW)).

Here g acts on H(W) as in Definition 5.1. The operator T'(g) is determined by this condition up to multi-
plication by a scalar of absolute value one.

Define GMp(W) to be the group of unitary operators on H generated by the various T'(g) and the scalar
multiplications. Sending T(g) to g defines an exact sequence of groups

1-T—GMp(W)— Sp(W) — 1.

The group GMp(W) carries a natural locally compact topology making these maps continuous. There is a
closed subgroup Mp(W) C GMp(W) so that Mp(W)N'T = {£1}, and we have an exact sequence

1= {£1} > Mp(W) = Sp(W) — 1.

Proof. The map h — o(g - h) is an irreducible unitary representation of H(W) on H. By Theorem
5.2, it is unitarily equivalent to o. The existence of the operator T'(g) follows, and the exact sequence for
GMp(W) follows easily. The reduction of the covering to {£1} was carried out by Shale in the real case (see
[14]) and by Weil in general ([23], section 43). Q.E.D.

Definition 5.4. Suppose W is a symplectic vector space over a finite or local field F' of characteristic
not 2, and x is a non-trivial character of F. Let (o, 1) be a Schrédinger representation of H(W). The group
Mp(W) of Corollary 5.3 is called the metaplectic group of W, and its (tautological) representation 7 on H
is the metaplectic representation.

We want to realize the metaplectic representation more concretely. Although much of the discussion
below applies to any finite or local field, it is convenient from now on to assume that F' = R. We begin with
a more precise description of the space of a Schrédinger representation; and for that we need half densities.

Definition 5.5. Suppose V is a finite-dimensional real vector space. The space D(V') of densities on
V consists of all real multiples of Lebesgue measure on V. This is a one-dimensional real vector space. If dv

is a Lebesgue measure, then
D(V) ={cdv|c € R}. (5.5)(a)
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If d'v is another Lebesgue measure, then necessarily d'v = adv for some positive scalar a; and in the
coordinates of (5.5)(a),
cdv=cdv ifandonlyif ¢ =c/a. (5.5)(b)

The space D¢(V) of complex densities on V consists of all complex multiples of Lebesgue measure on V; it
is the complexification of D(V).

Suppose now that ¢ is any real number. A t-density on Vis a formal symbol c¢(dv)t, with dv a Lebesgue
measure on V and ¢ a real number. We define equality of such formal symbols by analogy with (5.5)(b): if
d'v = adv is another Lebesgue measure on V, then

c(dv)t = ¢'(d'v)" if and only if ¢ = c/a’. (5.5)(c)

The space of t-densities on V is written D*(V); it is a one-dimensional real vector space. There is a well-
defined multiplication

DY(V) ® D*(V) — D'*(V), (c(dv)t) & (' (dv)®) = e (dv)tTs. (5.5)(d)

This defines an isomorphism D¥(V)® D*(V) ~ D*+$(V). Similarly we can define a one-dimensional complex
vector space DE (V') of z-densities on V' for any complex number z.

Suppose now that M is a real manifold. The real line bundle of t-densities on M is the bundle D!(M)
whose fiber at m is D*(T),, M), the t-densities on the tangent space at m. The isomorphisms of (5.5)(d) give
bundle isomorphisms

DHM) ® D*(M) ~ D**(M). (5.5)(e)

Similarly we can define DE (M), the complex line bundle of z-densities on M.

Proposition 5.6. In the setting of Definition 5.5, the space of smooth sections of D'(M) may be
identified with the space of smooth densities on M ; that is, with signed measures on M that are given by a
smooth function times Lebesgue measure in every coordinate chart. In particular, every compactly supported
smooth section of D*(M) has a well-defined integral over M (a real number). Similarly, there is a complez-
valued integral for sections of D&(M).

Using Proposition 5.6, we can define on the space of compactly supported smooth sections of Dé/ 2(M )
a natural pre-Hilbert space structure, as follows. Suppose o1 and o2 are such sections. Because Dé/ 2(M )

is the complexification of D'/2(M), the complex conjugate 73 is a well-defined section of Dé/ *(M). Using
the multiplication (5.5)(e), we can regard 107 as a compactly supported smooth section of D¢ (M). Such a
section has an integral, by Proposition 5.6; so we define

(o1, 0) = /M o1 ()2 (m) (5.7)(a)

It is easy to check that this is a pre-Hilbert space structure. The corresponding Hilbert space is called
L2(M, D(IC/Z), the space of square-integrable half-densities on M.

The great advantage of this Hilbert space over the (isomorphic) one L2(M,du) of square-integrable
functions on M with respect to a chosen measure dyu is this. Any diffeomorphism T of M acts on compactly
supported smooth sections of ’Dé/ 2(M ), preserving the pre-Hilbert structure. Consequently T defines a
unitary operator p(T) on L%(M, 'Dé/ %), and p is a unitary representation of Diff (M).

A little more generally, suppose H — M is a Hilbert space bundle over M. Then we can form the tensor
product H® Dé/ 2(M ); topologically its fibers are Hilbert spaces, but there is no longer a distinguished inner
product. More precisely, the fiber over m comes equipped with a positive sesquilinear pairing not into C,
but into the space Dé,m (M) of densities at m. In this way the space of compactly supported continuous
sections of ‘H ®D(1c/ 2(M ) acquires a pre-Hilbert space structure. Explicitly, suppose h; and hs are compactly

supported continuous sections of #, and oy and o5 are compactly supported continuous sections of Dé/ 2(M ).
Then we define

(hl ® o1, h2 ® 0'2) = /M<h1(m),hg(m))ymdl(m)ﬂz(m) (57)(b)
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The completion of this Hilbert space is called L2(M,H ® Dé/ 2), the space of square-integrable half-density

sections of H. (Of course the space M is implicit in the bundle #, and we may sometimes omit it from the
notation.) Sometimes it is helpful to think of this space in terms of real half-densities, using the isomorphism

H @c DY (M) ~ H ®g D/*(M). (5.7)(c)

Example 5.8. Suppose G is a Lie group, H is a closed subgroup, and (7, H,) is a unitary representation
of H. Then 7 defines a G-equivariant Hilbert bundle % = G x g H, over G/H. The total space of the bundle
is G x H, modulo the equivalence relation

(gh,v) ~ (g, 7(h)v) (9ge G,he HyveH,).

The action of G on the total space is by the left action in the first variable; this respects the equivalence
relation. At the same time the action of G on G/H defines an action on half-densities on G/H; so G acts
on the compactly supported continuous half-density sections of H. This action respects the pre-Hilbert
space structure, and so gives a unitary action of G on L?(G/H,H ® D(Il:/ 2). This is nothing but the induced
representation:

Indf;(H,) = L*(G xn Hr) ® DY*(G/H)).

The twist by half-densities corresponds to the “p shift” appearing in more purely group-theoretic descriptions
of induction. There the space of the representation is described as a space of functions f on G with values
in H,, satisfying a transformation law

flgh) = peyu(h )r(h"")f(g)  (9€G,heH).

Here pg/ g is a certain real-valued character of H. The point is that the half-density bundle on G/H is also
an induced bundle, and so is characterized by the action of H on the fiber at the identity coset eH; that
is, by the action of H on half-densities on T.x(G/H) = g/h. This action is by one over the square root of
the absolute value of the determinant of the adjoint action of H on g/h; and that is precisely the character

PG/H of H.

This entire discussion depends only on the notion of Lebesgue measure on finite-dimensional vector
spaces, and so works equally well over any local or finite field. (All ¢-density bundles are trivial in the case
of a finite field.)

With this machinery in hand, we can return to the problem of describing the space of the Schrédinger
representation. According to Example 5.8, we can take the Hilbert space of o, 1, to be the space of square-
integrable half-density sections of the line bundle on H(W)/H (L) induced by the character x(L). In order
to understand this space, we will trivialize the line bundle. For that, we need to pick a second Lagrangian
subspace L' of W so that L N L' = 0; this is possible by Proposition 4.4. In that case L' is an abelian
subgroup of H(W), and

L'~ H(W)/H(L); (5.9)(a)

this follows from (4.5)(e). Because the isotropy group of the L' action here is trivial, the line bundle is trivial
(as an L'-equivariant bundle). The Hilbert space is therefore

H(L) = L*(L', DY), (5.9)(b)

the space of square-integrable half-densities on the vector space L'. If dz’ is a Lebesgue measure on L', then
a typical element of this space is a symbol ¢(z')(dz')'/?; here ¢ is an L? function on L'. This isomorphism
respects the action of L'; that is, L' acts by the left regular representation (translation of half densities).
Explicitly,

oy, ()[p(')(da')' /] = p(a’ —1')(dz')"/>. (5.9)(c)

It is also fairly easy to calculate the action of the subgroup L in this picture. Recall from (4.5)(d) that each
element [ € L gives a well-defined linear functional 2’ — w(l,z') on L', and therefore a well-defined unitary
character ' — x(w(l,z')) of L'. The action of o, 1 (I) is multiplication by this unitary character:

o, (D[g(z')(dz') ] = x(w(l,2")) (") (da') /2. (5-9)(d)

25



To see this, recall that the isomorphism (5.9)(b) identifies the half density ¢(z')(dz')'/? with a function &
on H(W) transforming according to the character x(L) of H(L). We now compute

o2 (D[g(z')(dz')/?] = ®((1,0) "} (2", 0));

here the multiplication on the right takes place in the group H(W). Now

(lao)_l(xlao) = (—l,O)(IE’,O) = (ml - l,LU(—l,SUI)/2) = ($I7O)(_la —w(l,x')).

By the transformation law for & under H(L), we get

2((1,0)7} (2", 0)) = ®(a’, 0)x(L)(~1, —w(l,2")) ™" = p(a')(da")'*x(w(l, z")).

This is (5.9)(d).

So far this discussion applies equally well over any local or finite field. Now we turn to something
special to R: the differentiated representation. We begin with the Lie algebra h(WW) = W x R of H(W).
(The identification of H (W) with the vector space W x R naturally identifies the Lie algebra with this vector
space as well.) The Lie bracket is

[(w, 5), (v, 8)] = (0, w(w, v))- (5.10)(a)

Obviously the center of h(WW) is equal to the commutator subalgebra, which is R. In the setting of (5.9), we
get
hW)y=Lo L' &R (5.10)(b)

In order to differentiate the Schrédinger representation, we must first understand the differential of the
character y of R. This is a map from the Lie algebra R of R to the Lie algebra iR of the unit circle; so dx(1)
is a purely imaginary number. With the standard choice x(t) = exp(2wit) made in Definition 5.1, we get
dx(1) = 2.

Proposition 5.11. Suppose W is a real symplectic vector space, and L and L' are Lagrangian sub-
spaces with LN L' = 0; realize the Schrodinger representation oy 1 (Definition 5.1) as in (5.9). Then the
differentiated representation of h(W) (cf. (5.10)) may be calculated as follows.

a) Suppose t € R. Then doy,,(0,t) = tdx(1) = 2mit.
b) Suppose l € L. Identify | with the linear functional 77.(1) on L' (Definition 4.1), defined by 11 (1)(l') =
w(l',1). Then
doy,r(1,0) = multiplication by — dx(1)7r: (1) = —2miTe(1).
c¢) Suppose l' € L'. Then do,, (I',0) is the directional derivative in the direction —'.

Proof. Part (a) follows from the fact that the center R of H(W) acts in o,,7, by the character x. Parts
(b) and (c) are differentiated versions of (5.9)(d) and (c) respectively. For (b), for example, we calculate

doy1(1,0)[¢(z")(da")"/?] = d/dt(ox,(t1,0)[¢(a") (dz')*/*]) =0
= d/dt(x(w(tl,z"))$(z')(dz')"/?)]1=0
—d/dt(x( —t71:(1)(2"))) =0 b(a") (da')/?
—dx (L7 (D) (@) p(a") (da")'/?

This is (b). Q.E.D.

Corollary 5.12. In the setting of Definition 5.1 and (5.9), the space H(L)*® of smooth vectors in the
Schrodinger representation is the Schwartz space S(L' ,D(lc/ ®): the space of all half-densities ¢(z')(dz')/>
such that any derivative of ¢ times any polynomial in x' is bounded.

Proof. If we replace the phrase “is bounded” by “belongs to L2,” then the statement is immediate
from Proposition 5.11 and the definition of the space of smooth vectors. So what we must show is that

if ¢ is a function on R™ with the property that xagi—? belongs to L? for all multiindices @ and 3, then ¢
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belongs to the Schwartz space. We write L2S(R™) temporarily to distinguish the function space defined by
these L? conditions. Since polynomials times derivatives of ¢ again belong to L3S, it suffices to show that
¢ is bounded. This is a consequence of the Sobolev lemma. We sketch a direct argument. For compactly

supported smooth ¢, we have
"¢
60 = [ Ty o

We need to estimate the right side using L? norms. For that, consider the polynomial p(z) = (1 + |z|*)".
Then 1/p € L?(R"), so
one

76:171 . axn )d:l?l cee d.fL'n-

o) = [ /sl o)

This integral may be interpreted as the L? inner product of p Bz?f-(gzn
Schwarz inequality, we get
oo

< —— |l
[6(@)] < /Pl 55—z

with a cutoff of 1/p. By the Cauchy-

This gives the estimate we need:
"¢
oo <11 ——|o-
lle < 11 /pllallpg——25— I

Once it is established for compactly supported smooth functions, the estimate follows for general ¢ € L2S
by continuity (more precisely, by the density of C° in L2S). Q.E.D.

Proposition 5.11 and Corollary 5.12 show clearly the relevance to the Schrédinger representation of the
algebra of polynomial coefficient differential operators on L'. Here is an abstract definition of it.

Definition 5.13. Suppose W is a real symplectic vector space and Y is a non-trivial additive character
of R; as usual we will generally assume x(t) = exp(2mit). The Weyl algebra of W is the complex associative
algebra A, (W) with unit generated by W, subject to the relations

vw —wv = dxy(Dw(v,w) = 2miw(v, w) (v,w € W).

That is, A, (W) is the complex tensor algebra T'(W¢) divided by the ideal generated by elements v ® w —
w ® v — 2miw(v, w). Since we have specified a choice of x, we may sometimes omit it from the notation. As
a quotient of a graded algebra, A, (W) inherits an increasing filtration; A% (W) is spanned by the images of
elements w; ® - -- ® wy with ¢ < p. Thus

A)(W) =C, A (W)=C+We,  APAIC APHI,

The generators by which we divide are all sums of tensors of even degree; so A, (W) inherits from T'(W¢) a
Z /27 grading
A (W) = A™(W) @ ALY (W).

Finally, there is a complex conjugate-linear antiautomorphism r — r* of A, (W), characterized by the
property v* = —v (v € W). (The existence of this map is a formal consequence of the definition of A, (W).
One defines A} (W) to be the opposite algebra of A, (W), with complex multiplication by z given by the old
multiplication by Z. Then the elements {—v|v € W} of A} (W) satisfy the same relations as the generators
W of A, (W).)

Proposition 5.14. In the setting of Proposition 5.11, the following three algebras are naturally iso-
morphic.
a) The Weyl algebra A, (W) of Definition 5.13.
b) The quotient U(h(W))/I, of the universal enveloping algebra of the Heisenberg Lie algebra (cf. (5.10))
by the ideal I, generated by the element (0,1) —dx(1) = (0,1) — 2mi. Here (0,1) is the central element
of h(W).
¢) The algebra D(L'") of polynomial coefficient differential operators on the Lagrangian subspace L' of W.
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The isomorphism of A, (W) with D(L') sends an element | € L to multiplication by the purely imaginary
linear functional —dx(1)7; (1) = —2witi (1) ; and it sends an element I' € L' to the directional derivative in
the direction —l'. The involution v — r* is given in D(L') by the formal adjoint of differential operators.

Proof. By definition the universal enveloping algebra U (h(W)) is the complex associative algebra gener-
ated by W + R, subject to the certain relations. To describe them it is convenient to write z for the central
element (0,1) € h(W). Then the relations are vw —wv = w(v,w)z and zv = vz for v,w € W. Dividing by I,
amounts to identifying z with dx(1) = 2xi. It follows that U(h)/I, may be described as the complex asso-
ciative algebra generated by W, subject to the relations vw —wv = w(v,w) - dx(1), or vw —wv = 27wiw (v, w).
This is just A, (W) by definition. The filtration defined on A, (W) in Definition 5.13 is clearly the one in-
herited from the standard filtration on U(h(W)). It follows easily from the Poincaré-Birkhoft-Witt theorem
that the associated graded algebra is commutative; specifically, that

gr Ay (W) = (W), (5.15)

the complexified symmetric algebra of .

To get the isomorphism with D(L'), we consider the action of U(h(WW)) on H(L)* by doy,r.. Clearly the
element z acts by dx(1), so the ideal I, acts by 0. Proposition 5.11 shows that the image of the enveloping
algebra is precisely D(L'); so we have a surjective homomorphism U(h(W))/I,, — D(L'). The Poincaré-
Birkhoff-Witt theorem has already shown us how to find a basis in the domain. More explicitly, we can take
a basis {x;} of L, followed by a dual basis {y;} of L'. (This means that w(y;,x;) = §;;.) Then the elements
z%y? (for multiindices a and B) form a basis of U(h(W))/I,. Proposition 5.11 shows that their images in

D(L') are (up to scale factors) the standard basis elements a:a%—i of D(L'). Our homomorphism is therefore
an isomorphism. Q.E.D.

We return now to the metaplectic representation. Corollary 5.3 provides a global description of it; we
want an infinitesimal description, giving the action of the Lie algebra of the symplectic group. This Lie
algebra is

sp(W) ={M € End W |w(Mv,w) + w(v, Mw) = 0}. (5.16)

We will realize this Lie algebra using the Weyl algebra A, (W). To do that, we want to take advantage
of the non-commutative nature of the Weyl algebra. Suppose r € A?(W) and s € AL(W). Then the
products rs and sr both belong to AP*(W). In fact their images in APT9(W)/APT9~" (W) are the same;
this is the content of the assertion in (5.15) that the associated graded algebra is commutative. That is,
rs — st € ADT9~1(I). But actually even more is true.

Proposition 5.17. Suppose W is a real symplectic vector space, and x(t) = exp(2mit) is our standard
non-trivial character of R. Define the Weyl algebra A, (W) as in Definition 5.13, and use the isomorphism
(5.15) of the associated graded algebra with the complex symmetric algebra on W.

a) Suppose r € AL(W) and s € AL(W). Then rs — sr € APTI2>(W).
b) There is a Poisson bracket {,}, on S(Wc), homogeneous of degree -2, defined as follows. Suppose

R € SP(W) and S € S1(W) are homogeneous polynomials of degrees p and q. Choose representatives

r e AP(W) and s € AL(W) for R and S, under the isomorphisms S™(W) ~ AT(W)/A7~"(W). Then

rs—sr € A§’C+‘1_2(W); and we define {R, S}, to be the polynomial represented by rs — sr. This bracket

makes S(W¢) into a complex Poisson algebra (Definition 2.4).

¢) The Poisson bracket of (b) is characterized by the property {v,w}, = dx(1)w(v,w) = 2mwiw(v, w).

Proof. We use the Z/2Z grading of A, (W) from Definition 5.13. It is clear that the image of this
grading in S(W¢) is the usual grading into even and odd polynomials. To prove the claim in (a), it is enough
to replace r and s by any other representatives of their classes in gr A, (W). Say for definiteness that p is
even and ¢ is odd; then we may choose these new representatives so that r € AS"*"(W) and s € A;dd(W).
Then rs and sr both belong to A;’(dd(W), so rs — st does as well. But p+ ¢ —1 is even, so the class of rs — sr
in gr A, (W) is an odd polynomial of even degree; so it is zero.

For (b), that the bracket is well-defined is immediate from (a); and the axioms of Definition 2.4 follow
easily. (For example, the Jacobi identity is a consequence of the identity [r,[s,t]] = [[r, s],t] + [s, [, t]] for
commutators in an associative algebra.) Finally (c) is immediate from the defining relations of A, (W) in
Definition 5.13. Q.E.D.
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Of course essentially this same Poisson structure has appeared earlier. The symplectic structure on
W defines a symplectic structure on the dual vector space W*, by means of the isomorphism 7 of W
with W* (Definition 4.1). We may regard S(W¢) as the space of complex-valued polynomial functions on
the symplectic manifold W*. The Poisson structure of Proposition 2.3 on C*(W*) preserves S(W¢), and
(after multiplication by dx(1) = 2mi) it is precisely the structure of Proposition 5.17. For a less obvious
identification, one can look inside the dual h(W)* of the Heisenberg Lie algebra at the hyperplane

M, = {A € H(W)* [A0,1) = dx(1)/2mi = 1}.

Because (0,1) is central in h(W), M, is preserved by the coadjoint action of H(W). (Actually it is a
single coadjoint orbit.) By Proposition 2.11, it follows that M, is a Poisson manifold. Restriction of linear
functionals to W identifies M, with W*, and then 7! provides an identification with . Again the Poisson
structure of Proposition 2.11 differs from that of Proposition 5.17 by the factor 27i. We will make no use of
these identifications, so we leave the verifications to the reader.

Corollary 5.18. In the setting of Definition 5.13, the subspace Ai(W) of the Weyl algebra is closed
under commutator. It is therefore a finite-dimensional complex Lie algebra. There is a natural real form

Ai(W)R ={re Ai(W) |r* = —r}

(cf. Definition 5.13).
a) The subspace AL (W)g is an ideal naturally isomorphic to the Heisenberg Lie algebra h(W) (under the
map U(h(W)) — A, (W) of Proposition 5.14).
b) The subspace A;"’dd(W)R is naturally isomorphic to W. Its Lie bracket into A)(W)r ~ iR is given by
dx(Nw = 2miw.
¢) The adjoint action of A2**"(W)r on A;"’dd(W)R defines a Lie algebra homomorphism

T Ai’eve" (W)r — sp(W).

This map is surjective, and its kernel is A‘))C(W)R ~iR.
d) The short exact sequence of (c) splits uniquely. That is, there is a unique Lie subalgebra mp(W) C
AZever(W)g with the property that

Ai’e”e" (W)r ~ iR & mp(W).

The subalgebra mp(W) is mapped isomorphically onto sp(W) by the adjoint action in (c).

Proof. The first claim is immediate from Proposition 5.17(a). That A3 (W)g is a real Lie algebra follows
from the formula [r, s]* = [s*,7*], which in turn follows from the fact that r — r* is an antiautomorphism.
That it is a real form follows from the fact that r — r* is conjugate linear. The isomorphism in (b) comes
from (5.15), and then the description of the bracket from Definition 5.13.

For (c), we must check that if 7 € A%***"(W)g and v,w € W, then 7(r) satisfies the condition in (5.16)
to belong to the symplectic Lie algebra. Multiplying by dx(1) = 274 and using (b), this condition becomes
[[r,v],w] + [v,[r,w]] = 0. By the Jacobi identity, the left side is [r,[v,w]] = [r,dx(1)w(v,w)]. The second
term on the right is a scalar, so the bracket is indeed zero. Because W generates A, (W), the kernel of 7 is
the intersection of its domain with the center of A, (W), which is A (W) = C. So the kernel of 7 is indeed
AY (W)r. Now (5.15) shows that the image of 7 is isomorphic to maps A2 (W )r /A (W)r ~ iS*(W).
To show that 7 is an isomorphism, it remains only to show that sp(W) has the same dimension as S?(W).
Say W has dimension 2n; then S?(W) has dimension n(2n + 1). The dimension of Sp(W), on the other
hand, is equal to the dimension of the Lagrangian Grassmannian B(W) ~ Sp(W)/P(L) plus the dimension
of a Siegel parabolic P(L). The first number is n(n + 1)/2 by Corollary 4.6, and the second is n? plus the
dimension of U(L) by Proposition 4.4. Finally, the dimension of U(L) is n(n + 1)/2 by Proposition 4.3; so
the total dimension of Sp(W) is n(n + 1)/2 4+ n? + n(n + 1)/2 = n(2n + 1), as we wished to show.

For (d), one knows that sp(W) is a semisimple Lie algebra. The short exact sequence of (c) is a central
extension of that Lie algebra. But every central extension of a semisimple Lie algebra is trivial. We can take
for mp(W) the commutator subalgebra of Ai’“e"(W)R. Q.E.D.
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Theorem 5.19. Suppose W is a real symplectic vector space, and L and L' are Lagrangian subspaces
with LNL' = 0. Realize the Schridinger representation o, 1, on H(L) as in (5.9), and define groups GMp(W)
and Mp(W) of unitary operators as in Corollary 5.3.

a) The space of smooth vectors for the representation of GMp(W) coincides with the smooth vectors H(L)™
of the Schrodinger representation.

b) Use Proposition 5.14 to identify the Weyl algebra A, (W) with an algebra of operators on H(L)>. Then
the Lie algebra of GMp(W) is precisely

gmp(W) = A2 (W)s.

In terms of differential operators, these are the even skew-adjoint polynomial coefficient differential
operators of total degree (both polynomial and differentiation) at most 2. The short exact sequence of
groups

1-T—>GMp(W) - Sp(W) > 1

in Corollary 5.3 gives rise to the short exact sequence of Lie algebras
1—=iR - gmp(W) > sp(W) — 1

of Corollary 5.18(c).

¢) The Lie algebra of the subgroup Mp(W) is precisely the subalgebra mp(W) of Corollary 5.18(d). The
double covering Mp(W) — Sp(W) of Corollary 5.3 gives rise to the Lie algebra isomorphism mp(W) ~
sp(W) of Corollary 5.18(d).

Sketch of proof. Suppose X € gmp(W). This means that first of all that X is a densely defined self-
adjoint operator on H(L), and that exp(tX) is a unitary operator in GMp(W) for every real ¢. This means
in turn that for every t there is an element A(t) € Sp(W) so that

ox,L(A(t) - h) = exp(tX)oy,r,(h) exp(—tX) (h e H(W)). (5.20)(a)

It is not difficult to see that this condition determines A(t) uniquely. Because the map GMp(W) — Sp(W)
is continuous, it follows that A(t) = exp(tY) for some Y € sp(W).

Now Sp(W) acts by algebra automorphisms on the Weyl algebra A, (W) of Definition 5.13, by its action
on the generating subspace W. Recall that Proposition 5.14 allows us to identify A, (W) with certain densely
defined operators on H(L). If we differentiate (5.20)(a) with respect to h and use Proposition 5.11, we find
that the operators exp(tX) preserve H(L)*, and define (by conjugation) algebra automorphisms of D(L').
More explicitly, for any v € AL°44(W), we have

exp(tY) - v = exp(tX)vexp(—tX). (5.20)(b)
If we now (formally) differentiate both sides with respect to ¢, we get
Y.-v=[X,v] (5.20)(c)

This equation is the infinitesimal version of the definition of the Weil representation in Corollary 5.3. It
begins with the family of operators v € AL (W), and the linear transformation ¥ of that family; and it
seeks a new operator X satisfying (5.20)(c). Corollary 5.18(c) provides solutions to (5.20)(c). The problem
is essentially to show that they really arise by differentiating solutions to (5.20)(a). Perhaps the easiest way
to do that is simply to exhibit some solutions to (5.20)(a).

For that, let P(L) C Sp(W) be the Siegel parabolic subgroup preserving the Lagrangian subspace
L (Definition 4.2). The action of P(L) on the Heisenberg group H(W) preserves H(L), and so descends
to an action of P(L) by diffeomorphisms on the homogeneous space H(W)/H(L) ~ W/L. The action
of P(L) on H(L) fixes the character x(L), so P(L) acts by automorphisms on the Hermitian line bundle
L, — H(W)/H(L) induced by x(L). Recall from Example 5.8 that the Hilbert space (L) of the Schrodinger

representation may be identified with the space L?(H(W)/H(L), Ly ®D(lc/ 2) of square-integrable half density
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sections of £. From what we have just said, there is a natural unitary representation 7(L) of P(L) on H(L)
compatible with its action by automorphisms of H(W). Explicitly,

TLP)ox LML) =oxilp-h)  (p€ P(L),h€ H(W)). (5.21)(a)

This is the defining relation for the metaplectic representation (Corollary 5.3). Consequently 7, may be
regarded as a homomorphism from P(L) into GMp(W), a section (over P(L)) of the natural projection
from GMp(W) onto Sp(W) (Corollary 5.3). That is, we have a commutative diagram

GMp(W)
e ¢ (5.21)(b)
P(L) — Sp(W)

It is now clear that any one-parameter subgroup A(t) of P(L) gives a solution of (5.20)(a): we take for
X a generator of the one-parameter group 71, (A(t)) of unitary operators. So we would like to compute 7,
explicitly. Asin (5.9) we begin by identifying the Hilbert space H (L) with square-integrable half-densities on
L'. As in Proposition 4.4, identify GL(L) with the subgroup of P(L) preserving L'; recall that the symplectic
form identifies L' with the dual of L, so GL(L) ~ GL(L') (the isomorphism sending g to fg~'). Now GL(L')
is a group of diffeomorphisms of L', so there is a natural action of GL(L') on square integrable half-densities.
This is precisely 7r,; so we get

7(9)[¢(a")(dz')'/?] = | det g|'*¢(*ga')(da")'/* (9 € GL(L) C P(L)). (5:21)(c)

(The determinant factor arises from the action of g on the half-density (dz')'/2.) It is a simple matter to
differentiate this representation. If we choose coordinates (z},...,z}) on L', then we get at the same time
an identification of GL(L) with GL(n,R). The Lie algebra may be identified with n x n real matrices, and

the standard basis matrices act by

O i Lo (5.21)(d)

drr(epq) = -Tpa—xq 2

Next we compute the action of the unipotent radical U(L). Recall from Proposition 4.3 that each
element u € U(L) corresponds to a symmetric bilinear form B on W/L ~ L'. This correspondence uses the
linear map u — 1 = T, which carries L' to L. To compute the action of u on ¢(z')(dz')'/?, recall from (5.9)
that ¢ corresponds to a function ® on H(W) transforming according to x(L) under H(L). We have

71 (w)[¢(a')(dz')/?] = ®(u™" - (',0)) = &((z' — T<',0)).
Now we use the multiplication law in H(W) given in (5.1)(a) to write
(@' =T2',0) = (2',0) - (-T2’ ,w(z', Tx")/2).

In light of the identifications in Proposition 4.3, the second factor is (—T'z', B(z',z')/2). This term belongs
to L, and the character xr takes the value x(B(z',z')/2) on it. Because of the transformation property of
® under H(L), we get

B(u - (2,0)) = &((z',0)x(~B(a',2") /2).

That is,
7z (w)[¢(a')(da")/?] = ¢(a') (da')*x(=B(a',2")/2)  (u€ U(L) C P(L)). (5.21)(e)
The Lie algebra of U(L) may also be identified with symmetric bilinear forms on L', and we compute
dr.(B) is multiplication by — dx(1)B/2. (5.21)(f)

That is, dr, carries the Lie algebra of U(L) onto multiplication operators by purely imaginary quadratic poly-
nomial functions on L'. In terms of the coordinates chosen in (5.21)(d), this is the span of the multiplication
operators ix,Ty.
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These calculations establish the isomorphism in (b) of the proposition for that part of gmp(W) lying
over the parabolic subalgebra p(L) of sp(W). We just sketch the rest of the proof. Because p(L) and p(L')
together span sp(W), part (b) follows. At the same time we see that the operators in the enveloping algebra
of gmp(W) are contained in the enveloping algebra of the Heisenberg Lie algebra; so the smooth vectors for
the Schrédinger representation are contained in the smooth vectors for the metaplectic representation. On
the other hand, if ¢ € L2(L') is a smooth vector for the metaplectic representation, then it follows from (b)
that D¢ must belong to L? for every even polynomial coefficient differential operator D. This forces ¢ to
belong to the Schwartz space, proving (a). The rest of the proposition is formal. Q.E.D.

Proposition 5.22. In the setting of Theorem 5.19, write
’H(L) — Heven(L) o rHodd(L)

for the decomposition into even and odd half-densities on L'. Then these spaces are invariant under the
metaplectic representation T of Definition 5.4; they are inequivalent irreducible representations 7¢'¢™ and
7 of Mp(W), independent of the choice of Lagrangian subspaces L and L'.

Proof. Proposition 5.19 allows us to identify (L) with L?(R"), in such a way that the smooth vectors
of 7 correspond to the Schwartz space. The Lie algebra of sp(W) is spanned by the operators

0 1 02

a5 | < < )
T T30 gy gy, (LSRN (5.23)(a)

1TpTq,

The invariance of the subspaces #°*¢" (L) and H°%¢(L) is immediate. For the irreducibility, we use the theory
of Harish-Chandra modules. Write F for the standard Fourier transform on L?(R"):

(FIE) = e f(2)e'* da. (5.23)(b)

The Fourier transform induces an automorphism 6 of order 4 on the Weyl algebra (of polynomial coefficient
differential operators) by the requirement

F(Df) = (6D)F({)- (5.23)(c)
This is given on generators by the familiar formulas
.0 0 .
0(zxp) = —za—ajp, 0(=—) = —izp. (5.23)(d)

Obviously € restricts to sp(W) as an automorphism of order 2. Explicitly,

Oiryzy) = —im 2o 0,2t ey w0t ey ey ing (5.23) ()
Pl 0,0z, POz, 2PV T10x, 2717 ox,0z,” T )

We want to check that 8 is a Cartan involution of sp(W). Because 6§ is an involution, it is equivalent to
show that the fixed subalgebra € is compact. Because Mp(W) is by definition a group of unitary operators,
this in turn is equivalent to showing that € preserves a family of finite-dimensional subspaces of H (L) whose
union is dense. (Then the group K will be embedded in the direct product of the corresponding finite-
dimensional unitary groups.)

Consider now the function e(z) = exp(— Y #2/2). Then 8872 = —zpe. Consequently
) Fe = ixpXg€ — i0pge
Ox,0x, 71 pa=
and therefore
62
W(=——— —xp2,)e = —id,,e.
axpamq P Q) pPq
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By (5.23)(e), the operator on the left side is of the form X + 6X for some X € sp(W). Combining this with
similar formulas for xpa%q, we find a character A\: € — iR so that

X-e=AX)e (X et=sp(W)?). (5.23)(f)

Recall the filtration of the Weyl algebra introduced in Definition 5.13, and the action of the Weyl algebra
on H(L) from Proposition 5.14. Define
HP(L) = AR (W) -e. (5.23)(9)

This is a finite-dimensional subspace of H(L); clearly it consists of polynomials of degree at most p multiplied
by e. By Proposition 5.17 and (5.23)(f), we have

the action of € preserves HP(L). (5.23)(h)

Now the remarks preceding the definition of e show that K is compact. At the same time we have computed
the Harish-Chandra module of K-finite vectors in 7: it is

HE(L) = UpHP(L),

the space of polynomials times the Gaussian e. The irreducibility we want is equivalent to the algebraic
irreducibility of H%ven(L) and H%°?(L) under the enveloping algebra of sp(W); that is, under the even
part A¢7¢™(W) of the Weyl algebra.
Write P for the space of polynomial functions on R™. There is an obvious linear isomorphism m from
P onto HE (L), sending f to f-e. Of course m does not respect the actions of the Weyl algebra: for the
generators we have 5 5
G = G —aplle, @y fe=(af) e (5.24)(a)

Oz

Now the linear transformation of the generators of the Weyl algebra defined by

., 0 0 .
J(a—% = 8—% — Zp, J(@q) = 74 (5.24)(b)
respects the defining relations; so it extends uniquely to an automorphism j of A(W). Then (5.24)(a) gives

a-m(f) =m(j(a)f) (a€ AW),feP) (5.24)(c)

So our irreducibility problem for H¥ (L) is equivalent to the irreducibility of P¢*" and P°%¢ under the even
polynomial coefficient differential operators; and this is very easy to prove.

It remains to establish the inequivalence of 76Y¢™ and 7°%¢. For that, we need to understand the Lie
algebra ¢ and its representation in 7. We have described ¢ fairly explicitly in (5.23)(e), and the map j in
(5.24)(b). A straightforward calculation shows that j(€) has a basis of elements

Ef =i xi+xi+5 —672 1<p<qg<n)
P\ "oz,  “'0zp, P! Ozplz, =P=4=
0 0

E =tp,— — T
P "Por, "0z,

(5.25)
(1<p<q<n).

Notice that the second derivative terms act to lower degree by two, and all other terms preserve degree. It
follows that j(£) preserves the filtration of P by degree, and that the action in the associated graded space
gr P is given by the same formulas without the second derivative.

Lemma 5.26. Consider the natural action m of G = GL(n,C) on the space P of complex polynomials
in n variables. Identify the Lie algebra g of G with complex n x n matrices. Then on the standard basis
matrices the differential of w is given by

0

dm(epq) = R
q
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The Lie algebra of U(n) (consisting of n X n skew-Hermitian matrices) has a basis consisting of elements

ef, =i(epg +eqp) and e,, = eyq — €gp. These act by the operators

0 0 0 0
+\— _ _ -\ — e
dm(ep,) =i (wp oz, +z, Bz'p> , dr(ey,) =y ar, zq By’

Write detc for the determinant character of U(n). Then

ddetc(e;fq) = 28,4, ddetc(e,,) = 0.

This is elementary and standard.

Corollary 5.27. The Lie algebra € is isomorphic to w(n). Write C,/, for the one-dimensional space
on which u(n) acts by half the differential of the determinant character. Then the action of j(€) (c¢f. (5.24))
on gr'P is naturally isomorphic to the action of u(n) on P®C, /5 The isomorphism sends the basis elements
EE of j(¥) to e,

In particular, the irreducible representations of &€ ~ u(n) appearing in 7" (respectively 7°%) are
SH(C") ® Cy /2 with k even (respectively odd).

Proof. The assertions in the first paragraph are clear from (5.25) and Lemma 5.26. Those in the
second follow at once (since the natural representation of U(n) on homogeneous polynomials of degree k is
irreducible. Q.E.D.

It follows at once from Corollary 5.27 that 7¢¢" and 7°%® are inequivalent as representations of the
maximal compact subgroup K of Mp(W), which completes the proof of Proposition 5.22. Q.E.D.

As a corollary of the proof, we get a description of the group K.

odd

Proposition 5.28. In the setting of Theorem 5.19, fix a positive-definite bilinear form B on L', and

use it to introduce a Fourier transform F as a unitary operator on H(L) ~ L2(L’,Dé/2) (cf. (5.23)(0)).
As in Proposition 4.3, identify L' with W/L and L*, and so identify B with an isomorphism Tg: L' — L.
Define a linear transformation on W =L @ L' by

_(0 T
O’B—<TB 0 )

a) The element op belongs to Sp(W). We have 0% = —1, so op is a complez structure on W.

b) Conjugation by op defines an involutive automorphism 6g of Sp(W).

¢) The symplectic form w is the imaginary part of a unique positive definite Hermitian form hp on the
complex vector space (W,op).

d) Write U(W, hg) for the unitary group of the Hermitian form. Then U(W,hpg) is the group of fized
points of Op; it is a maximal compact subgroup of Sp(W). The complex-valued determinant of an
automorphism of (W,oB) defines a unitary character

detc: U(W, hg) — C*.

e) Define B
U(W,hg) = {(u,z) € UW, hg) x C* |detc(u) = 2%},

the square root of the determinant cover of U(W,hg). Then projection on the first factor is a two-fold
covering

UW,hg) = U(W, hg),

and projection on the second factor is a unitary character
det/?: U(W, hg) — C*.
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f) The Fourier transform F is a preimage of op in the metaplectic group (Corollary 5.3). The correspond-
ing mazimal compact subgroup K of Mp(W) is naturally isomorphic to U(W, hpg).

Proof. The proof that g € Sp(W) is similar to the proof in Proposition 4.3 that ug € Sp(W); we leave
it to the reader. That 0% = —1 is obvious, and then (b) follows. For (c), the Hermitian form must be

hp(v,w) = w(op(v),w) + iw(v,w).

Conversely, this formula is easily seen to define a Hermitian form (compare the proof of Proposition 4.3).
For (d), the fixed points of 8 consists of the complex-linear elements of Sp(W); and this in turn is obviously
the unitary group of hp. Since Sp(W) is a noncompact simple real group, any compact group of fixed points
of an involution must be a maximal compact subgroup. The assertions in (e) are elementary. Finally for (f),
we have seen in Proposition 5.22 that a maximal compact subgroup K of Mp(W) may be constructed as a
double cover of the maximal compact subgroup of U(W, hg) of Sp(W); and that K admits a one-dimensional
character § (its action on the Gaussian function e described before (5.23)) whose differential is one half the
differential of the determinant character of U(W, hg). Write m: K — U(W, hg) for the covering map; then
(7,8): K = U(W, hg) x C* is an isomorphism from K onto U(W, hg), as we wished to show. Q.E.D.

6. Admissible orbit data. Suppose G is a Lie group. As explained in the introduction, we need a
little more than a coadjoint orbit to hope to construct a unitary representation. With the discussion of the
metaplectic representation in the last section, we now have in place all the ideas needed to describe Duflo’s
version of what that “little more” should be. We begin with an element f € g*, and form the coadjoint orbit

X=G-f~G/Gy; (6.1)(a)

here of course Gy is the isotropy group for the coadjoint action of G at f, a closed subgroup of G. From the
formula for the differentiated coadjoint action given before (2.8)(b), we find

gr ={Y e g| f([Y,g]) = 0}. (6.1)(b)

Recall from Corollary 2.13 that X carries a G-invariant symplectic structure. On the tangent space at f,
the symplectic form is given by

Ty(X)~g/9y,  wi(Y +95,7Z2+95) = [([Y, Z)). (6.1)(c)

Of course the tangent vector Y + gy is just the value at f of the vector field £y, the coadjoint action of Y’
(see (2.12)(b)). It is clear that the isotropy action of Gy on T¢(X) preserves the form wy; so we get a Lie
group homomorphism

Jr:Gy — Sp(g/95,wy)- (6.1)(d)

In Corollary 5.3 we constructed a natural double covering
pMp(g/gfawf) %Sp(g/gfawf)a kerp: {176}'

of the symplectic group. We can use the homomorphism j; to pull this back to a double cover of Gjy.
Explicitly, we define

G ={(g9,m) € Gy x Mp(g/s,wy) | js(9) = p(m)}. (6.1)(e)

Then projection on the first factor defines a double covering
pf:éf — Gy, kerpy = {1,€}. (6.1)(f)
That is, py(g,m) = g. Similarly, projection on the second factor defines a Lie group homomorphism
ir:Gy — Mp(g/as,wy). (6.1)(9)
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Finally, recall that the metaplectic group was defined as a group of unitary operators on a Hilbert space.
The homomorphism j; therefore gives rise to (or may be interpreted as) a unitary representation

m:Gy > U(Hy),  7p(e) = —1. 6.1)(h)

We call 77 the metaplectic representation of G 7. By Proposition 5.22, this representation decomposes as
TP =T @ T]‘de. Various descriptions of the Hilbert space #y are given in section 5. (For example, if
we write g/gs as a direct sum of Lagrangians L and L', then H; may be identified with square-integrable
half-densities on L'. This is most useful if Gy preserves L and L'; but we will not always be able to arrange
that.)

Definition 6.2 (see [6].) Suppose G is a Lie group and f € g*. Use the notation of (6.1); recall also
that we have fixed a non-trivial character x of R (see (5.1)). An admissible orbit datum at f is an irreducible
unitary representation (m,H,) of G¢ with the following two properties:

m(e) = -1 (6.2)(a)

(cf. (6.1)(f)), and
dr(Y) =dx()f(Y) (Y €gy) (6.2)(b)

(Here the scalars all mean the corresponding multiples of the identity operator on H,;.) An equivalent
formulation is

m(expY) =x(f(Y)) (Y €gy) (6.2)(v)

The pair (f, ) will be called an admissible orbit datum. If there is an admissible orbit datum at f, we say
that the orbit G - f is admissible.

The first of the defining properties says that 7 should be a “genuine” representation, not descending to
Gy. To understand the second, notice that (6.1)(b) implies that f:g; — R is a Lie algebra homomorphism.
Therefore dx(1) - f is a Lie algebra homomorphism to iR, the Lie algebra of the unit circle in C*. The
second condition therefore says that the restriction of 7 to the identity component G 1,0 should be a multiple
of a (specified) unitary character.

Notice that the group G acts on admissible orbit data, as follows. Suppose (f,7) is an admissible orbit
datum. If g € G, then g- f € g*. Conjugation by g defines an isomorphism ¢, from Gy to G,.f. The
covering G 7 pushes forward under this isomorphism to a double cover of G.;. A little more explicitly, the
covering group is just G 7, and the covering map is ¢, o py (notation as in (6.1)(f)). It is easy to check
that this covering is naturally isomorphic to the one @g. ¢ defined in (6.1)(e). Under this isomorphism, the
representation 7 of G ¢ is identified with a representation that we call g - m of ég. ¢. Again it is easy to check
that g - m is an admissible orbit datum at g - f; so it makes sense to define g - (f,7) = (g - f,g - 7). Because
inner automorphisms act trivially on representations (up to equivalence), the stabilizer of (f,n) is precisely
Gy.

For our purposes Duflo’s definition of admissible orbit datum is always exactly the right “integrality
hypothesis” required in Problem 1.2. Here is our promised refinement of that problem.

Problem 6.3. Suppose G is a type I Lie group, and (f,7) is an admissible orbit datum. Find a
construction attaching to (f,7) a unitary representation y(f, 7) of G. This representation should be close to
irreducible, and should depend only on the G orbit of (f,): that is, y(f, 7) should be unitarily equivalent
to v(g - (f,m)) for every g in G.

Even in this form the problem is still not perfectly formulated. If G is the double cover of SL(3,R) and
f is a nilpotent element with Jordan blocks of sizes 2 and 1, then there are exactly four admissible orbit
data at f. Only three of these have associated unitary representations (see [20] and [22], Example 12.4).
The example of [17] mentioned in the introduction is also not completely explained. We refer to [22] for a
more extensive discussion of the shortcomings of Problem 6.3.

The work of Kirillov and Kostant emphasizes a condition different from admissibility, which is still
widely used in work on geometric quantization. We recall this condition, partly for the light it sheds on
Definition 6.2.
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Definition 6.4 (see [11] or [9], Chapter V.) Suppose G is a Lie group and f € g*. Use the notation of
(6.1); recall also that we have fixed a non-trivial character x of R (see (5.1)). An integral orbit datum at f
is an irreducible unitary representation (p,V,) of Gy with the following property:

dp(Y) =dx(1)f(Y) (Y € gp). (6.4)(a)

An equivalent formulation is
plexpY) =x(f(Y)) (Y €gy) (6.4)(a’)

(As in Definition 6.2, the scalars mean multiples of the identity operator on V},.) If there is an integral orbit
datum at f, we say that the orbit G - f is integral.

The unitary representation p is very often forced by (6.4)(a) to be one-dimensional; obviously this is true
if G is connected, for example. In any case we can use it to define an equivariant Hermitian vector bundle
G xg, Vp over the orbit G/Gy. Many descriptions of geometric quantization appear to depend heavily on
this vector bundle, and the lack of any obvious analogue of it in the admissible case is at first disconcerting.
Ultimately we will argue that the structure provided by Definition 6.2 is more natural. For the moment, we
can at least explain why the notions of integral and admissible orbit sometimes coincide.

Proposition 6.5. In the setting of (6.1), suppose L C g/gs is a Lagrangian subspace. Define H to be
the subgroup of Gy preserving L. Each h € H defines a linear transformation of L, which has a non-zero
determinant detr,(h) Taking the sign of this determinant, we get a character

sgny: H — {£1}.
Taking the square root of this character defines a double cover
1o {l,eloH—>H-1

(cf. Proposition 5.28(e)); it is equipped with a character sgnlL/z:ﬁ — {%1, £i} which acts by —1 on e.

This covering of H is naturally isomorphic to the metaplectic covering of H induced by éf. IfH =Gy—
that 1is, if Gy preserves the Lagrangian subspace L—then tensoring with sgnlL/ 2 defines o bijection from
admissible orbit data at f to integral orbit data at f. In particular, the orbit G - f is admissible if and only
if it is integral in this case.

If G is nilpotent, then Gy always preserves some Lagrangian subspace of g/g¢; so the notions of integral
and admissible coincide.

We postpone the proof of Proposition 6.5 to section 7 (see the remarks after the proof of Proposition
7.2).

Here is the first geometric structure we can get from an admissible orbit datum.

Definition 6.6. Suppose G is a Lie group, f € g*, and (m, H,) is an admissible orbit datum at f.
Recall from (6.1) the metaplectic representation (7¢,Hy) of G ¢- Form the tensor product representation
(r®7f, Ha ®Hy). By (6.2)(a) and (6.1)(h), this representation is trivial on the kernel {1, €} of the covering;
so we may regard it as a representation of Gy. We may therefore define

Se =G xa, He ®Hy, (6.6)(a)

a Hilbert bundle over the orbit G - f. One might call this the bundle of twisted symplectic spinors on G - f.
The decomposition of Hy as a direct sum of even and odd parts passes to the bundle:

Sy = Seven @ S04, (6.6)(b)
We will also want to consider the (Fréchet) subbundles corresponding to the smooth vectors in the metaplectic
representation, such as

S = G Xy Ha @ G (6.6)(c)
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Here we mean vectors smooth with respect to the action of the full metaplectic group Mp(g/gs). This is
the Schwartz space described in Corollary 5.12 and Theorem 5.19(a). (In every case we consider seriously,
the orbit datum 7 will be finite-dimensional; so H, consists entirely of smooth vectors.) Similarly, we can
enlarge H; to the corresponding space of distribution vectors (the continuous dual of the smooth vectors,
obtaining bundles like

S =® = G X, He ® ,H;ven,—oo. (6.6)(d)

The space 7—{;"0 may be identified as in Corollary 5.12 with a space of tempered distributions on R™.

The representations we want to associate to G - f will be related to spaces of sections of these symplectic
spinor bundles. It will be convenient to interpret these sections (of infinite-dimensional bundles) as sections
of finite-dimensional bundles over a larger space. We conclude this section by introducing this larger space.

Definition 6.7. Suppose (X, wx) is a symplectic manifold of dimension 2n (Definition 2.1). The bundle
of infinitesimal Lagrangians on X is a fiber bundle B(X) over X. The fiber over a point z € X is B(T,(X))
(Definition 4.2), the Lagrangian Grassmannian of Lagrangian subspaces of the tangent space at z to X.

7. Symplectic spinors and the Lagrangian Grassmannian. In this section we will describe a
realization of the even half 7¢7¢" of the metaplectic representation as a space of sections of a line bundle
on the Lagrangian Grassmannian. In more traditional representation-theoretic language, we are realizing
TEYe" as a subrepresentation of a degenerate principal series representation, induced from a non-unitary
one-dimensional character of a Siegel parabolic subgroup. These results are known to many people; one
reference is [12], section 5.

We begin as in Definition 4.2 with a finite-dimensional real symplectic vector space (W,w) and a La-
grangian subspace L. Write P(L) for the stabilizer of L in Sp(W), and x(L): P(L) — R* for the determinant
character (the determinant of the action of P(L) on L). In analogy with Proposition 5.28(e), we define the
square root of the determinant cover of P(L) by

P(L) = {(p,2) € P(L) x C* | x(L)(p) = 2°}. (7.1)(a)
Just as in Proposition 5.28(e), projection on the second factor defines a character
X(D)'?: P(L) = C; (7.1)(b)

it takes values in R* UiR*.

Proposition 7.2. The covering P(L) defined by (7.1) is naturally isomorphic to the covering of P(L)
induced by the double cover Mp(W) of Sp(W) (Corollary 5.3). A little more precisely, let H(L) be the
realization of the Schrédinger representation of the Heisenberg group in (5.9), and let T, be the representation
of P(L) on H(L) constructed in (5.21). Then the metaplectic representation T of Mp(W) on H(L) is given

by
7(z) = (X(L)'* (@) /Ix(L)@)"*) 71, (@)
Here z € P(L), and we write T for its image in P(L).

The factor in front on the right is a character of P(L) taking values in {£1,i}. It is trivial on the
identity component of P(L).

Proof. Write M P(L) for the preimage of P(L) in Mp(W). This is a double cover of P(L). By the
definition of the metaplectic representation in Corollary 5.3, and the construction of 77, in (5.21), we find
that there is a genuine character ¢ of M P(L) (that is, ¢(e) = —1 for € the non-trivial element of the kernel of
the covering map) with the property that 7(y) = ¢(y)7 (7). (Here y € M P(L) and 7 is its image in P(L).)
What we propose to show is

$(y)* =sgnx(L)(H)  (y € MP(L)) (7.3)(a)

It follows that
GWIXL)@)?)? =x(L)m)  (y € MP(L)) (7.3)(d)
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The character ¢(y)|x(L)(#)|*/? therefore provides the isomorphism we want from M P(L) to P(L): explicitly,
it sends y to the pair (7, #(y)|x(L)(%)|'/?). The formula for 7 in the proposition also follows immediately.

So we need only prove (7.3)(a). The differential of 77, is computed explicitly in (5.21). It takes values in
the commutator subalgebra of A2*¢"(W)g, just as the differential of 7 does. Consequently the differential
of ¢ is zero; that is, ¢ is trivial on the identity component of M P(L). Now (7.3)(a) follows for y in the
identity component. Since ¢? does descend to a character of P(L), it remains only to prove (7.3)(a) for some
element y such that x(L)(7) < 0.

Now suppose we are in the setting of Theorem 5.19 and Proposition 5.28. The representation space H (L)
for 7 is the space of square-integrable half-densities on L', which is an inner product space. We therefore
have a well-defined orthogonal group O(L') C GL(L') ~ GL(L) C P(L). Choose an element iy € O(L') of
determinant —1, and a preimage y in M P(L). Recall from (5.23) the Gaussian e € H(L). By (5.21)(c),
7L (7)(e) = e. On the other hand, 7 belongs to the unitary group U(W, hg) described in Proposition 5.28; so
Corollary 5.27 implies that 7(y)(e) = ae, for a scalar a which is a square root of detc(7). Now this complex
determinant character on the unitary group restricts to the real determinant on the orthogonal subgroup; so
detc(y) = —1, and a = +i. Consequently ¢(y) = +i, and (7.3)(a) follows. Q.E.D.

Proposition 6.4 is an immediate corollary of Proposition 7.2: the subgroup H of G is just the preimage
in Gy of the parabolic subgroup P(L) C Sp(g/gy).

Suppose (7,7H) is a unitary representation of a Lie group G, and H* is the subspace of smooth vectors;
this is a Fréchet subrepresentation of 7. We want to define a corresponding “superrepresentation” H~>° of
distribution vectors. Roughly speaking this should be the dual space of H*°. The difficulty is that the dual
space doesn’t contain H. If w € H, then the linear functional \,, on H* defined by

Aw(v) = (v, w)

does indeed belong to the dual space (H*°)*, but the map sending w to A, is conjugate-linear. We therefore
define = to be the Hermitian dual of H*. This means that as a real vector space, H~>° = (H>)*, but
complex multiplication is defined by

(z-N)(w) = Az -v).

With this definition the map w — A, above provides an inclusion of H in H~°°. The transpose of the
representation 7°° defines an algebraic representation 7~ of G on H~°° by continuous operators. Without
further assumptions on 7, it need not be a continuous representation, however.

Proposition 7.4. Suppose (1,7H) is a metaplectic representation of Mp(W') (Corollary 5.3). Write
H = H @ H W as in Proposition 5.22, and H>® for the subspace of smooth vectors. Finally write H~>° for
the Hermitian dual of H*®, the space of distribution vectors of T. Suppose L C W is a Lagrangian subspace,
P(L) is its stabilizer in Sp(W), and U(L) is the unipotent radical of P(L). Write also U(L) for the identity
component of the inverse image of U(L) in Mp(W). Identify the preimage P(L) of P(L) in Mp(W) as in
Proposition 7.2.
a) For each Lagrangian subspace L, the space L*(L) of U(L)-fized even distribution vectors has dimension
1:
L*(L)={Ae H*™ > |1(u)(\) =X (vueU(L)}.

b) The representation of P(L) on H~°° preserves £*(L), and acts there by the character (x(L)'/?)~!.

¢) Write L(L) for the Hermitian dual space of L*(L). These lines may be assembled into a smooth Mp(W)-
equivariant line bundle £ on the Lagrangian Grassmannian

B(W) = Sp(W)/P(L) = Mp(W)/P(L).

It is isomorphic to the line bundle induced by the character x(L)'/2 of P(L).
d) There is a canonical Mp(W)-equivariant embedding

Y HE® = CF(B(W), L),
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defined as follows. Suppose v € H*™>® and L € B(W). We need to specify the value y(v)(L) of the
section y(v) at the point L. This is an element of L(L), and therefore a linear functional on £*(L). Its
value at A € L*(L) is

Y(W)(L)(A) = ).
Here we are using the description of A from (a) as a distribution vector in HEVe™ >

Proof. For (a), we use the realization of H* in Corollary 5.12, as the Schwartz space S(L' ,Dé/ 2) of
rapidly decreasing half-densities on L'. The space H~>° of is then identified with tempered distributions.
The action of P(L) is computed in (5.21) and Proposition 7.2. Since the Lie algebra of U(L) acts by
multiplication by purely imaginary quadratic polynomials, it is easy to see that the U(L)-fixed distribution
vectors are spanned by evaluation and first derivatives at the origin. Only evaluation is even; so £*(L) is
spanned by the linear functional A defined by

A(g(a')(dz")/?) = ¢(0).

(In this definition we have implicitly chosen a half-density (dz')'/2.) Because P(L) normalizes U(L), it
automatically preserves £*(L); the formula for the action on A follows from (5.21)(c) and Proposition 7.2.
(The complex conjugate arises because of the twist in the complex structure on H~*°.) Part (c) is immediate
from (b). The mapping defined in (d) is non-zero and Mp(W)-equivariant to the space of arbitrary sections of
L. The first thing that requires proof is that v(v) is a smooth section, and that v is a continuous map. To see
this, choose a coordinate neighborhood X of L in B(W) ~ Mp(W)/P(L) that lifts to t(X) C Mp(W). This
means that ¢(X) is a smooth submanifold of Mp(W), and that group multiplication identifies ¢(X) x P(L)
with an open subset of Mp(W). Now the smooth structure on £* arises from its identification with an
induced bundle. It follows that the section x + t(x) - A is a smooth local trivialization of £* over X. To
say that y(v) is smooth at L therefore means precisely that the function z — (t(z) - A)(v) is smooth in z.
But this may be written as A(7°°(t(z)~!)(v)), which is smooth in  because 7°° is a smooth representation.
This argument also shows that the map + is continuous (from the Fréchet space of smooth vectors to that
of smooth sections of £). Q.E.D.

Proposition 7.4 is our promised realization of 7¢Y¢" in a degenerate principal series representation. Here
are some useful technical facts about it.

Proposition 7.5. Suppose we are in the setting of Proposition 7.4.

a) The map vy is an isomorphism from HE'e™> onto a closed subspace of C*(B(W), L).

b) Write D¢ for the complex line bundle of densities on B(W). Then D¢ is isomorphic to the line bundle
induced by the character |x(L)|™*! of P(L).

¢) There is a natural Hermitian pairing between smooth sections of L and smooth sections of L* ® D¢
(compare (5.7)). For this reason we can define C~*°(B(W),L*® D¢) (the space of distribution sections)
to be the continuous Hermitian dual of C®°(B(W), L).

d) The transpose of v is an Mp(W)-equivariant continuous surjection

v = CT(B(W),L* @ Dg) — HEe™ ™
e) The map v* of (d) restricts to a continuous surjection
¥ C®(B(W), L* ® D) — HEVe™™.
f) The map ~ of Proposition 7.4 extends to a continuous embedding with closed range

o0 Ve =0 _y 020 (B(TF), L).

Sketch of proof. Part (a) follows from the general theory of smooth globalizations of Casselman and
Wallach (see [5]): the smooth globalization of a finite length Harish-Chandra module may be realized as
the space of smooth vectors in any reflexive Banach space globalization. In this case we compare the two
globalizations of the metaplectic Harish-Chandra module given by the metaplectic Hilbert space and by the
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degenerate principal series. The description of the density bundle amounts to a calculation of the character by
which P(L) acts on the top exterior power of g/p(L). Part (c) is essentially a definition, and (d) follows from
(a) and the Hahn-Banach theorem. Finally (e) and (f) follow from (d) and Proposition 7.4 (respectively),
again by the general results in [5] on uniqueness of distribution globalizations. Q.E.D.

Definition 7.6. Suppose we are in the setting of Definition 6.6. Write X = G - f for the coadjoint
orbit of f, a symplectic manifold. Write B(X) for the bundle of infinitesimal Lagrangians (Definition 6.6).
Then the admissible orbit datum gives rise to a G-equivariant vector bundle on B(X), as follows. The fiber
at a Lagrangian L in g/gy is by definition H, ® £(L). Here H, is the representation space of the admissible
orbit datum, and £(L) is the line defined in Proposition 7.4(c) (using the metaplectic representation #y).
We write this vector bundle as V.

8. Existence of Lagrangian coverings. In this section we will prove Theorem 1.10. We therefore
fix a complex reductive algebraic group G, and a coadjoint orbit

X=G-fcCg" (8.1)(a)

We fix also a Borel subgroup B of G, with unipotent radical N. This defines an Ad*(B)-invariant linear
subspace

nt={peg gl =0} Cg" (8.1)(0)

Because G is reductive, we may use an invariant symmetric form to identify g* with g. Under such an
identification, n' is sent to b. We will also mention the B-invariant subspace

bt ={peg’|gls =0} Cn" Cg" (81)()
In the identification of g* with g, b corresponds to n. Here is the easy part of what we want to prove.

Lemma 8.2. In the setting (8.1), the intersection
X, =XnNnt

is a non-empty B-invariant closed subset of X. If X is semisimple, then X, is the union of finitely many
closed B orbits. If X is nilpotent, then Xy C b,

Proof. We identify g* with g using an invariant symmetric bilinear form as above. For the first assertion,
only the non-emptiness requires proof. The element f of X corresponds to an element Z € g. The subspace
CZ is a solvable subalgebra of g, and is therefore contained in a maximal solvable subalgebra b’. By definition
b’ is a Borel subalgebra, so it is conjugate by G to b: Ad(g)(b') = b for some g € G. Since Z € b', it follows
that Ad(g)(Z) € b. Expressed in terms of X, this says that Ad*(g)(f) € nt, and therefore that X is
non-empty.

For the second assertion, fix a maximal torus H C B; this is a Cartan subgroup of G. Each semisimple
conjugacy class for B in b meets b exactly once (see for example [4], Theorem IT1.10.6). By [4], Theorem
I11.9.2, each B orbit on Xy is closed; so we need only show that these orbits are finite in number. This
amounts to the fact that a semisimple orbit in g meets h finitely often (in fact in a single orbit of the Weyl
group of H). This is well known.

The last assertion says that the nilpotent elements in b are exactly those in n. This is [4], Theorem
I11.10.6(4). Q.E.D.

As an orbit for an algebraic group action, X is a locally closed algebraic subvariety of g*. Consequently
Xy is a locally closed algebraic subvariety of the vector space n'. We may therefore write X}, as the union
of irreducible components:

Xo=XpU---UX{. (8.3)

Here each X{ is an irreducible locally closed B-stable algebraic subvariety of nt. The intersection of any
two components is a proper subvariety of each, and hence of lower dimension than either.

Lemma 8.4. In the setting (8.3), suppose ¢ € Xy. Then the linear functional ¢p = ¢|p € b* vanishes
on n = [b,b]. It takes a constant value 1)* on each component X{.

41



Proof. As in the proof of Lemma 8.1, we use an invariant bilinear form to translate into statements
about conjugacy classes of G in g. So we are fixing a conjugacy class X, and X is its intersection with
b. That each ¢ vanishes on n follows from the remark after (8.1)(b). The operation of restricting linear
functionals to b amounts to projecting from b to b/n ~ h. For Z in b, the element of § obtained in this way
represents the conjugacy class of the semisimple part of Z; so there are only finitely many possibilities for
as ¢ varies over Xy. It follows at once that v is constant on components of Xp. Q.E.D.

Proposition 8.5 (Spaltenstein [19]). In the setting (8.3), each component X} has dimension equal to
half the dimension of X.

Sketch of proof. For X nilpotent, this is the main theorem in [19]. The general case may easily be
reduced to that, using the Jordan decomposition. We omit the details. Q.E.D.

Theorem 8.6 (Ginsburg [7], Theorem 4.1). Suppose X is a complex Poisson algebraic variety endowed
with a Hamiltonian action of the solvable algebraic group B (Definition 3.7) with moment map pug: X — b*,
and Q) C b* is a coadjoint orbit. Then ugz'(Q) is a co-isotropic subvariety of X (Definition 4.14).

Corollary 8.7 (Ginsburg [7], Proposition 4.3). In the setting of (8.1) and (8.3), each component X} is
Lagrangian in X.

Proof. We will apply Ginsburg’s theorem to the symplectic variety X = G - f of (8.1)(a), and the
solvable group B. The action of G on X is Hamiltonian, with tautological moment map ug the inclusion of
X in g*. It follows that the action of B on X is Hamiltonian, with moment map pup given by ug composed
with the projection g* — b* (restriction of linear functionals). Fix a component X! of X, (cf. (8.3)), and
define ' € b* to be the constant value of up on X (Lemma 8.4). Because X is B-stable, Q! = {¢'} is an
orbit of B. (This is also a consequence of the fact that ¢’ vanishes on [b,b] = n.) The inverse image of
under pp is contained in X (by Lemma 8.2), and so must be a union of components:

pwpl@)= U Xxi
{1 wi=vi)

By Theorem 8.6, this union, and in particular its irreducible component X f;, is a co-isotropic subvariety
of X. By Proposition 4.13, every tangent space T, (X}) is a co-isotropic subspace of the symplectic vector
space T (X). If z is a smooth point of X é, this tangent space has dimension exactly half the dimension of
T.(X) (Proposition 8.5), and is therefore Lagrangian (cf. (4.1)). By Definition 4.17, X} is a Lagrangian
subvariety, as we wished to show. Q.E.D.

(The proof in [7] that X f, is isotropic requires a little elucidation; we prefer to deduce it from Spal-
tenstein’s Proposition 8.5, which Ginsburg claims as a corollary.)

Proof of Theorem 1.10. In the setting of Corollary 8.7, fix a component X{. Write L for the smooth
part of this component, a smooth Lagrangian subvariety of X. (We have dropped the superscript 4 since it
will be fixed henceforth.) Because X{ is B-stable, L must be as well. Define

Q@={¢eGlq-L=L}, (8.8)(a)
a subgroup of G containing B. Any subgroup containing B is parabolic, so
M={g-L|geG}~=G/Q (8.8)(b)

is a partial flag variety for G. Now L is a smooth algebraic variety with an algebraic action of @; so we can
form a fiber bundle
Z=GxoL5G/Q~M. (8.8)(c)

A point of Z is an equivalence class in G x L, with (gq,l) equivalent to (g,q-1) whenever g € G, q € @, and
l € L. The action of G on X gives a natural map G x L — X, (g,1) = ¢ - 1. It is now clear that this map is
constant on the equivalence classes defining Z; so it descends to an algebraic map

mZ X, w(gl)=g-L (8.8)(d)
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We have now constructed all the spaces and maps required for a Lagrangian covering (Definition 1.9). By
construction p is a fibration, and the fact that = x p is injective is trivial. Define My to be the fiber of =
over the base point f of X. (The notation is chosen because M is the space of translates of L in X, and Mjy
may be identified with the subvariety of Lagrangians in M containing f.) Because 7 is a submersion, My
is smooth. The isotropy group Gy acts on My, so we can form the (smooth) fiber product G xg, M. For
formal reasons there is a G-equivariant algebraic map

i:G xg, My = Z, i(g,m) =g-m. (8.8)(e)

It is easy to check that ¢ is a bijection on points. The tangent space to X at a point z € My fits in a short
exact sequence
0 T.(My) = T.(Z) = Tea,(G/Gy) = 0.

Here the second map is dm, and the first is the differential of the inclusion of My in Z. There is a similar
exact sequence for T, (G x g, My), and di provides a map from the first exact sequence to the second. The five
lemma then guarantees that di is an isomorphism, and, it follows that ¢ must be an isomorphism. Therefore
w is a fibration. (It also follows that M is smooth.) The last requirement in Definition 1.9 (that m x p
embeds Z in X x M) follows similarly by inspecting tangent spaces; we omit the details. Q.E.D.

9. Construction of representations. In this section we will fill in some details in the construction
of representations outlined at the end of the introduction. We work with a complex reductive group G, and
a coadjoint orbit X = G- f ~ G/Gy (cf. (8.1)). Fix a metaplectic representation (77, Hy) of the metaplectic
cover Mp(g/gys), and the corresponding cover G ¢ of Gy as in (6.1). We fix also an admissible orbit datum
(m,Hr) at f (Definition 6.2). Because the group of connected components of G ¢ is finite, the representation
7 is necessarily finite-dimensional. As in Definition 6.6, this gives rise to a Hilbert bundle

S =G xg, Hr @ Hy, (9-1)(a)

and to various Fréchet subbundles like SE¥¢™> (cf. (6.6)(c)).
We recall from Definition 6.7 the bundle B(X) of infinitesimal Lagrangians in X, and from Definition

7.6 the finite-dimensional vector bundle
V, = B(X) (9-1)(d)

over B(X). We write C*(B(X),V,) for its space of smooth sections. Using Proposition 7.4, we find a
natural inclusion

s O (X, SEem) —y 0% (B(X), Vi) (9.1)(c)

The image of yx consists of those smooth sections of V; whose restriction to each fiber of B(X) belongs
to the image of the corresponding map « in Proposition 7.4. (Recall that the fiber over f of B(X) is the
Lagrangian Grassmannian of the symplectic vector space g/gy.)
As in (8.8), we fix a component X{, and write @ for its stabilizer in G (a parabolic subgroup) and L
for its smooth locus (a locally closed smooth Lagrangian subvariety of X). As in (8.8), we write M ~ G/Q
for the family of translates of L, and Z = G x¢g L. The construction of (1.11)(c) provides a map of bundles
over X
7:Z = B(X). (9-2)(a)

Using 7, we can pull the bundle V, back to a G-equivariant vector bundle
™*(Ve) = Z. (9-2)(b)

(The rank of this vector bundle is the dimension of the admissible orbit datum 7.) Smooth sections of V,
pull back to smooth sections of 7*(Vy):

™ C®(B(X),Vr)) = C®(Z,7* (V). (9:2)(c)
Composing the maps of (9.1)(c) and (9.2)(c) gives a map
T o yx: CF(X, 8™ °) —» C°(Z, 7" (Vx))- (9.2)(d)
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The next ingredient we need is a finite-dimensional smooth representation (vy, W) of the parabolic
subgroup ). Such a representation gives a vector bundle

W, - G/Q~M, (9-3)(a)
which pulls back by the fibration p to a vector bundle
p"(Wy) = Z. (9.3)(0)
In this way the space of smooth sections of W, may be identified with a space of sections of p*(W,):
p7: 0 (M, W,) < C=(Z,p" (W) (9.3)(c)
Last but not least, we need a G-equivariant isomorphism of vector bundles
Jrw: T (V) = p"(Wy). (9-3)(d)

The existence of this isomorphism is of course not automatic; it imposes a strong constraint on ~y, which
may be impossible to satisfy. Now (9.3)(c) and (9.2)(d) define G-invariant spaces of sections of the same
vector bundle over Z; so it makes sense to consider their intersection. This intersection is the representation
we want. Here is a precise statement.

Definition 9.4. Suppose we are in the setting of (9.1)—(9.3). That is, we fix a coadjoint orbit X =
G - f for a complex reductive group G, an admissible orbit datum (7,H,) at f (Definition 6.2), a smooth
Lagrangian L (constructed as in (8.8)) and stabilized by a parabolic Q). Fix also a finite-dimensional smooth
representation (v, W.,,) of @, and a G-equivariant isomorphism of vector bundles j, , as in (9.3)(d). (Recall
that v and j, . need not exist.) Then the smooth representation of G attached to (f,m,L,~,j,x) is by
definition
V(f; , La ’Yaj%ﬂ') = p* (COO (M, WW)) N j%ﬂ'(T* °rx (Coo (X, S;vemoo))a

a space of sections of p*(W,) over Z. Thus V(f,, L,v, j,,») may be identified with a G-invariant subspace
of C*° (M, W,), which in turn is the space of smooth vectors in the degenerate principal series representation
induced from «y on @ (non-normalized induction). In terms of the normalized induction of Example 5.8, this
is

V(f,m, Ly, fiye) C Indg (v ® pgq)-

Example 9.5. Suppose G = GL(4,C). We identify g* with the Lie algebra M (4,C) (consisting of all
four by four complex matrices), sending a matrix T to the linear functional fr defined by fr(S) = tr T'S.
We consider the coadjoint orbit X consisting of all rank two matrices f with f2 = 0. These are the nilpotent
matrices corresponding to the partition 2+ 2 of 4; the orbit has dimension 8. We can take for a representative
the matrix (written with two by two blocks)

0 I
=0 1)

The isotropy group is the centralizer in G of the matrix f, namely

Gf={(‘g ﬁ) |A € GL2,0),B eM(Q,C)}. (9.5)(a)
Because G is complex, the metaplectic cover G # is trivial (isomorphic to Gy x Z/2Z). There is only one
admissible orbit datum =: it is trivial on Gy, and acts by the non-trivial character on Z/2Z.

The variety Xp is easily calculated by writing down the condition for an upper triangular matrix to
have square zero; we find

C
€

f
0

Xp=<T= |ad =df = ae +bf = 0,rankT = 2 (9.5)(b)

OO OO
coc oo
oo ac
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The rank condition picks out an open subset of the four-dimensional variety determined by the three equa-
tions. There are exactly two irreducible components:

0 a b ¢
. 000 e
xp=Ar= {00 0 ) ot br =060, £0.(.0) %0 95)©)
000 0
and
00 b c
X2={T= 8 8 g ¢ |lbe—de#o}. 9.5)(d)
000 0

The second is preserved by Gy, and therefore leads to a polarization of X. We therefore concentrate on the
first. It is smooth, and so equal to L; the stabilizer of L is the standard parabolic subgroup @ with Levi
factor GL(1) x GL(2) x GL(1). Notice that L contains the base element f. Calculations are simplified by
the fact that () acts transitively on L; so

L~Q/Qy, Q=0QNGy = {(Jg i) | A € GL(2) upper triangular,B € M(Q,C)} . (9-6)(a)

It follows that Z ~ G/Qs. The equivariant line bundle 7*V; is necessarily induced by a character a of Q.
Proposition 7.4 implies that « is given by the square root of the absolute value of the (real) determinant of
@y acting on the tangent space q/qy of L at f. This is

a<‘3 i):|wz_1|2, A:(é’ Z) (9.6)()

The condition (9.3)(d) on the character v of @ is simply v|g, = a. Such a character vy is determined
by an arbitrary complex character g of C*, by the formula

l

The half-density bundle on G/@Q is given by the character

*

*) = B((det S)(rt) ™) |rt ™1 ? (r,t e C*,S € GL(2)). (9.6)(c)

SO
O W *

t

roox %
PG/Q 0 S = :|T‘t_1|3. (9.-7)(a)
0 0 ¢
Define v/ = v ® pa}Q; then
roox %
Y10 S x| =p((detS)(rt) Hrt 1L, (9.7)(b)
0 0 ¢
and
V(f,7,L,%, dv.x) C IndG(y). 9.7)(c)

We wish to replace @) by the associate standard parabolic subgroup @; with Levi subgroup GL(2) x
GL(1) x GL(1). Define a character v, of Q1 by

S
Mmlo
0

) = B((det S)(rt)~1)|rt 1. (9.8)(a)

O 3 *
S U
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By standard results about parabolic induction, Indg (v") and Indg1 (71) have exactly the same composition
factors; and in fact they are isomorphic if 8 is a unitary character. Roughly speaking, therefore

V(fawaLa'YLj'y,‘ir) C Indgl (71); (98)(b)

the containment must be interpreted in terms of composition series if § is non-unitary. Now define Q)2 to be
the standard parabolic subgroup with Levi factor GL(2) x GL(2). Define a character v2 of Q2 by

A _
() =A@ s, 08)¢)
By calculation in GL(2) and induction by stages, we have a containment

IndSZ (72) C Indgl (71)- (9-8)(d)

The containments (9.8)(b) and (9.8)(d) suggest (but do not prove) that (at least if 8 is unitary)

V(f, 7, L, 7, jv,x) = Indg, (2). (9.8)(e)

The representations on the right are obviously unitary whenever £ is; so we may hope that Definition 9.4 is
actually producing unitary representations in that case.

Suppose now that we repeat the entire calculation using the other Lagrangian L? (from (9.5)(d)). This
time the stabilizer is ()2, and it turns out that the characters of @2 allowed by the condition (9.3)(d) are
precisely those given by (9.8)(c).

We want to draw two conclusions from the example. First, the geometric considerations of this paper
(involving symplectic spinors and so on) led to certain non-unitary degenerate series representations; yet
these non-unitary representations very often had interesting unitary components. Second, the non-canonical
choice of Lagrangian L in Definition 9.4 may not affect the representations finally constructed as much as
one might first guess.

We conclude with a few general remarks about Definition 9.4. Each element f € X defines a subvariety
My of M, the collection of all Lagrangians in M containing f. This is just the fiber of 7 over f (see (8.8)(d)).
The map 7 of (1.11)(c) carries M into B(g/gy), the Lagrangian Grassmannian for the tangent space to X at
f. Over B(g/gy) we have the vector bundle V;; Proposition 7.4 embeds H, @ H;"*> as a space of smooth
sections of V. Let us call these sections metaplectic.

Suppose ¢ is a section of W, on M belonging to our representation space V(f,w, L, 7, jy,z). Then the
restriction of ¢ to My must be equal to the pullback (via 7 and the isomorphism j, ) of a metaplectic
section of V. Said more loosely, ¢ must be metaplectic on each subvariety My of M. This condition is
probably not sufficient for belonging to V(f,n, L,7, jy,x), but it is certainly necessary; and in some sense it
seems to be the main requirement.

We have concentrated almost exclusively on complex groups. For nilpotent orbits in real reductive
groups, Corollary 8.7 is almost certainly still true; so most of the formalism of sections 8 and 9 can be set
up. This leads to subrepresentations of degenerate principal series again. It is not entirely clear that this is
the best or only way to proceed, however. Lemma 8.2 fails for elliptic semisimple orbits in the real case, and
one is forced to introduce complex polarizations (and the machinery of cohomological parabolic induction)
to construct unitary representations. It may be that nilpotent orbits in the real case should be treated using
ideas from cohomological induction, and that at least some of the associated representations should appear
inside cohomologically induced representations. We hope to return to these questions in a future paper.
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