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The subgroup Ω for orthogonal groups

In the case of the linear group, it is shown in the text that PSL(n, F ) (that is,
the group SL(n) of determinant one matrices, divided by its center) is usually a
simple group. In the case of symplectic group, PSp(2n, F ) (the group of symplectic
matrices divided by its center) is usually a simple group. In the case of the orthog-
onal group (as Yelena will explain on March 28), what turns out to be simple is
not PSO(V ) (the orthogonal group of V divided by its center). Instead there is a
mysterious subgroup Ω(V ) of SO(V ), and what is usually simple is PΩ(V ). The
purpose of these notes is first to explain why this complication arises, and then to
give the general definition of Ω(V ) (along with some of its basic properties).

So why should the complication arise? There are some hints of it already in
the case of the linear group. We made a lot of use of GL(n, F ), the group of all
invertible n × n matrices with entries in F . The most obvious normal subgroup of
GL(n, F ) is its center, the group F× of (non-zero) scalar matrices. Dividing by the
center gives

(1) PGL(n, F ) = GL(n, F )/F×,

the projective general linear group. We saw that this group acts faithfully on the
projective space P

n−1(F ), and generally it’s a great group to work with. Most of
the steps in Iwasawa’s theorem (for proving a group is simple) apply to PGL(n, F ).
The only part that doesn’t work is that PGL(n, F ) need not be its own derived
group.

In some sense the reason for this failure is that GL(n, F ) has another “obvious”
normal subgroup: the group SL(n, F ) of determinant one matrices. Once you
remember this group, it becomes obvious that any commutator in GL(n, F ) must
belong to SL(n, F ). In fact it turns out that SL(n, F ) is (usually) the derived
group of GL(n, F ) (see page 9 of the text). At any rate, we get a normal subgroup
PSL(n, F ) of PGL(n, F ). A little more precisely,

(2)
PSL(n, F ) = SL(n, F )/(scalar matrices in SL(n, F ))

= SL(n, F )/(nth roots of 1 in F×).

What’s going on is that the scalar matrices of determinant one are precisely the
nth roots of 1 in the field F (see page 6 of the text). We’re going to see that
the relationship between SO(V ) and its normal subgroup Ω(V ) is similar to the
relationship between PGL(n, F ) and its normal subgroup PSL(n, F ). So we begin
by recalling a little bit about that relationship.

The determinant map is a well-defined surjective group homomorphism from
GL(n, F ) to F× with kernel SL(n, F ):

(3) det: GL(n, F ) → F×, ker(det) = SL(n, F ).

The determinant of a scalar matrix is equal to the nth power of the scalar. Writing
(F×)n for the group of all nth powers in F , we can deduce easily that there is a
well-defined surjective group homomorphism “projective determinant,”

(4)(a) P det: PGL(n, F ) → F×/(F×)n, ker(P det) = PSL(n, F ).
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(This terminology is not standard or common.) It follows that PGL(n, F ) is dif-
ferent from PSL(n, F ) if and only if F× is different from (F×)n. In particular,

(4)(b) PGL(n, F ) = PSL(n, F ) if F is algebraically closed.

For the real numbers, every number is an nth power if and only if n is odd; so
PGL(n, R) is the same as PSL(n, R) if and only if n is odd. For the finite field
Fq, every element is an nth power if and only if n and q − 1 are relatively prime;
so PGL(n, Fq) is the same as PSL(n, Fq) if and only if n and q − 1 are relatively
prime.

In order to understand Ω(V ) for the orthogonal groups, you might think of
SO(V ) as being something like PGL(n, F ), and its subgroup Ω(V ) as being like
PSL(n, F ). The text eventually explains a way to make this analogy complete, by
defining something called the “spin group” Spin(V ) (analogous to SL(n, F )), and
a group homomorphism from Spin(V ) to SO(V ) whose image is exactly Ω(V ). I’m
not going to do that in general, although I’ll do some special cases by hand. Here
is the first one.

We are going to make a relationship between PGL(2, F ) and the orthogonal
group of a certain three-dimensional vector space. For this example, assume that
the characteristic of F is not 2. Define

(5)(a) V = {2 × 2 matrices with entries in F}.

We define a symmetric bilinear form on V by

(5)(b) B(X, Y ) = tr(XY ).

(Recall that the trace of a square matrix is the sum of the diagonal entries. The
form is symmetric because the trace of XY is equal to the trace of Y X .) We choose
as a basis of V the four matrices

(5)(c)

e12 =

(
0 1
0 0

)
, e21 =

(
0 0
1 0

)
,

e11 − e22 =

(
1 0
0 −1

)
, e11 + e22 =

(
1 0
0 1

)
.

It’s a simple matter to compute the matrix of the form B in this basis. For example,
e12e21 = e11, which has trace equal to 1, so B(e12, e21) = 1. Continuing in this
way, we find that the matrix of B in this basis is

(5)(d) B̂ =




0 1 0 0
1 0 0 0
0 0 2 0
0 0 0 2


 .

The determinant of B̂ is -4, so (since the characteristic of F is not 2) B is nonde-
generate.

Consider now the one-dimensional subspace 〈e11 + e22〉 spanned by the identity
matrix. Since the form takes the value 2 on the identity matrix, the subspace is
non-degenerate. Define

(5)(e) W = 〈e11 + e22〉
⊥ = {X ∈ V | tr(X) = 0}.
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By Proposition 2.9 of the text, we have an orthogonal direct sum decomposition

(5)(f) V = W ⊕ 〈e11 + e22〉,

The restriction BW of B to W has matrix

(5)(g) B̂W =




0 1 0
1 0 0
0 0 2


 .

This matrix has determinant −2, so BW is non-degenerate.

Proposition 6. Suppose F is a field of characteristic not equal to 2. Define a
four-dimensional orthogonal space V (the 2 × 2 matrices) and three-dimensional
subspace W (matrices of trace zero) as in (5) above.

(1) There is a group homomorphism

πV : GL(2, F ) → O(V ), πV (g)X = gXg−1 (X ∈ V ).

(2) Every linear transformation πV (g) fixes the identity matrix e11 + e22, and
therefore preserves its orthogonal complement W . Write

πW : GL(2, F ) → O(W )

for the restriction of πV to W .
(3) We have

kerπV = kerπW = F×,

the scalar matrices in GL(2, F ). The homomorphism πW therefore defines
an injective homomorphism

πW : PGL(2, F ) ↪→ O(W ).

(4) In the basis {e12, e21, e11 − e22} for W , the homomorphism πW is

πW

(
a b
c d

)
=

1

ad − bc




a2 −b2 −2ab
−c2 d2 2dc
−ac bd ad + bc


 .

The matrix on the right has determinant equal to 1, so we actually have

πW : PGL(2, F ) ↪→ SO(W ).

(5) The image of πW is equal to SO(W ).

Most of this proposition can be generalized from 2×2 matrices to n×n matrices
without difficulty: we get a natural quadratic form on the n2−1-dimensional vector
space Wn of matrices of trace zero, and an injective group homomorphism

(7) πW : PGL(n, F ) ↪→ SO(Wn).

What fails is only the very last step: this homomorphism is not surjective if n ≥ 3.
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Proof. That πV is a homomorphism to linear transformations on the space of ma-
trices is very easy; the main point is to check that it respects the bilinear form B.
If X and Y are 2 × 2 matrices, then

B(πV (g)X, πV (g)Y ) = B(gXg−1, gY g−1)

= tr gXg−1gY g−1

= tr g(XY )g−1.

Now use the fact that tr(AB) = tr(BA), applied to the matrices A = gXY and
B = g−1. We get

= tr g−1gXY = tr(XY ) = B(X, Y ).

This shows that πV (g) belongs to O(V ), proving (1). Part (2) is very easy.
For part (3), the kernel of πV consists of all invertible matrices that commute with

all matrices. These are precisely the invertible scalar matrices. Since everything
commutes with the identity matrix, commuting with all matrices is exactly the
same as commuting with all trace zero matrices (cf. (5)(f)); so kerπV = kerπW .
This is (3).

Part (4) explicitly computes the map X → gXg−1. The first step is the formula
(

a b
c d

)−1

=
1

ad − bc

(
d −b
−c a

)
.

To compute the first column on the right in (4), we have to perform the multipli-
cation

1

ad − bc

(
a b
c d

) (
0 1
0 0

) (
d −b
−c a

)
,

and then express the result as a linear combination of e12, e21, and e11 − e22. I will
leave the verifications to you.

The determinant of the 3 × 3 matrix in (4) is clearly a polynomial of degree 6
in a, b, c, and d, divided by (ad − bc)3 (coming from the scalar factor in front).
You can compute this quotient and find that it’s identically 1; but here is a non-
computational argument that it had to come out that way. We have a rational
function of a, b, c, and d. The rational function has integer coefficients in the
numerator and denominator, and doesn’t depend on the field F . Because an or-
thogonal matrix must have determinant ±1, this rational function can take only
the values +1 and −1. In case F is infinite, this forces the rational function to

be equal to +1 or to −1. When g =

(
1 0
0 1

)
the right side is clearly the identity

matrix, so the constant has to be +1. This proves (4).
Part (5) is the hard part. The idea is to reduce to studying the stabilizer of a

special line in W , and there to write everything explicitly. Here’s the reduction
step.

Lemma 8. In the setting of Proposition 6, suppose that X ∈ W is a non-zero
matrix such that B(X, X) = 0. Then there is a matrix g ∈ SL(2, F ) and a non-
zero scalar a such that

πW (g)e12 = a−1X.

I’ll give the proof in a moment. Now we need to study the line [e12] in the
projective space of W .
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Lemma 9. In the setting of Proposition 6, consider the subgroup

P = {T ∈ O(W ) | T [e12] = [e12]},

the stabilizer in O(W ) of the line through e12.

(1) In the basis {e12, e21, e11 − e22} for W , the group P is

P =








k −ky2 −2εky
0 k−1 0
0 y ε


 | k ∈ F×, y ∈ F, ε = ±1



 .

Here ε is equal to the determinant of the matrix; so the matrix belongs to
SO(W ) if and only if ε = 1.

(2) In the setting of Proposition 6(4), the matrix πW

(
a b
c d

)
belongs to P if

and only if c = 0. For such matrices, we have

πW

(
a b
0 d

)
=




a/d −b2/ad −2b/d
0 d/a 0
0 b/a 1


 .

(3) We have
πW (GL(2, F )) ∩ P = SO(W ) ∩ P.

For this result also I postpone the proof for a moment.
We now return to the proof of Proposition 6(5). So suppose T ∈ SO(W ). The

vector e12 ∈ W is non-zero, but B(e12, e12) = 0. It follows that X = TW is a
non-zero vector such that B(X, X) = 0. By Lemma 8, there is a g ∈ SL(2, F ) so
that

[πW (g)e12] = [Te12].

(The notation means equality of the lines through πW (g)e12 and Te12.) Therefore
πW (g−1)T ∈ P ∩ SO(W ). By Lemma 9, there is an h ∈ GL(2, F ) so that

πW (g−1)T = πW (h).

Therefore T = πW (gh), as we wished to show. �

Proof of Lemma 8. By hypothesis

X =

(
a b
c −a

)
,

with a, b, and c not all zero. We calculate

X2 =

(
a2 + bc 0

0 a2 + bc

)

0 = B(X, X) = trX2 = 2(a2 + bc).
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Since the characteristic of F is not 2, this means that a2 + bc = 0, and therefore
(by the first calculation) that X2 = 0. Since X is not zero, there is some vector v
so that Xv 6= 0. Furthermore X(Xv) = X2v = 0, so Xv cannot be a multiple of v;
so for any a ∈ F×, the pair {Xv, av} is a basis of F 2. In this basis, the matrix of

X is

(
0 a
0 0

)
= ae12. Let ga be the change of basis matrix relating the standard

basis of F 2 to {Xv, av}: that is, the matrix whose columns are Xv and av. Then

g−1
a Xga = ae12;

equivalently, πW (ga)e12 = a−1X . Changing the constant a scales the second column
of ga, and so scales det(ga); so for an appropriate choice of a, we have ga ∈ SL(2, F ),
as we wished to show. �

Proof of Lemma 9. Part (1) is analogous to Proposition 12 of the notes on the
symplectic group; I will prove something more general for orthogonal groups in
Proposition xx below. For part (2), the first assertion is clear from comparing

Proposition 6(4) to the formula in part (1). The formula for πW

(
a b
0 d

)
is just a

specialization of Proposition 6(4). Part (3) is now clear. �

Corollary 10. Suppose that W0 is a three-dimensional vector space over a field F
of characteristic not 2. Suppose B0 is a symmetric non-degenerate bilinear form on
W0, and suppose that W0 contains at least one non-zero vector u with B0(u, u) = 0.

(1) The special orthogonal group SO(W0) is naturally isomorphic to PGL(2, F ).
(2) The image of PSL(2, F ) under this isomorphism is a normal subgroup

that we will call Ω(W0) of SO(W0), equal to the commutator subgroup of
SO(W0).

(3) There is a natural isomorphism

SO(W0)/Ω(W0) → F×/(F×)2.

(4) The group Ω(W0) is simple as long as F 6= F3.

Proof. From the existence of a vector of length 0, one can get in W0 a hyperbolic
plane H0 in W0, and then an orthogonal decomposition W0 = H0⊕H⊥

0 . Because W0

is three-dimensional, H⊥
0 = 〈w0〉 is a line. Because B0 is assumed non-degenerate,

the vector w0 must have non-zero length: B0(w0, w0) = a 6= 0. Now let B′
0 =

(2/a) · B0. This is another symmetric bilinear form on W0, defining exactly the
same orthogonal group. We have B′

0(w, w) = 2, so with respect to B′
0, W0 is the

orthogonal direct sum of a hyperbolic plane and the span of a vector of length 2. By
(5)(g), (W0, B

′
0) is equivalent to the pair (W, BW ) of (5). Therefore O(W ) ' O(W0).

In Proposition 6 we proved that SO(W ) is isomorphic to PGL(2, F ), so this result
is inherited by the isomorphic group SO(W0). This proves (1). Part (2) is a
consequence of the fact that SL(2, F ) is the commutator subgroup of GL(2, F ).
Part (3) follows from equation (4)(a) above. The simplicity of Ω(W ) is just the
simplicity of PSL(2, F ). �

That’s a pretty complete account of Ω in the case of three-dimensional orthogonal
spaces. In order to get going in higher dimensions, we need a little machinery.
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For the balance of this paper, we fix an n-dimensional vector space V over a field
F , and a non-degenerate symmetric bilinear form B on B. We will assume that

(11)(a) dim V ≥ 3, charF 6= 2.

In addition, we will assume that

(11)(b) V contains a non-zero vector u such that B(u, u) = 0.

In this setting (which generalizes that of Corollary 10), we are going to construct a
normal subgroup Ω(V ) of the orthogonal group O(V ). In the text starting on page
53, the group that I’ve written Nu below is called Ku. The letter N seems to me
to fit much better with standard terminology.

Proposition 12. In the setting of (11), suppose that y ∈ 〈u〉⊥ is a vector orthog-
onal to the isotropic vector u. Define a linear transformation ρu,y on V by

ρu,y(x) = x − B(x, u)y + B(x, y)u −
1

2
B(y, y)B(x, u)u.

(1) The linear transformation ρu,y belongs to SO(V ). If a ∈ F is a non-zero
scalar, then ρau,y = ρu,ay.

(2) We have ρu,yρu,z = ρu,y+z.
(3) We have ρu,y = I (the identity map on V ) if and only if y ∈ 〈u〉.
(4) The collection of linear transformations

Nu = {ρu,y | y ∈ 〈u〉⊥}

is an abelian group, isomorphic to the additive group of the quotient vector
space

W = 〈u〉⊥/〈u〉

(which has dimension n − 2 over F ).
(5) The vector space W carries a natural nondegenerate symmetric bilinear form

BW : if y and z in 〈u〉⊥ are representatives for y and z in W , then

BW (y, z) = B(y, z).

(6) Write Pu for the stabilizer in O(V ) of the line [u]. Each element p ∈ Pu

acts naturally on the vector space W , and we get in this way a surjective
group homomorphism

m: Pu → O(W ).

Similarly, p sends u to a multiple of itself, defining a surjective group ho-
momorphism

a: Pu → F×, p · u = a(p)u.

(7) If y ∈ 〈u〉⊥ and p ∈ Pu, then

pρu,yp−1 = ρa(p)u,m(p)y = ρu,a(p)m(p)y.

In particular, Nu is a normal subgroup of Pu.
(8) The quotient group Pu/Nu is isomorphic (by the homomorphism a ×m) to

the product F××O(W ). Intersecting with the special orthogonal group gives

(SO(V ) ∩ Pu)/Nu ' F× × SO(W ).

(9) The group Nu is contained in the commutator subgroup of SO(V ) ∩ Pu.
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The most obvious question raised by Proposition 12 is this: where did the ele-
ments ρu,y come from? Perhaps the simplest answer to this question may be found
in the reformulation at equation (18)(d) below. There I have chosen a second vector
v making a hyperbolic pair with u. The idea is to invent an orthogonal transfor-
mation ρ that fixes u. It must therefore carry v to some other vector whose pairing
with u is equal to 1. This other vector must be v, plus some multiple of u, plus
something orthogonal to u and v. So pick first the something orthogonal to u and
v, and call it −y. So far we’re forced to write

ρ(u) = u, ρ(v) = v − y − au.

The requirement that ρ(v) have length 0 forces a = −B(y, y)/2. This shows that the
middle formula in (18)(d) is forced on us by the requirement that ρ be orthogonal.
The last formula is just the simplest possible extension of ρ to all of V .

Before embarking on the proof of this proposition, let us see how it leads to the
group Ω(V ).

Definition 13. In the setting of (11) and Proposition 12, we define

Ω(V ) = group generated by all Nu, u isotropic in V .

By Proposition 12(1), Ω(V ) is a subgroup of SO(V ).

The definition of Nu makes it almost obvious that for any τ ∈ O(V ), we have

(14)(a) τNuτ−1 = Nτu.

From this it follows at once that

(14)(b) Ω(V ) is a normal subgroup of O(V ) and of SO(V ).

As a consequence of Proposition 12(9), we have

(14)(b) Ω(V ) is contained in the commutator subgroup of SO(V ).

Proof of Proposition 12. The ideas is to imitate the proof of Proposition 12 in the
notes on the symplectic group: to construct lots of elements of Pu by hand, and
see how to compose them. We can start without doing any work. For (1), we have
to show that if x1 and x2 are in V , then

(15) B(ρu,y(x1), ρu,y(x2)) = B(x1, x2).

According to the definition,

ρu,y(xi) = xi − B(xi, u)y + [B(xi, y) −
1

2
B(y, y)B(xi, u)]u,

a sum of three vectors. So the left side of (15) expands (using bilinearity) as
a sum of nine terms. One is equal to the right side, and four are zero because
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B(u, u) = B(u, y) = 0. So we need to show that the sum of the remaining four
terms is equal to zero. This is

− B(x2, u)B(x1, y) + [B(x2, y) −
1

2
B(y, y)B(x2, u)]B(x1, u)

− B(x1, u)B(x2, y) + [B(x1, y) −
1

2
B(y, y)B(x1, u)]B(x2, u)

+ B(x1, u)B(x2, u)B(y, y).

This sum is indeed equal to zero, proving that ρu,y ∈ O(V ).
Next we will show that ρu,y has determinant equal to 1. In fact we will prove

more. A linear transformation T on a finite-dimensional vector space V is called
unipotent if (T − I)m = 0 for some positive integer m. It is a nice exercise in linear
algebra to prove that any unipotent linear transformation must have determinant
one. (A cheap way to prove this involves noticing that all the eigenvalues of T must
be equal to 1; but you can probably think of something nicer.) So it is enough to
prove that

(16)(a) (ρu,y − I)3 = 0.

To prove this, notice first that

(16)(b) (ρu,y − I)(x) = −B(x, u)y + [B(x, y) −
1

2
B(y, y)B(x, u)]u,

a linear combination of u and y. So it is enough to prove that

(16)(c) (ρu,y − I)(y) ∈ 〈u〉, (ρu,y − I)(u) = 0.

(For then applying (ρu,y − I) once puts us in the span of u and y; applying it a
second time puts us in the span of u; and applying it a third time gives zero.)
The first assertion of (16)(c) is clear from (16)(a), since B(y, u) = 0. The second
is also clear from (16)(a), since B(u, u) = B(u, y) = 0. This proves that ρu,y is
unipotent, and therefore of determinant 1. The last formula in (1) is an immediate
consequence of the definition.

The identity in (2) follows by a straightforward calculation from the definition,
which I will omit.

For (3), suppose first that y = au. According to (16)(b),

(ρu,au − I)(x) = −B(x, u)(au) + [B(x, au) −
1

2
B(au, au)B(x, u)]u.

Since B(u, u) = 0, this simplifies to

(ρu,au − I)(x) = −B(x, u)(au) + B(x, au)u,

which is zero by since B is bilinear. Next, suppose that y is not a multiple of u.
Since B is non-degenerate, we can find x ∈ V with B(x, u) 6= 0. Formula (16)(b)
therefore says

(ρu,au − I)(x) = non-zero multiple of y plus multiple of u,
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which cannot be zero since y is not a multiple of u.
Part (4) is an abstract restatement of (3). Parts (5)–(7) are formal and easy,

except for the surjectivity of the homomorphisms a and m. To prove that, and to
prepare for the proof of (8), we will use a little more structure. We have essentially
already said that the nondegeneracy of B allows us to choose a vector v′ so that
B(u, v′) = 1. If we define

v = v′ −
1

2
B(v′, v′)u,

then we get

(17)(a) B(v, v) = B(u, u) = 0, B(u, v) = 1;

that is, u and v are a standard basis of a hyperbolic plane H ⊂ V . The vector
v is not uniquely determined by u. It’s an entertaining exercise to prove that the
collection of all possible choices of v is equal to

{ρu,y(v) | y ∈ 〈u〉⊥}.

Write

(17)(b) W0 = H⊥ = {w ∈ V | B(w, u) = B(w, v) = 0.

According to Proposition 2.9 in the text,

(17)(c) V = H ⊕ W0,

an orthogonal direct sum decomposition. The form BW0
(the restriction of B to

W0 is non-degenerate. It’s very easy to see that

〈u〉⊥ = W0 ⊕ 〈u〉,

so the quotient vector space

(17)(d) W = 〈u〉⊥/〈u〉 ' W0.

This isomorphism respects the bilinear forms, so O(W0) ' O(W ).
Using the structure in (17) just as we did in the symplectic group notes, we can

now define some elements of the stabilizer Pu in O(V ) of the line [u]. Just as in
that case, we can define these elements by saying what they do to u, what they do
to v, and what they do to elements w ∈ W0.

For any k ∈ F×, define

(18)(a) ak(u) = ku, ak(v) = k−1v, ak(w) = w (w ∈ W0).

It’s easy to check that ak belongs to Pu. For any τ ∈ O(W0), define

(18)(b) mτ (u) = u, mτ (v) = v, mtau(w) = τ(w) (w ∈ W0).

Finally, define

(18)(c) A = {ak | k ∈ F×}, M = {mτ | τ ∈ O(W0)}

These are commuting subgroups of Pu, isomorphic to F× and SO(W0) respectively.
The remaining elements we need from Pu are the elements ρu,y of Proposition

12. In that setting we had y ∈ 〈u〉⊥, and y was determined only up to a multiple
of u. Now its convenient to regard y as a uniquely determined element of W0. In
this case we have

(18)(d) ρu,y(u) = u, ρu,y(v) = v − y −
1

2
B(y, y)u, ρu,y(w) = w − B(w, y)u

for any w ∈ W0.



11

Lemma 19. In the notation of (18), every element p ∈ Pu has a unique represen-
tation as a product

p = mτakρu,y (k ∈ F×, τ ∈ O(W0), y ∈ W0.

In terms of the homomorphisms defined in Proposition 12(6), and the identification
O(W ) ' O(W0), we have

a(p) = k, m(p) = τ.

In particular, the homomorphism

a × m: Pu → F× × SO(W )

is surjective, with kernel equal to Nu.

The proof is exactly parallel to that of Proposition 12 in the symplectic group
notes, so I’ll omit it. Parts (6) and (8) of Proposition 12 follow.

For part (9), we compute using (7) for p ∈ Pu

ρu,ypρ−1
u,yp

−1 = ρu,yρ−1
u,a(p)m(p)y = ρu,y−a(p)m(p)y

Choose p so that a(p) 6= 1 and m(p) = 1, as is possible by (8). In this case
p ∈ SO(V ), so we see that ρu,(1−a(p))y is a commutator in SO(V ) ∩ Pu. Since
a(p) 6= 1, this includes all of Nu. �


