
Notes on Picard’s method

In class on Friday I was sloppy about a number of things; so here is a slightly more
careful account of the existence of solutions to systems of differential equations with a
Lipschitz condition.

A box B ⊂ R
n is

B = {y = (y1, . . . , yn) ∈ R
n | a1 ≤ y1 ≤ b1, . . . an ≤ yn ≤ bn}. (BOX)

Here a1 < b1, a2 < b2, . . . an < bn are real numbers. A short way to write these conditions
is yi ∈ [ai, bi]. The interior of the box consists of y such that ai < yi < bi for all i; we write
yi ∈ (ai, bi).

Suppose F :B → R
m is a function defined on B and taking values in R

m. Recall that
F is said to satisfy a Lipschitz condition if there is a constant L so that

|F (y) − F (y′)| ≤ L|y − y′| (y, y′ ∈ B). (LIP )

(The absolute value signs all indicate lengths of vectors, in R
m on the left and R

n on the
right.)

A fundamental (and not obvious) property of continuous functions on boxes is that
they are bounded: if F is continuous on B, then there is a constant M so that

|F (y)| ≤ M (y ∈ B). (BDD)

Before beginning the existence theorem, let me remark that the Lipschitz condition
is a very strong version of what is uniform continuity. Here is what it means for F to be
continuous: for every b ∈ B, and every ε > 0, there is a constant δ > 0 so that |y − b| ≤ δ
implies that |F (y) − F (b)| ≤ ε. To emphasize that the constant δ depends both on b and
on ε, I’ll write it as δ(b, ε). Then the continuity condition at b reads

|y − b| ≤ δ(b, ε) ⇒ |F (y) − F (b)| ≤ ε (y ∈ B). (CONT )

Here is what it means for F to be uniformly continuous: for every ε > 0 there is a constant
δ(ε) > 0 so that

|y − b| ≤ δ(ε) ⇒ |F (y) − F (b)| ≤ ε (y, b ∈ B). (UNIF )

That is, the constants δ(b, ε) can be chosen independent of b—“uniformly” in B. Now the
remark is that if F satisfies the Lipschitz condition (LIP ) above, then it must also satisfy
the uniform continuity condition (UNIF ). Specifically, you can choose δ(ε) = ε/L (which
is independent of b, as required).

So here is the existence theorem.

Theorem. Assume that F (y, t) is a continuous function defined on a box B in R
n+1,

taking values in R
n; and assume that F satisfies the Lipschitz condition (LIP ) in the y

variables, and that F is bounded by M on the box (see (BDD)).
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Assume that (y0, t0) is a point in the interior of B. Write r for the distance from y0

to the boundary of B. Fix any real number t1 > t0 so that (y1, t1) is still in B, and also

eL(t1−t0) ≤ rL/M.

Then the initial value problem

y′ = F (t, y), y(t0) = y0 (IV P )

has a solution defined on the interval [t0, t1].

Proof. Just as in the case of one variable, the equation (IV P ) is equivalent to the
integral equation

y(t) = y(t0) +

∫

t

t0

F (y(s), s)ds (t ∈ [t0, t1]) (INTEG)

It is this integral equation that I’ll actually solve. The idea is to construct a sequence of
successive approximations y0(t), y1(t), . . ., and to define y(t) as the limit of these approxi-
mations.

The initial approximation is the constant function

y0(t) = y0, t ∈ [t0, t1].

The later approximations are defined recursively by the formula

ym+1(t) = y0 +

∫

t

t0

F (ym(s), s)ds (m ≥ 1, t ∈ [t0, t1]). (PIC)

The reason for the complicated assumption on t1 is to make sure that the successive
approximations are all well-defined: that ym(s) takes values in B, so that F (ym(s), s) is
defined. I’m not going to discuss that issue carefully; it’s not serious.

We need to get some control on the difference between ym+1 and ym. Here is the
result.

Lemma. In the setting above, we have for every m ≥ 0

|ym+1(t) − ym(t)| ≤ MLm(t − t0)
m+1/(m + 1)! (t ∈ [t0, t1]).

Proof. The proof is by induction on m. For m = 0, the definition (PIC) says that

y1(t) − y0(t) =

∫

t

t0

F (y0, s)ds.

Taking lengths and using the bound M on F gives

|y1(t) − y0(t)| ≤

∫

t

t0

|F (y0, s)|ds ≤

∫

t

t0

Mds = M(t − t0).
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This is exactly the case m = 0 claimed in the lemma.
So suppose that m > 0, and that we know the estimate in the lemma for m− 1. Then

the definition (PIC) gives

ym+1(t) − ym(t) =

∫

t

t0

(F (ym(s), s) − F (ym−1(s), s))ds.

Taking lengths and applying the Lipschitz condition L gives

|ym+1(t) − ym(t)| ≤

∫

t

t0

|F (ym(s), s) − F (ym−1(s), s)|ds ≤

∫

t

t0

L|ym(s) − ym−1(s)|ds.

Applying the case m − 1 of the lemma gives

|ym+1(t) − ym(t)| ≤

∫

t

t0

L · MLm−1(s − t0)
m/m!ds.

Performing the integral gives

|ym+1(t) − ym(t)| ≤ MLm(t − t0)
m+1/(m + 1)!,

which completes the inductive step. Q.E.D
End of proof of Theorem. The argument on page 682 of the text shows that the

sequence of functions ym converges uniformly to some limit y on the interval [t0, t1]. As
the uniform limit of a sequence of continuous functions, y is continuous. We can evaluate
the integral

y0 +

∫

t

t0

F (y(s), s)ds = y0 +

∫

t

t0

lim
m→∞

F (ym(s), s)ds.

Since the convergence is uniform, we can take the limit outside the integral sign, getting

y0 +

∫

t

t0

F (y(s), s)ds = lim
m→∞

(

y0 +

∫

t

t0

F (ym(s), s)ds

)

= lim
m→∞

ym+1(t) = y(t).

That is, y is a solution of the equation (INTEG), as we wished to show. Q.E.D.
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