1. Homework 9

Problem. The Weyl algebra is the algebra of differential operators on \mathbb{R}^n with polynomial coefficients. Consider the subalgebra \mathfrak{g} of the Weyl algebra that's generated by differential opperators $\frac{\partial^2}{\partial x_i \partial x_j}$ and $x_i x_j$ for $1 \leq i \leq j \leq n$.

(1) Find a basis of \mathfrak{g} ;

(2) Find a Cartan subalgebra \mathfrak{h} and the root space decomposition of \mathfrak{g} ;

(3) Choose a set of positive roots $R^+(\mathfrak{g}, \mathfrak{h})$ so that the nilradical \mathfrak{n} contains $\frac{\partial^2}{\partial x_i \partial x_j}$ for all $1 \leq i \leq j \leq n$;

(4) The Weyl algebra acts on $V = \mathbb{C}[x_1, x_2, \dots, x_n]$. When restricted to \mathfrak{g} , V is an infinite dimensional representation of \mathfrak{g} . Prove that V is a direct sum of two irreducible highest weight modules of \mathfrak{g} .

2. Homework 10

Problem. Suppose that G is a compact Lie group and acts smoothly on a locally compact space X and thus on C(X). Suppose (π_1, E_1) and (π_2, E_2) are two irreducible representations and $\phi_i : E_i \to C(X)$ are injections respecting the G-action. Define $\phi_{E_1 \otimes E_2} \to C(X)$ by $e_1 \otimes e_2 \mapsto$ $\phi_1(e_1)\phi_2(e_2)$ using the universal property of the tensor product.

(1) Show that $\phi_{E_1 \otimes E_2}$ respects the *G*-action.

(2) Given any E_1, E_2 , show that we can find X and $\phi_i(i = 1, 2)$, such that $\phi_{E_1 \otimes E_2}$ is injective.

(3) Prove the equivalence of the following three statements:

(a) (π, E) appears in C(X)

(b) There exists $x \in X$, such that (π, E) appears in $C(G \cdot x)$.

(c) $\pi|_{G_x}$ contains the trivial representation of G_x (the isotropy group of G fixing x).