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Orthogonal Geometry
(char F ̸ 2)

Let V be a quadratic space of dimension n ≥ 2 over a field F, with char F ̸ 2. Let B be a
non-degenerate orthogonal form on V. The isometries of V (called orthogonal transformations)
comprise the orthogonal group OV. Thus,

OV   ∈ GLV ∣ Bu,v  Bu,v, all u,v ∈ V ≤ GLV

If  ∈ V and v1, . . . ,vn is a basis for V then  ∈ OV if and only if TtBT  B, where T is the
matrix representing  relative to the basis.
Proof. Case I ( ∈ OV  TtBT  B): Suppose  ∈ OV. Then, we know that if u,v ∈ V,
then Bu,v  Bu,v. By definition of B, we know that Bu,v  utBv. Thus,
Bu,v  u tBv  utTtBTv. And, since Bu,v  Bu,v, we know that

Bu,v  utTtBTv  utBv  Bu,v

We know that utTtBTv  utBv is true for all vectors u,v ∈ V. We also know that Bij, the ij-th
entry of B, is equal to ei

tBijej, where ei is a basis vector with 1 in the i-th place and 0 elsewhere
and ej is a basis vector with 1 in the j-th place and 0 elsewhere. Then, utTtBTv  utBv implies
that tTtBT

ij
 Bij for 1 ≤ i ≤ n and 1 ≤ j ≤ n. Therefore, since every ij-th entry of tTtBT

equals the ij-th entry of B it follows that TtBT  B.

Case II (TtBT  B   ∈ OV): Suppose TtBT  B. Let u,v ∈ V. Then

TtBT  B  utTtBT  utB

 utTtBTv  utBv

 u tBv  utBv
 Bu,v  Bu,v



As a result,

TtBT  B  detTtBT  detB

 detTtdetBdetT  detB

 detT2 detB  detB

Since B is non-degenerate, we know that detB ̸ 0. Therefore, from the preceding
expression, we see that detT2  1, which implies that detT  1. Since char F ̸ 2, 1 ̸ −1,
so we have two cases: (1) det  1, in which case  is called a rotation (or a proper orthagonal
transformation); and, (2) if det  −1, in which case  is called a reversion (or an improper
orthagonal transformation).

The rotations in OV form the special orthogonal group SOV. The special orthogonal group
is clearly nonempty because if we let T  In be the matrix representing  relative to the basis,
then we have that TtBT  B, which implies that  ∈ OV (as we showed above). And, since
detT  det In  1, we know that  ∈ SOV. So, we know that proper orthogonal
transformations exist in OV.

We now show that improper orthogonal transformations exist in OV. Let u ∈ V, be any
vector such that Bu,u ̸ 0 (ie. u is anisotropic). We define a linear transformation u to be:

uv  v − 2 Bv,u
Bu,u u

for all v ∈ V. Defined in this way, u is the orthogonal reflection through the hyperplane u.
The following diagram illustrates this notion. Note that z  Bv,u

Bu,u u below.



Now, let v,w ∈ V. Then, by the above definition of u, we have that

Buv,uw  Bv − 2 Bv,u
Bu,u u,w − 2 Bw,u

Bu,u u

 Bv,w − 2 Bw,u
Bu,u Bv,u − 2 Bv,u

Bu,u Bu,w  4 Bv,uBw,u
Bu,u2 Bu,u

 Bv,w − 4 Bv,uBw,u
Bu,u  4 Bv,uBw,uBu,u

Bu,u2

 Bv,w
so u ∈ OV.

Since Bu,u ̸ 0, W  〈u is a non-degenerate subspace of V. Then, by Proposition 2.9 in the
text, we have that V  〈u ⊕ 〈u. Note that uu  −u and if u  v then uv  v. Now set
u1  u and choose any basis u2, . . . ,un for 〈u, then relative to the basis u1,u2, . . . ,un for

V the matrix representing u is
−1 0
0 In−1

. Since det
−1 0
0 In−1

 −1, it follows that

u is improper, so u ∉ SOV.


