Orthogonal Geometry (char $F \neq 2$)

Let *V* be a quadratic space of dimension $n \ge 2$ over a field *F*, with char $F \ne 2$. Let *B* be a non-degenerate orthogonal form on *V*. The isometries of *V* (called orthogonal transformations) comprise the orthogonal group O(V). Thus,

$$O(V) = \{\tau \in GL(V) \mid B(\tau u, \tau v) = B(u, v), \text{ all } u, v \in V\} \leq GL(V)$$

If $\tau \in V$ and $\{v_1, \ldots, v_n\}$ is a basis for *V* then $\tau \in O(V)$ if and only if $T^t \hat{B}T = \hat{B}$, where *T* is the matrix representing τ relative to the basis.

Proof. Case I ($\tau \in O(V) \Rightarrow T^t \widehat{B}T = \widehat{B}$): Suppose $\tau \in O(V)$. Then, we know that if $u, v \in V$, then $B(\tau u, \tau v) = B(u, v)$. By definition of \widehat{B} , we know that $B(u, v) = u^t \widehat{B}v$. Thus, $B(\tau u, \tau v) = (\tau u)^t \widehat{B}(\tau v) = u^t T^t \widehat{B}Tv$. And, since $B(\tau u, \tau v) = B(u, v)$, we know that $B(\tau u, \tau v) = u^t T^t \widehat{B}Tv = u^t T^t \widehat{B}Tv = B(u, v)$

We know that $u^{t}T^{t}\widehat{B}Tv = u^{t}\widehat{B}v$ is true for all vectors $u, v \in V$. We also know that \widehat{B}_{ij} , the *ij*-th entry of \widehat{B} , is equal to $e_{i}^{t}\widehat{B}_{ij}e_{j}$, where e_{i} is a basis vector with 1 in the *i*-th place and 0 elsewhere and e_{j} is a basis vector with 1 in the *j*-th place and 0 elsewhere. Then, $u^{t}T^{t}\widehat{B}Tv = u^{t}\widehat{B}v$ implies that $\left({}^{t}T^{t}\widehat{B}T\right)_{ij} = \widehat{B}_{ij}$ for $1 \leq i \leq n$ and $1 \leq j \leq n$. Therefore, since every *ij*-th entry of ${}^{t}T^{t}\widehat{B}T$ equals the *ij*-th entry of \widehat{B} it follows that $T^{t}\widehat{B}T = \widehat{B}$.

Case II
$$(T^t \widehat{B}T = \widehat{B} \Rightarrow \tau \in O(V))$$
: Suppose $T^t \widehat{B}T = \widehat{B}$. Let $u, v \in V$. Then
 $T^t \widehat{B}T = \widehat{B} \Rightarrow u^t T^t \widehat{B}T = u^t \widehat{B}$
 $\Rightarrow u^t T^t \widehat{B}Tv = u^t \widehat{B}v$
 $\Rightarrow (\tau u)^t \widehat{B}(\tau v) = u^t \widehat{B}v$
 $\Rightarrow B(\tau u, \tau v) = B(u, v)$

As a result,

$$T^{t}\widehat{B}T = \widehat{B} \Rightarrow \det(T^{t}\widehat{B}T) = \det(\widehat{B})$$
$$\Rightarrow \det(T^{t})\det(\widehat{B})\det(T) = \det(\widehat{B})$$
$$\Rightarrow \det(T)^{2}\det(\widehat{B}) = \det(\widehat{B})$$

Since *B* is non-degenerate, we know that $\det(\widehat{B}) \neq 0$. Therefore, from the preceding expression, we see that $\det(T)^2 = 1$, which implies that $\det T = \pm 1$. Since char $F \neq 2$, $1 \neq -1$, so we have two cases: (1) $\det \tau = 1$, in which case τ is called a rotation (or a proper orthagonal transformation); and, (2) if $\det \tau = -1$, in which case τ is called a reversion (or an improper orthagonal transformation).

The rotations in O(V) form the special orthogonal group SO(V). The special orthogonal group is clearly nonempty because if we let $T = I_n$ be the matrix representing τ relative to the basis, then we have that $T^t \widehat{B}T = \widehat{B}$, which implies that $\tau \in O(V)$ (as we showed above). And, since det $T = \det I_n = 1$, we know that $\tau \in SO(V)$. So, we know that proper orthogonal transformations exist in O(V).

We now show that improper orthogonal transformations exist in O(V). Let $u \in V$, be any vector such that $B(u, u) \neq 0$ (i.e. *u* is anisotropic). We define a linear transformation σ_u to be:

$$\sigma_u(v) = v - 2\frac{B(v,u)}{B(u,u)}u$$

for all $v \in V$. Defined in this way, σ_u is the orthogonal reflection through the hyperplane u^{\perp} . The following diagram illustrates this notion. Note that $z = \frac{B(v,u)}{B(u,u)}u$ below.

Now, let $v, w \in V$. Then, by the above definition of σ_u , we have that

$$B(\sigma_{u}v, \sigma_{u}w) = B(v - 2\frac{B(v, u)}{B(u, u)}u, w - 2\frac{B(w, u)}{B(u, u)}u)$$

= $B(v, w) - 2\frac{B(w, u)}{B(u, u)}B(v, u) - 2\frac{B(v, u)}{B(u, u)}B(u, w) + 4\frac{B(v, u)B(w, u)}{B(u, u)^{2}}B(u, u)$
= $B(v, w) - 4\frac{B(v, u)B(w, u)}{B(u, u)} + 4\frac{B(v, u)B(w, u)B(u, u)}{B(u, u)^{2}}$
= $B(v, w)$

so $\sigma_u \in O(V)$.

Since $B(u, u) \neq 0$, $W = \langle u \rangle$ is a non-degenerate subspace of *V*. Then, by Proposition 2.9 in the text, we have that $V = \langle u \rangle \oplus \langle u \rangle^{\perp}$. Note that $\sigma_u(u) = -u$ and if $u \perp v$ then $\sigma_u(v) = v$. Now set $u_1 = u$ and choose any basis $\{u_2, \ldots, u_n\}$ for $\langle u \rangle^{\perp}$, then relative to the basis $\{u_1, u_2, \ldots, u_n\}$ for *V* the matrix representing σ_u is $\begin{bmatrix} -1 & 0 \\ 0 & I_{n-1} \end{bmatrix}$. Since det $\begin{bmatrix} -1 & 0 \\ 0 & I_{n-1} \end{bmatrix} = -1$, it follows that σ_u is improper, so $\sigma_u \notin SO(V)$.