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1. Introduction.

Suppose G is a reductive algebraic group defined over a local field F . The local
Langlands conjecture as formulated in [8] describes the set Π(G(F )) of equivalence
classes of irreducible admissible representations of G(F ) in terms of the (purely
arithmetic) Weil-Deligne group W ′

F and the (purely algebraic) complex dual group
∨G. The conjecture has been proved by Langlands in [24] when F = R or F = C,
and in a few other cases. The conjecture asks for a partition of the set of equivalence
classes of irreducible representations into finite sets, called L-packets. Perhaps the
main point of the conjecture is to understand the local factors of automorphic
representations; Labesse-Langlands showed in [22] that for this it is important
to consider simultaneously all the representations in an L-packet. (The simplest
example of an L-packet is the set of all discrete series representations of a real
semisimple group with a fixed infinitesimal character. If the occurrence of these
representations in a space of automorphic forms is investigated by index-theoretic
techniques, what emerges most easily is the not the multiplicity of a single discrete
series but the sum of all their multiplicities.)

Since Langlands’ original work, there has been some progress in refining his
predictions for special classes of groups or representations. In this direction there
was first of all the work of Knapp-Zuckerman and Shelstad (see [27]) describing
the L-packets when F = R. Kazhdan-Lusztig, Beilinson-Bernstein, and Brylinski-
Kashiwara (see [3]) calculated the irreducible characters when F = C or R; this
extends Langlands’ work in the sense that it describes the irreducible representa-
tions in somewhat more detail. Meanwhile Bernstein-Zelevinsky in [7] made a deep
study of the reducibility of induced representations of p-adic groups, especially
GL(n); this led to Zelevinsky’s formulation in [32] of a conjectural description of
irreducible characters of GL(n) when F is p-adic. Later Kazhdan-Lusztig classi-
fied precisely the representations with a vector fixed by an Iwahori subgroup when
F is p-adic (see [17]); their work was motivated in part by a version of Zelevin-
sky’s conjecture (due to Lusztig) that applies more or less to any G, but only to
representations with an Iwahori-fixed vector.

At the same time, Arthur was examining the question of how non-tempered
representations should fit into the trace formula, and how to generalize the ideas
of [22]. What emerged from his work (see [2]) was that to have a chance at nice
multiplicity formulas for non-tempered automorphic representations, one needs to
consider even larger sets of representations than Langlands’ L-packets. (One can
get a hint of this in the example of discrete series mentioned in the first paragraph.
If the infinitesimal character is close to a wall, some non-tempered automorphic
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representations may also contribute to the index formula; what one computes eas-
ily is the sum of all the discrete series multiplicities, plus an alternating sum of
multiplicities of various non-tempered representations. The set of representations
appearing here is larger than the sets Arthur considers, but it has a little of the
same flavor.) Since Arthur’s sets are not simply unions of L-packets, Langlands’
original formulation of his conjecture does not lend itself easily to describing them.

All of this work suggests in one way or another the possibility and usefulness
of a slight reformulation of Langlands’ conjectures. The purpose of this paper is
to outline such a reformulation. In the p-adic case there is little to do; what is
presented here is only a mild extrapolation of the conjectures of Zelevinsky and
Lusztig, and is undoubtedly familiar to the experts. In the archimedean case the
changes are more drastic; they are taken from [1].

MacPherson has suggested that the reason Langlands’ approach appears to be so
successful in the p-adic case is that the Weil-Deligne group of a p-adic field is exactly
the right thing to use. The Weil groups of the real and complex fields, in contrast,
are less compellingly natural objects. In fact the version of the Langlands conjecture
given here in the archimedean case does not use the Weil group at all (except as
motivation), and it is by no means clear how to divide it into an arithmetic and an
algebraic aspect. (Nevertheless it may be worthwhile to try to do so.)

Since the whole purpose of this paper is the formulation of some conjectures, we
will not try to present them completely in the introduction. In order to offer the
reader some hint of what is to come, we will describe only the form of the main
conjectures, under some simplifying assumptions. So suppose F is a local field of
characteristic zero, F is an algebraic closure of F , and

(1.1)(a) Γ = Gal(F/F )

is the Galois group. Let G be a connected reductive algebraic group defined over
F . An F -rational structure on G (which we often call simply a rational form) may
be regarded as a homomorphism

(1.1)(b) σ : Γ → Aut(G(F ))

compatible in a natural sense with the action of Γ on F . (If F = R, the com-
patibility condition is that complex conjugation must act by an anti-holomorphic
automorphism. In general the condition is that if f is a regular function on G(F )
(in the sense of algebraic geometry, so that f takes values in F ) and γ ∈ Γ, then
the function γ ·σ f on G(F ) defined by

(1.1)(c) (γ ·σ f)(x) = γ · (f(σ(γ−1) · x))

is again a regular function on G(F ).) In this case the group of F -rational points
may be identified with the common fixed points of all the automorphisms (1.1)(b):

(1.1)(d) G(F, σ) = (G(F ))σ(Γ).

Notice that G(F ) acts by conjugation on the set of all F -rational forms of G; the
orbits, of which there are finitely many, are called equivalence classes of rational
forms. We have

(1.1)(e) G(F, g · σ) = gG(F, σ)g−1.
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Suppose now that σ and σ′ are rational forms of G(F ). We say that σ is inner
to σ′ if for each γ ∈ Γ the automorphism σ(γ)σ′(γ−1) is inner; that is, it is given
by conjugation by an element gγ of G(F ). This is an equivalence relation, and
equivalent rational forms are necessarily inner to each other. The relation of being
inner therefore partitions the equivalence classes of rational forms into a finite
number of pieces; each piece is called an inner class of rational forms. (For examples,
we refer to section 2.) We assume from now on that G is endowed with an inner
class C of rational forms.

A representation of a rational form of G is a pair (π, σ), with σ a rational
form of G (generally required to be in the fixed inner class C) and π an admissible
representation of G(F, σ). The group G(F ) acts on representations of rational forms
by

(1.2)(a) g · (π, σ) = (π ◦ Ad(g−1), g · σ);

this makes sense because of (1.1)(e). To go further without a closer examination of
the notion of rational form, we will assume for the rest of the introduction that G
has trivial center. We write Π(G/F ) for the set of equivalence classes of irreducible
representations of rational forms in the class C. This set may be described more
traditionally as follows. Choose a representative σi (i = 1, . . . , r) for each rational
form in the inner class C. Then Π(G/F ) may be identified with the disjoint union
of the sets of irreducible admissible representations of each of the rational forms
G(F, σi):

(1.2)(b) Π(G/F ) '
r⋃

i=1

Π(G(F, σi)).

(The surjectivity of the map from right to left here is a formality, but for the
injectivity we use the assumption that G is adjoint. To treat more general groups
we will need a more subtle notion of rational form.) The fundamental problem
addressed by the local Langlands conjecture is

Problem A. Parametrize the set Π(G/F ).

Before turning to Langlands’ proposed solution, we formulate several related
problems. Recall first of all ([10], Chapters IV and XI) that each irreducible rep-
resentation π of G(F, σ) may be realized as the unique irreducible quotient of a
certain standard representation M(π):

(1.3)(a) M(π) → π → 0.

(A standard representation is one induced from a tempered representation of a Levi
subgroup, with a “strictly positive” parameter on the split part.) Each standard
representation M has a finite composition series, so we may write in an appropriate
Grothendieck group

(1.3)(b) M =
∑

π∈Π(G(F,σ))

m(π, M)π,

with m(π, M) a non-negative integer (the multiplicity of the irreducible representa-
tion π in the standard representation M). The second problem we consider is
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Problem B. Calculate the multiplicities m(π, M).

Because of the bijection (1.3)(a) between irreducible and standard representations,
we can regard m(π, M) as a square matrix indexed by Π(G/F ); all the entries
are zero except in certain finite blocks near the diagonal. It is not difficult to
order Π(G/F ) so as to make m upper triangular with 1’s on the diagonal; it is
therefore invertible. The inverse matrix expresses irreducible representations as
formal integer combinations of standard ones; this formal expression is an identity
on the level of characters, for example.

Although we will have very little to say about it, there is another problem that
merits inclusion here because of its fundamental importance. An irreducible admis-
sible representation π of G(F, σ) is said to be unitary if (in the archimedean case)
it is infinitesimally equivalent to a unitary representation, or (in the p-adic case) it
is equivalent to the set of smooth vectors of a unitary representation. This abuse
of terminology identifies the unitary dual Πunit(G(F, σ)) as a subset of Π(G(F, σ));
we write Πunit(G/F ) for the set of unitary representations in Π(G/F ).

Problem C. Identify the subset Πunit(G/F ) ⊂ Π(G/F ).

Finally, there is the problem of stable characters and endoscopy. In this context
we need to consider virtual representations, so we introduce

(1.4)(a) KΠ(G(F, σ)) = lattice of virtual admissible representations of G(F, σ).

This is the Grothendieck group of an appropriate category of finite-length admis-
sible representations of G(F, σ); it is a free Z-module with basis Π(G(F, σ)). A
virtual representation η ∈ KΠ(G(F, σ)) has a well-defined character Θ(η), which
is a generalized function on G(F, σ). The value of this generalized function on the
(compactly supported smooth) test density f is

(1.4)(b) Θ(η)(f) = tr η(f).

A little more precisely, the formula (1.4)(b) makes sense only if η is actually a
representation; in that case η(f) is the (trace class) operator

(1.4)(c) η(f) =

∫

G(F,σ)

f(g)η(g)dg;

we have written the density f as a smooth function f(g) times a Haar measure dg
for the sake of familiarity. Now (1.4)(b) makes sense when η is a representation,
and we extend it to virtual representations by linearity. Write G(F, σ)SR for the
dense open subset of strongly regular elements (those for which the centralizer is
a Cartan subgroup). Harish-Chandra’s regularity theorem guarantees that Θ(η) is
determined by its restriction to G(F, σ)SR, and that this restriction is a smooth
function (invariant under conjugation by G(F, σ))). Hence

(1.4)(d) ΘSR : KΠ(G(F, σ)) ↪→ C∞(G(F, σ)SR).

A little more abstractly, we define

(1.5)(a) KΠ(G/F ) = lattice with basis Π(G/F ),
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the lattice of virtual admissible representations of rational forms of G. This may
be identified with the sum of the corresponding lattices over representatives for
the equivalence classes of rational forms. In particular, there is for each σ ∈ C a
well-defined restriction homomorphism

(1.5)(b) KΠ(G/F ) → KΠ(G(F, σ)), η 7→ η(σ).

We would like to define characters for these virtual representations as well. They
will be defined on

(1.5)(c) G(F, ∗)SR = { (g, σ) | σ ∈ C, g ∈ G(F, σ)SR }.

Explicitly, we define

(1.5)(d) ΘSR(η)(g, σ) = ΘSR(η(σ))(g)

(notation (1.4)(d), (1.5)(b)). The group G acts by conjugation on G(F, ∗)SR, and
ΘSR(η) is constant on orbits.

The virtual representation η is said to be strongly stable if the function ΘSR(η)
is constant along the fibers of the first projection

(1.6)(a) p1 : G(F, ∗)SR → GSR, p1(g, σ) = g.

(The relationship between the notion of strongly stable and Langlands’ notion of
stable is explained in [1], section 18; modulo an important conjecture (proved by
Shelstad in the archimedean case) it is very simple.) The lattice of strongly stable
virtual representations is written

(1.6)(b) KΠ(G/F )st ⊂ KΠ(G/F ).

Problem D. Identify the sublattice of strongly stable virtual representations KΠ(G/F )st ⊂
KΠ(G/F ).

More generally, the problem of endoscopic lifting asks for a description of all virtual
representations of rational forms of G in terms of strongly stable virtual represen-
tations of G and certain smaller reductive groups H (the endoscopic groups for G
— see (9.6) below). We will not formulate it more precisely here.

Because the equation (1.3)(b) lives in the Grothendieck group, two of these
four basic problems involve not so much the set Π(G/F ) as the lattice KΠ(G/F ).
This change in emphasis is the main aspect of our reformulation of Langlands’
conjectures.

So let ∨G be a complex dual group for G. Because we assumed that G was
adjoint, ∨G is the simply connected complex group having as root system the system
of coroots for G. The inner class C of rational forms of G determines an L-group
for G. This is a pro-algebraic group ∨GΓ endowed with a short exact sequence

(1.7)(a) 1 → ∨G → ∨GΓ → Γ → 1

and a ∨G-conjugacy class D of distinguished splittings

(1.7)(b) ∨δ : Γ → ∨GΓ (∨δ ∈ D).
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If C includes the split form of G, then ∨GΓ is just the direct product ∨G × Γ. We
will discuss this definition in a little more detail in section 3; see also [8].

Write W ′
F for the Weil-Deligne group of the field F (see [29]). Recall that this

locally compact group is equipped with a homomorphism

(1.8)(a) W ′
F → Γ

having dense image. A Langlands parameter for G is a continuous homomorphism

(1.8)(b) φ : W ′
F → ∨GΓ

respecting the homomorphisms (1.7)(a) and (1.8)(a) to Γ, and respecting the Jordan
decompositions in W ′

F and ∨GΓ ([8], 8.1). We summarize these hypotheses by
saying that φ is admissible. The set of admissible Langlands parameters is denoted
P (G/F ). Two such parameters are called equivalent if they are conjugate by ∨G.
The set of equivalence classes of Langlands parameters is denoted Φ(G/F ).

Conjecture 1.9. (Langlands — see [24], [8]). To each φ ∈ Φ(G/F ) there is
associated a finite subset (the L-packet of φ)

Πφ ⊂ Π(G/F ).

These subsets partition Π(G/F ).

To get a complete solution of Problem A, one must supplement this conjec-
ture with a parametrization of each L-packet Πφ. What is clear from the work of
Langlands and Shelstad is that such a parametrization ought to involve the repre-
sentations of the finite group Aφ (of connected components of the centralizer in ∨G
of a representative of φ). For Problem D, Shelstad’s work suggests that KΠ(G/F )st

ought to have a basis parametrized precisely by Φ(G/F ).
To say more, it is convenient first to partition Φ(G/F ) into finite subsets. (The

reason is that Problems B and D involve interactions between inequivalent Lang-
lands parameters; we need to isolate those subsets where such interaction is possi-
ble.)

Definition 1.10. Suppose F is p-adic. An infinitesimal character for G (more
precisely, for G/F ) is a ∨G-conjugacy class OF of admissible homomorphisms λ :
WF → ∨GΓ. (We will explain the reason for the terminology in section 7.) Here
WF is the Weil group of F , a subgroup of W ′

F . A Langlands parameter φ is said to
have infinitesimal character OF if the restriction of φ to WF belongs to OF . Define
X(OF ) ⊂ P (G/F ) to be the set of Langlands parameters (not equivalence classes)
of infinitesimal character OF . We will see (Corollary 4.6) that X(OF ) is a smooth
complex algebraic variety. The (finite) set of equivalence classes — that is, the set
of orbits of ∨G on X(O) — is written Φ(O, G/F ).

Suppose F is complex. In this case the Weil-Deligne group W ′
C is just C×. An

infinitesimal character for G (more precisely, for G/C) is a pair OC = (O1,O2)
of ∨G-conjugacy classes of semisimple elements in the Lie algebra ∨g of the dual
group. (Actually we require a little more of the pair — see (5.6) below.) A Langlands
parameter φ is said to have infinitesimal character OC if the holomorphic part of
the differential of φ belongs to O1, and the antiholomorphic part to O2. (These
holomorphic and antiholomorphic parts are the elements λ and µ attached to φ by
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Lemma 5.5 of [1].) We write Φ(OC, G/C) for the finite set of equivalence classes of
Langlands parameters of infinitesimal character OC. Using a simplified version of
the arguments of [1], we will define in section 5 a smooth algebraic variety X(OC)
on which ∨G acts with finitely many orbits parametrized by Φ(O, G/C).

Suppose finally that F is real. A classical infinitesimal character for G (more
precisely, for G/R) is a ∨G-conjugacy class O of semisimple elements in the Lie
algebra ∨g of the dual group. (We will define an infinitesimal character in (6.6) to
include more data.) A Langlands parameter φ is said to have classical infinitesimal
character O if the holomorphic part of the differential of φ belongs to O. (This
holomorphic part is the element λ attached to φ by Proposition 5.6 of [1].) Again
we write Φ(O, G/R) for the finite set of equivalence classes of Langlands parameters
of classical infinitesimal character O. Section 6 of [1] shows how to define a smooth
algebraic variety X(O) on which ∨G acts with orbits parametrized by Φ(O, G/R).
(The set P (O, G/R) has these properties, but is geometrically uninteresting: the
orbits are all open and closed.) We recall the construction in section 6 below.

The heart of this version of Langlands’ conjectures is the idea that irreducible
representations of rational forms of G should correspond to irreducible ∨G-equivariant
perverse sheaves on the varieties X(OF ). Any such sheaf has as its support the
closure of a single orbit of ∨G, and therefore corresponds to a unique Langlands
parameter (as required by Conjecture 1.9). What is new is that this orbit closure
will in general be singular. The behavior of these perverse sheaves on the smaller
orbits in the boundary will (conjecturally) correspond to the interaction of different
L-packets relevant to Problems B and D above.

Definition 1.11. Suppose OF is an infinitesimal character for G/F (Definition
1.10). Consider the category P(OF , G/F ) of ∨G-equivariant perverse sheaves on
X(OF ), and write Ξ(OF , G/F ) for the (finite) set of irreducible objects in this cat-
egory. (Actually it will be convenient later to write Ξ for a certain more elementary
set parametrizing the irreducible perverse sheaves (Definition 8.2); we write P (ξ)
for the irreducible perverse sheaf corresponding to the parameter ξ ∈ Ξ(OF , G/F ).)
Define KP(OF , G/F ) to be the Grothendieck group of P(OF , G/F ); this may be
identified as the lattice with basis Ξ(OF , G/F ).

Now the idea that there should be relationships between categories of represen-
tations and categories of perverse sheaves is due essentially to Kazhdan and Lusztig
([16]); such relationships were first established in [3] and [11]. An important aspect
of this case, however, is that we seek not an equivalence of categories but a relation-
ship of duality. To be precise, we require that the Grothendieck groups of the two
categories should be naturally dual lattices. Here is a more complete statement.

Conjecture 1.12. Suppose OF is an infinitesimal character for G/F (Definition
1.10). “Define” Π(OF , G/F ) ⊂ Π(G/F ) (cf. (1.2)) to be the set of irreducible
representations of rational forms of G having infinitesimal character OF . (The
quotation marks mean that the definition rests on a previous conjecture.) That is,
we use Conjecture 1.9 to “define”

Π(OF , G/F ) =
⋃

φ∈Φ(OF ,G/F )

Πφ.

Finally, in analogy with (1.4) and (1.5), we “define”

KΠ(OF , G/F ) = lattice with basis Π(OF , G/F ),
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the lattice of virtual representations with infinitesimal character OF .

Then there is a natural perfect pairing

〈, 〉 : KΠ(OF , G/F ) × KP(OF , G/F ) → Z

(cf. Definition 1.11) identifying each of the lattices as the dual of the other. In this
pairing, the bases of irreducible representations and irreducible perverse sheaves are
essentially dual to each other. A little more precisely, suppose (π, σ) ∈ Π(OF , G/F ),
so that π is an irreducible admissible representation of G(F, σ) of infinitesimal
character OF . Then there is a unique ξ ∈ Ξ(OF , G/F ) with the property that

〈π, P (ξ′)〉 = e(σ)(−1)d(ξ)δξ,ξ′ .

Here e(σ) = ±1 is the Kottwitz invariant of the rational form σ (see [20]), d(ξ) is
the dimension of the support of the perverse sheaf P (ξ), and δξ,ξ′ is a Kronecker
delta.

This conjecture means that a (virtual) representation should be regarded as a
Z-linear map from the Grothendieck group of equivariant perverse sheaves to Z.
Equivalently, it is a map r from perverse sheaves to Z that is additive for short
exact sequences. We will use this conjectural identification rather freely below,
saying that a map r from perverse sheaves to Z “is” a virtual representation.

There are several more or less obvious classes of maps with this additivity prop-
erty. For one, fix a point x ∈ X(OF ). Then we can associate to a perverse sheaf P
the alternating sum χloc

x (P ) of the dimensions of the stalks at x of the cohomology
sheaves H iP . This integer is called the geometric local Euler characteristic. (The
superscript loc stands for “local,” and is included to distinguish this map from a
microlocal one to be defined in a moment.) Because we are considering equivariant
sheaves, χloc

x depends only on the orbit of ∨G to which x belongs. We may there-
fore regard χloc

x as associated to an equivalence class φ ∈ Φ(OF , G/F ) of Langlands
parameters; when we do this, we can call it χloc

φ .

Conjecture 1.13. The virtual representations χloc
φ (Conjecture 1.12) form a basis

for the lattice of strongly stable virtual representations.

This conjecture would provide a solution to Problem D above, although not a
very good one: the virtual representations in question are rather dull, as we will see
in Conjecture 1.15 below. For something more interesting, fix again an equivalence
class φ of Langlands parameters, and let Sφ ⊂ X(OF ) be the corresponding orbit of
∨G. To any ∨G-equivariant perverse sheaf P on X(OF ) one can associate a char-
acteristic cycle Ch(P ); this is a formal sum, with non-negative integer coefficients,
of conormal bundles of orbits of ∨G on X(OF ). Define

(1.14) χmic
φ (P ) = coefficient of T ∗

Sφ
(X(OF )) in Ch(P );

this map is additive for short exact sequences, and so passes to the Grothendieck
group. Kashiwara’s index theorem [15] for holonomic systems says that the sets of
maps {χmic

φ |φ ∈ Φ(G/F )} and {χloc
φ |φ ∈ Φ(G/F )} have the same Z-span. (For a

more complete discussion see [1].) It follows that Conjecture 1.13 is equivalent to
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Conjecture 1.13′. The virtual representations χmic
φ (cf. (1.14) and Conjecture

1.12) form a basis for the lattice of strongly stable virtual representations.

In the case of PGL(n), the virtual representation χmic
φ should contain at most

one irreducible representation of each rational form. For other groups χmic
φ should

be almost as near to irreducibility as problems of L-indistinguishability allow. It is
in this sense that χmic

φ is more interesting than χloc
φ . There are also applications to

Problem C. The virtual representation χloc
φ can be unitary only if it is very close

to being tempered. For groups with Kazhdan’s property T, for example, the trivial
representation can never appear in a unitary χloc

φ . On the other hand, Arthur’s

conjectures suggest that χmic
φ can be unitary in a wide variety of non-tempered

cases. We refer to [1], especially section 27, for more details.
The map χloc

x can be further decomposed. To do that, consider the action
of the isotropy group ∨Gx on the cohomology stalks, and look at the isotypic
subspaces for an irreducible representation τ of ∨Gx/(∨Gx)0. The alternating sum
of their dimensions is called χloc

x,τ (P ); this number is an equivariant local Euler
characteristic.

Conjecture 1.15. The virtual representation χloc
x,τ (Conjecture 1.12) is equal to a

single standard representation of a single rational form σ of G, multiplied by the
Kottwitz sign e(σ).

Conjecture 1.15 provides a (conjectural) solution to Problem B. Suppose ξ ∈
Ξ(OF , G/F ) (Definition 1.11), P (ξ) is the corresponding irreducible perverse sheaf,
and π(ξ) the (conjecturally) corresponding irreducible representation (Conjecture
1.12). Then the multiplicity of π(ξ) in the standard representation corresponding to
(x, τ) should be equal (up to sign) to χloc

x,τ (P (ξ)). Calculating multiplicities there-
fore amounts to calculating equivariant local Euler characteristics for intersection
cohomology. For more details we refer to section 8.

In case F is archimedean, Conjecture 1.9 was established by Langlands in [24].
Conjectures 1.12 and 1.15 were proved in that case in [1]. Conjecture 1.13 is a
consequence of Shelstad’s work in [26].

2. Rational forms.

In this section we consider the problem of extending the definitions in (1.1) and
(1.2) to groups with non-trivial center. As in the introduction, we begin with a
local field F of characteristic zero, an algebraic closure F of F , and the pro-finite
group

(2.1) Γ = Gal(F/F )

Let G be a connected reductive algebraic group defined over F . What we seek is a
definition of Π(G/F ) that makes (1.2)(b) true. To see that it is not true with the
definition of the introduction, take F = R, G = SL(2), and σ the standard real
form (in which complex conjugation acts by complex conjugation of matrices). Let
π+ and π− be two inequivalent discrete series representations of SL(2)(R, σ) of the
same infinitesimal character. Set

(2.2)(a) g =

(
i 0
0 −i

)
.
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Then Ad(g) changes the signs of the off-diagonal entries of a matrix x ∈ SL(2).
This operation commutes with complex conjugation, so

(2.2)(b) g · σ = σ.

On the other hand, Ad(g)(x) = x−1 for x ∈ SO(2). It follows that the weights of
SO(2) in a representation π are the negatives of the weights of SO(2) in π◦Ad(g−1).
Consequently

(2.2)(c) π+ ◦ Ad(g−1) ' π−.

According to (1.2)(a), we therefore have

(2.2)(d) g · (π+, σ) ' (π−, σ),

precluding (1.2)(b).
The difficulty here is that g preserves the rational form σ even though it does

not belong to the group of rational points. (The image of g in the adjoint group
PGL(2) does belong to PGL(2, R).) We need to include with the rational form some
additional structure that will be preserved only by the group of rational points. In
order to describe it, we need a preliminary definition.

Definition 2.3. ([1], Definition 2.13). Suppose G is a connected reductive alge-
braic group over F . A weak extended group for G is a group GΓ endowed with a
short exact sequence

(2.3)(a) 1 → G(F ) → GΓ → Γ → 1,

subject to the following conditions.

(1) For every element γ ∈ Γ, and every pre-image gγ of of γ in GΓ, the conjugation

action of gγ on G(F ) is compatible with the action of γ on F . (Recall from (1.1)

that this compatibility means that the automorphism of F -valued functions on
G(F ) defined by

(2.3)(b) (gγ · f)(x) = γ · (f(g−1
γ xgγ))

preserves the regular functions.)

(2) Fix a Borel subgroup B of G, a maximal torus T ⊂ B, and basis vectors Xα for
the simple root spaces of T in the Lie algebra b. Then there is an open subgroup
Γ1 of Γ and a homomorphism

(2.3)(c) δ1 : Γ1 → GΓ

so that conjugation by elements of δ1(Γ1) preserves (B, T, {Xα}), and the dia-
gram

(2.3)(d)
Γ1

δ1−→ ∨GΓ

↘ ↙
Γ
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commutes. (Here the first downward arrow is the inclusion, and the second comes
from (2.3)(a).)

The second condition does not depend on the choices of (B, T, {Xα}), since any
two choices are conjugate by some element g ∈ G(F ). In fact we do not even
need to conjugate δ1; we can simply replace it by its restriction to appropriate open
subgroups. A little more precisely, (2) is equivalent to

(2′) There is an open subgroup Γ0 of Γ, and a homomorphism

(2.3)(e) δ0 : Γ0 → GΓ

with the following two properties:
(a) The diagram

(2.3)(f)
Γ0

δ0−→ ∨GΓ

↘ ↙
Γ

commutes. (Here the first downward arrow is the inclusion, and the second
comes from (2.3)(a).)

(b) Fix a Borel subgroup B of G, a maximal torus T ⊂ B, and basis vectors
Xα for the simple root spaces of T in the Lie algebra b. Then there is an
open subgroup Γ1 of Γ0 so that conjugation by elements of δ0(Γ1) preserves
(B, T, {Xα}).

To construct a weak extended group, one can start with any rational form σ0 of
G, and form the semidirect product

(2.4)(a) GΓ = G(F ) o Γ

using the action of Γ on G(F ) given by the rational form. In this setting we have
a natural section

(2.4)(b) δ0 : Γ → GΓ, δ0(γ) = 1 · γ.

This construction does not produce all possible weak extended groups (cf. [1], Corol-
lary 2.16), but we will not need more.

The study of rational forms is intimately connected with Galois cohomology. In
that context one generally considers modules for the Galois group to be equipped
with the discrete topology; then cohomology may be computed using continuous
cochains. Here we are mostly interested in G(F ) as a module for Γ, so we put the
discrete topology on G(F ). (This is unrelated to the locally compact topology one
considers on the various subgroups of rational points.) It is often convenient to
topologize the whole weak extended group. In the setting (2.4), it is natural to use
the product of the discrete topology on G(F ) with the usual (compact) topology on
Γ. We can achieve the same effect for any weak extended group: there is a unique
topological group structure on GΓ with the property that

(2.5) the homomorphism δ0 of (2.3)(e) is a homeomorphism with open image.

Since Γ0 is compact, the image of δ0 will then be open and closed.
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Definition 2.6. ([1], Definition 2.13). Suppose GΓ is a weak extended group,
topologized as in (2.5). A rigid rational form of G is a continuous map (not neces-
sarily a homomorphism)

(2.6)(a) δ : Γ → GΓ

subject to the following two conditions.

(1) The diagram

(2.6)(b)
Γ

δ
−→ GΓ

↘ ↙
Γ

commutes. Here the first downward arrow is the identity, and the second comes
from (2.3)(a).

(2) The composition of δ with the quotient map to GΓ/Z(G) is a homomorphism.
More precisely, for every pair γ, γ ′ of elements of Γ there is an element z(γ, γ ′) ∈
Z(G) of finite order so that

(2.6)(c) z(γ, γ′) = δ(γγ′)−1δ(γ)δ(γ′).

(Of course it would be more precise to call δ a rigid rational form of GΓ rather
than just of G.) We say that δ is a pure rational form if in addition δ is a group
homomorphism; that is, if the function z of (2) is trivial.

The rational form attached to δ is the homomorphism

(2.6)(d) σ(δ) : Γ → Aut(G(F )), σ(δ)(γ) = conjugation by δ(γ).

We will sometimes write simply G(F, δ) instead of G(F, σ(δ)).
Two rigid rational forms δ and δ′ are said to be equivalent if they are conjugate

by an element g ∈ G(F ). In this case the attached rational forms σ(δ) and σ(δ ′) are
also equivalent (cf. (1.1)). The converse is not true, however: it may happen that
σ(δ) and σ(δ′) are equivalent (or even equal), but that δ and δ′ are inequivalent.

Definition 2.6 must be taken as provisional: we will see that it does not allow a
complete extension of the conjectures of the introduction to groups with non-trivial
center. What is required is a notion of “strong rational form” intermediate between
pure and rigid. We will discuss the requirements on such a definition in section 9;
unfortunately I do not know how to satisfy them in the p-adic case. At any rate
Definition 2.6 will suffice for the formulation of many further definitions, results,
and conjectures.

Here are some elementary facts about rigid rational forms.

Proposition 2.7. Suppose GΓ is a weak extended group (Definition 2.3).

a) The set of rational forms associated to rigid rational forms of G constitutes an
inner class (cf. (1.1)).

b) In the action of G(F ) on rigid rational forms, the stabilizer of δ is the group of
rational points G(F, σ(δ)).

c) Suppose GΓ is constructed as in (2.4) from a rational form of G. Then the
set of equivalence classes of pure rational forms of G may be identified with
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the non-commutative cohomology set H1(Γ, G(F )). In this identification, the
homomorphism δ0 of (2.4)(b) corresponds to the base point of the cohomology.

Part (a) is proved in the real case in [1], Proposition 2.14. The general case is
equally easy. Part (b) is immediate from the definitions. For (c), a discussion of non-
commutative cohomology may be found in [25]. There is actually an identification
of pure rational forms δ with non-commutative 1-cocycles a, given by

δ(γ) = a(γ)δ0(γ).

The mapping

(2.8)(a) z : Γ × Γ → Z(G)

attached to a rigid rational form δ by (2.6)(c) depends only on the equivalence class
of δ. For formal reasons it is necessarily a two-cocycle, and therefore defines a class

(2.8)(b) ζ(δ) ∈ H2(Γ, Z(G)).

In fact it is easy to see that this class depends only on the rational form σ(δ). (If
σ(δ) = σ(δ)′, then δ differs from δ′ by a map j from Γ into Z(G). A calculation
shows that the corresponding maps z and z′ differ by the coboundary of j.) We
may therefore write

(2.8)(c) ζ(σ, GΓ) ∈ H2(Γ, Z(G))

for any rational form σ in the inner class defined by GΓ (cf. Proposition 2.7(a)).
Here is a more traditional way to think of ζ(σ, GΓ). If Z(G) is trivial, the

notions of pure rational form, rigid rational form, and rational form all coincide;
this is what allowed us to make the simple formulations in the introduction. In
particular, Proposition 2.7(c) reduces in that case to the well-known fact that there
is a bijection
(2.9)(a)

equivalence classes of rational forms of G inner to σ0 ↔ H1(Γ, G/Z(G)).

(Here the cohomology is defined using the action of Γ on G given by a fixed rational
form σ0.) The long exact sequence in (non-commutative) cohomology attached to
the short exact sequence

1 → Z(G) → G → G/Z(G) → 1

includes a map H1(Γ, G/Z(G)) → H2(Γ, Z(G)). Combining this with (2.9)(a), we
find that every rational form σ determines a cohomology class

(2.9)(b) ζ(σ, σ0) ∈ H2(Γ, Z(G)),

depending only on the equivalence class of σ (and the fixed rational form σ0).
Examining the definitions, one finds that

(2.9)(c) ζ(σ, σ0) = ζ(σ, GΓ) − ζ(σ0, G
Γ).

It follows that if σ1 is a third rational form, we have

(2.9)(d) ζ(σ, σ1) = ζ(σ, σ0) − ζ(σ1, σ0).

(Of course this may also be proved directly.)
Here is an easy consequence of this formalism.
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Lemma 2.10. Suppose GΓ is a weak extended group, and σ is a rational form in
the inner class defined by GΓ. Then σ is associated to a pure rational form of G
(Definition 2.6) if and only if the cohomology class ζ(σ, GΓ) ∈ H2(Γ, Z(G)) (cf.
(2.8)(c)) is trivial.

Example 2.11. Suppose F = R and G = SL(2, C). Make the (non-trivial ele-
ment of the) Galois group Γ = {1, σ} act on G by complex conjugation of matrices,
and define GΓ to be the semidirect product

GΓ = G o Γ.

For g a complex two by two matrix, we compute in GΓ

(gσ)2 = gg.

A pure rational form of GΓ is a homomorphism δ of Γ into GΓ, satisfying

δ(σ) = gδσ.

Clearly δ is determined by gδ, which may in turn be any element of G satisfying

gδgδ = 1.

Conjugating δ by x ∈ G replaces gδ by

g′δ = xgδx
−1.

The semidirect product structure provides a distinguished pure rational form δ0,
with gδ0

= 1. Its equivalence class corresponds to all the elements gδ of the form

gδ = xx−1 (x ∈ G).

The rational form associated to δ0 is of course the standard one, with
G(R, σ(δ0)) = SL(2, R). Notice that exactly the same rational form is associated
to the pure rational form δ′0 defined by

gδ′

0
= −I.

These two pure rational forms are conjugate, for example by the element x =(
i 0
0 −i

)
. It is easy to see that δ0 and δ′0 are the only two pure rational forms

to which the standard split rational form is associated. It follows that all the pure
rational forms to which a split rational form is associated must be equivalent.

A rigid rational form δ has

δ(1) = zδ ∈ Z(G), δ(σ) = gδσ,

with gδ any element of G satisfying

gδgδ ∈ Z(G).
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An example is

δ1(1) = 1, δ1(σ) =

(
0 1
−1 0

)
.

The associated rational form is the compact group SU(2). The corresponding 2-
cocycle (cf. (2.6)(c)) is

z(1, 1) = z(1, σ) = z(σ, 1) = 1, z(σ, σ) = −I.

It is easy to check that this represents the unique non-trivial class in H2(Γ, Z(G)).
By Lemma 2.10, we deduce that SU(2) is not associated to any pure rational form
of G. It is evidently associated to exactly four rigid rational forms, however: if ε1

and εσ are each ±1, then we can set

δε(1) = ε1 δε(σ) = εσ

(
0 1
−1 0

)
.

It turns out that these are all inequivalent.

Example 2.12. Suppose F is a p-adic field, G is any simply connected semisim-
ple group over F , and GΓ is a weak extended group. Fix a rigid rational form δ0

of G; this provides (through the associated rational form σ0) an action of Γ on G.
By a theorem of Kneser ([19], Satz 2), the map

ζ(∗, σ0) : equivalence classes of rational forms of GΓ → H2(Γ, Z(G)),

is bijective. Because of (2.9)(c), it follows that ζ(∗, GΓ) is bijective. In particular
there is exactly one equivalence class of rational forms that is represented by pure
rational forms.

Consider for example the case G = SL(n), with the inner class of rational forms
including SL(n, F ). The center of G is naturally isomorphic to the group µn of
nth roots of 1 in F , and the action of Γ on Z(G) is just the restriction of the usual
action on F . The cohomology group H2(Γ, Z(G)) may be computed (for example)
using the exact sequence

1 → µn → F
×
→ F

×
→ 1,

the third map being the nth power map. The conclusion is that

H2(Γ, Z(G)) ' Z/nZ,

the isomorphism being natural. So we want to describe rational forms of G parametrized
by Z/nZ. To do that, fix an integer r modulo n, and write m = (n, r) for their
greatest common divisor (a well-defined positive divisor of n). Write n = md. Then
r/m is an integer modulo d, and is relatively prime to d. As such it determines a
division algebra Dd,r/m with center F and dimension d2 over F ([31], Proposition
I.4.5 and the following remark). Define

SL(m, Dd,r/m)

to be the set of elements of norm one in the (n2-dimensional) central simple F -
algebra of m by m matrices over Dd,r/m. This is the desired F -rational form of
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SL(n). We omit a more detailed description of a corresponding rigid rational form;
necessary auxiliary information for making such calculations may be found in [31].
We make only the following observation. The Galois group Γ has a natural quotient

1 → Γ0 → Γ → µn → 1

corresponding to the unramified extension of F of degree n. Suppose that GΓ '
SL(n, F ) o Γ as in (2.4). Then every rational form in the split inner class is
represented by a rigid rational form δ such that δ|Γ0

is a homomorphism.
Example 2.13. Suppose T is a torus defined over F ; form the semidirect

product
TΓ = T o Γ

as in (2.4). Proposition 2.7(c) says that the set of equivalence classes of pure
rational forms of T may be identified with the cohomology group H1(Γ, T ); we

want to compute this group. Hilbert’s Theorem 90 says that H1(Γ, F
×

) = 0, from
which it follows that H1(Γ, T ) = 0 whenever T is split. Therefore a split torus has
only one pure rational form up to equivalence. In general, write X∗(T ) for the lattice

of one-parameter subgroups of T . This is a module for Γ, and T ' X∗(T )⊗ F
×

as
a module for Γ. By the fundamental theorem of local class field theory ([12] page
139, Thm VI.2.1) and a theorem in [23] (page 130, Thm 13), we have

(2.13)(a) H1(Γ, X∗(T ) ⊗ F
×

) ' Ĥ−1(Γ, X∗(T )).

By the definition of the Tate cohomology group Ĥ−1, the right side is a certain
finite subquotient of the lattice X∗(T ). More explicitly, write tQ for the rational
vector space X∗(T ) ⊗Z Q. The action of Γ on X∗(T ) extends to a representation
on tQ. This representation factors through some finite quotient of Γ (corresponding
to an extension field over which T splits) and is therefore completely reducible. In
particular, the subspace tΓQ of Γ-invariant vectors has a unique Γ-invariant comple-

ment V . There are two natural lattices in V : X1 = X∗(T )∩ V , and the lattice X0

generated by elements of the form x− γ · x, with x ∈ X∗(T ) and γ ∈ Γ. These two
lattices correspond to two natural descriptions of V : as the kernel of a norm map
to tΓQ, and as the span of elements x− γ · x. Evidently X0 ⊂ X1, and by definition

(2.13)(b) Ĥ−1(Γ, X∗(T )) ' X1/X0,

a finite group. We have shown that this group parametrizes the pure rational forms
of T . It has another description in terms of the dual torus, to which we will return
in the course of our discussion of L-groups (Example 4.13).

Definition 2.14. Suppose GΓ is a weak extended group (Definition 2.3). A repre-
sentation of a rigid rational form of G is a pair (π, δ), with δ a rigid rational form
of G (Definition 2.6), and π an admissible representation of G(F, σ(δ)) (Definition
2.6(d)). (If F is archimedean, this means that π is a representation on a nice com-
plete topological vector space having finite K-multiplicities, with K any maximal
compact subgroup of G(F, σ(δ)). If F is p-adic, it means that every vector in π is
fixed by an open compact subgroup, and that the subspace of π fixed by any open
compact subgroup is finite-dimensional.) Similarly we define a representation of a
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pure rational form, an irreducible representation of a rigid rational form, etc. Just
as in (1.2)(a), the group G = G(F ) acts on representations of rigid rational forms.
We say that (π, δ) is equivalent to (π′, δ′) if there is an element g ∈ G so that

(2.14)(a) g · δ = δ′; and

(2.14)(b) π′ is equivalent to π ◦ Ad(g−1).

Here equivalence of admissible representations has the obvious meaning (existence
of an invertible intertwining operator) if F is p-adic, and means infinitesimal equiv-
alence if F is archimedean. Define Π(GΓ) to be the set of equivalence classes of ir-
reducible representations of rigid rational forms of G. Similarly we write Πpure(G

Γ)
for the set of equivalence classes of irreducible representations of pure rational forms
of G.

One technical problem remains to be addressed. The version of Conjecture 1.12
we are aiming for says that the irreducible representations of pure rational forms
within a single L-packet are parametrized by irreducible equivariant local systems
on a certain homogeneous space. The latter set has a natural distinguished element
(the trivial local system), but the former does not appear to in general. Langlands’
program suggests that one should use as base points representations of quasisplit
rational forms admitting Whittaker models. This appears to work perfectly for
adjoint groups, but in general there may be several possible notions of Whittaker
model, leading to different base points in L-packets. We therefore include in our
definition of extended group a preferred Whittaker model. This does not affect the
definition of Π(GΓ), but it will affect the bijection to be established between Π(GΓ)
and L-group data.

Definition 2.15. ([1], Definition 1.12). Suppose GΓ is a weak extended group
(Definition 2.3). A set of Whittaker data for GΓ is a triple (δ, N, χ), so that

(1) δ is a rigid rational form of GΓ (Definition 2.6);

(2) N is a maximal unipotent subgroup of G, and the rational form σ(δ) preserves
N ; and

(3) χ is a non-degenerate one-dimensional unitary character of N(F, δ).

(The condition of non-degeneracy in (3) means that the restriction of χ to each
simple restricted root subgroup is non-trivial.) This set is called pure if δ is a pure
rational form. Notice that (2) forces σ(δ) to be quasisplit.

An extended group for G is a pair (GΓ,W), with GΓ a weak extended group, and
W a G-conjugacy class of sets of Whittaker data for GΓ. It is called pure if the
elements of W are.

Every weak extended group admits an extended group structure. This structure
may be chosen to be pure if and only if GΓ is constructed as in (2.4) from a quasisplit
rational form. It is not particularly difficult to work out the complete classification
of extended groups. This is done over R in section 3 of [1]. The result is analogous
to the classification of E-groups in Proposition 3.28 below. We will use only the
following partial result.
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Proposition 2.16. (cf. [1], Proposition 3.6). Suppose F is a local field of char-
acteristic zero as in (2.1), and G is a connected reductive algebraic group over F .
Assume that G is endowed with an inner class of F -rational forms. Then there is
a pure extended group (GΓ,W) for G (Definition 2.15). If ((GΓ)′,W ′) is another
pure extended group for G, then the identity map from G to G extends to an iso-
morphism from GΓ to (GΓ)′ carrying W to W ′. This extension is unique up to an
inner automorphism of GΓ coming from Z(G).

The proposition provides a canonical bijection from Π(GΓ) onto Π((GΓ)′). We
may therefore define

(2.17) Π(G/F ) = Π(GΓ)

with (GΓ,W) any pure extended group for G. Similarly we define Πpure(G/F ).
Notice that the quasisplit rational form is represented by a pure rational form of a
pure extended group.

Example 2.18. We continue with Example 2.11. Recall the pure rational form
δ0. We can construct a set of pure Whittaker data (δ0, N, χ) by defining N to be
the group of strictly upper triangular matrices, and

χ

(
1 t
0 1

)
= exp(it).

The conjugacy class W of (δ0, N, χ) is a pure extended group structure on GΓ. A
second pure extended group structure W ′ may be constructed in the same way,
replacing the character χ by its complex conjugate χ′. We want to compute the
isomorphism (GΓ,W) → (GΓ,W ′) whose existence is guaranteed by Proposition
2.17. To do this, first conjugate (δ0, N, χ′) by the element x of Example 2.11,
obtaining (δ′0, N, χ) ∈ W ′. The required map from GΓ to itself is the identity on
G, and sends gσ to (−g)σ.

Suppose (GΓ,W) is a pure extended group for G. According to Proposition 2.7,
there is a natural one-to-one correspondence

(2.19) equivalence classes of pure rational forms of G ↔ H1(Γ, G);

the (quasisplit) pure rational forms in W correspond to the base point of the coho-
mology set. We therefore conclude this section with a calculation (due to Kneser
and Kottwitz) of H1(Γ, G) for p-adic groups.

Proposition 2.20. ([19] and [21], Proposition 6.4.) Suppose F is a p-adic field,
and σ is an F -rational form of the connected reductive group G. Let X∗(G)Γ be the
lattice of F -rational one-dimensional characters of G. Let T be any maximal torus
of G defined over F . Define

X∗(T ) = lattice of one-parameter subgroups of T .

In X∗(T ) we define four sublattices:

R∗(G, T ) = coroot lattice of T in G;
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X0
∗ (T ) = lattice generated by elements µ − γ · µ (µ ∈ X∗(T ), γ ∈ Γ);

X1
∗(T ) = lattice of one-parameter subgroups annihilated by X∗(T )Γ; and

X1
∗ (G, T ) = lattice of one-parameter subgroups annihilated by X∗(G)Γ.

a) The quotient X1
∗(G, T )/(R∗(G, T ) + X0

∗(T )) is a finite abelian group. It is inde-
pendent of the F -rational torus T (up to canonical isomorphism).

b) The Galois cohomology of T is

H1(Γ, T ) ' X1
∗ (T )/X0

∗(T ).

c) Suppose that T is maximally anisotropic in G; that is, that the rank of X∗(T )Γ

is as small as possible. Then
i) X∗(T )Γ = X∗(G)Γ, so that X1

∗(G, T ) = X1
∗(T ).

ii) The natural map H1(Γ, T ) → H1(Γ, G) is surjective.
iii) The fibers of the map in (ii) are exactly the cosets of the subgroup

R∗(G, T )/(R∗(G, T ) ∩ X0
∗(T ),

so there is an isomorphism

H1(Γ, G) ' X1
∗(G, T )/(R∗(G, T ) + X0

∗ (T )).

Sketch of proof. For (a), the finiteness of the quotient is elementary (compare
Example 2.13). If T ′ is another F -rational torus, then there is an element of G
conjugating T to T ′. The resulting isomorphism of X∗(T ) with X∗(T

′) is uniquely
determined up to the action of the Weyl group. It carries X1

∗ (G, T ) onto X1
∗ (G, T ′),

and R∗(G, T ) onto R∗(G, T ′). Of course it need not respect the action of Γ; but the
action a(T, γ) of γ on X∗(T ) will be sent to w(γ) · a(T ′, γ), with w(γ) in the Weyl
group. Now the action of W on X∗(T )/R∗(G, T ) is trivial; and it follows at once
that our isomorphism must carry (R∗(G, T ) + X0

∗ (T )) onto (R∗(G, T ′) + X0
∗ (T ′)).

Now (a) follows.
Part (b) is the p-adic case of Example 2.13. In (c), part (i) is essentially the

fact that a semisimple p-adic group always admits an anisotropic torus. Part (ii)
(which is really the main point) is [19], Hilfsatz 6.2. Because the assertion in (iii)
is to some extent functorial in G, it may be reduced to the cases of tori (where it
is trivial) and semisimple groups. (Compare the proof of Hilfsatz 6.2 in [19].) For
semisimple groups, (iii) is a reformulation of Satz 2 of [19]. Q.E.D.

Just as in Example 2.13, the set of pure rational forms has been interpreted as a
quotient of two lattices. Here again we will be able to give Kottwitz’s interpretation
of the answer in terms of L-groups (Proposition 4.16).

3. L-groups.

In this section we recall from [8] the construction of dual groups and L-groups.
Suppose at first that F is any algebraically closed field, and that B is a connected
solvable algebraic group over F . Write N for the unipotent radical of B, and T =
B/N for the quotient group. This is an algebraic torus, and therefore isomorphic
to a product of l copies of the multiplicative group of F ; the number l is called the
rank of B. If T ⊂ B is any maximal torus, then the quotient map from B to B/N
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restricts to an isomorphism of T onto T . The lattice of rational characters of B is
by definition the group

(3.1)(a) X∗(B) = Homalg(B, F
×

)

of algebraic group homomorphisms from B to F
×

. Such a homomorphism is auto-
matically trivial on N , so there are natural identifications

(3.1)(b) X∗(B) ' X∗(T ) ' X∗(T ).

It follows that X∗(B) is a lattice of rank l.
Dually, a rational one-parameter subgroup of B is an algebraic group homomor-

phism

(3.2)(a) µ : F
×
→ B.

Two such homomorphisms are called equivalent if they are conjugate by an element
of B. The set of equivalence classes of one-parameter subgroups of B is denoted
X∗(B). The inclusion of T in B and the quotient map from B to B/N induce
bijections on X∗, so we get

(3.2)(b) X∗(B) ' X∗(T ) ' X∗(T ).

These isomorphisms allow us to define a group structure on X∗(B); it is a lattice of
rank l. (The addition may be described a little more directly. Given one parameter
subgroups µ1 and µ2 in X∗(B), we may find an element b ∈ B so that the images
of µ1 and Ad(b) ◦ µ2 commute. The sum of the equivalence classes of µ1 and µ2 is
the class of the product homomorphism (µ1)(Ad(b) ◦ µ2).)

If λ ∈ X∗(B) and µ ∈ X∗(B), then the composition λ ◦ µ is an algebraic homo-

morphism from F
×

to itself. Such a map is necessarily of the form z 7→ zn for a
unique n ∈ Z, and we define

(3.3)(a) 〈λ, µ〉 = n.

This defines a bilinear pairing on X∗(B) ×X∗(B) with values in Z. The pairing is
perfect; that is, it identifies each lattice as the dual of the other. Explicitly,

(3.3)(b) X∗(B) ' Hom(X∗(B), Z), X∗(B) ' Hom(X∗(B), Z).

We can recover T from either of these two lattices using natural isomorphisms

(3.3)(c) T ' X∗(B) ⊗Z F
×

, T ' HomZ(X∗(B), F
×

).

The second isomorphism, for example, sends the class tN ∈ B/N to the map

λ 7→ λ(t) from X∗(B) to F
×

. Of course we cannot recover B from these lattices in
general; if B is unipotent, the lattices are zero.

Example 3.4 Suppose B0 is the group of n by n upper triangular matrices. A
rational character of B0 is parametrized by a sequence λ = (λ1, . . . , λn) ∈ Zn:

(3.4)(a) λ(b) = bλ1

11bλ2

22 . . . bλn
nn.
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Here we write bij for the (i, j) entry of the (upper triangular) matrix b. Conse-
quently

(3.4)(b) X∗(B0) ' Zn.

(This is a canonical isomorphism.) The rational one-parameter subgroups of B0

are more complicated; if n = 2, for example, the most general one is of the form

(3.4)(c) µ(z) =

(
zµ1 (zµ1 − zµ2)x
0 zµ2

)
,

with µ1 and µ2 integers and x ∈ F . In general the diagonal entries of µ(z) must be
of the form

(3.4)(d) µ(z)ii = zµi ,

with µi an integer. The n-tuple of integers (µi) determines the equivalence class of
µ, so

(3.4)(e) X∗(B0) ' Zn.

The composition λ ◦ µ is

(3.4)(f)

λ(µ(z)) = (µ(z)11)
λ1(µ(z)22)

λ2 . . . (µ(z)nn)λn

= (zµ1)λ1(zµ2)λ2 . . . (zµn)λn

= z(µ1λ1+···+µnλn).

It follows that the pairing between X∗(B0) and X∗(B0) is just the usual one between
Zn and Zn,

(3.4)(g) 〈λ, µ〉 =
n∑

i=i

λiµi.

We want to extend these constructions to non-solvable groups. So suppose now
that G is any connected algebraic group over F . A based rational character for G
is a pair (B, λ) with B a Borel subgroup of G and λ a rational character of B. (We
may drop the B from the notation sometimes.) Two such characters are said to
be equivalent if they are conjugate by an element of G. We write X∗

b (G) for the
collection of based rational characters for G. Now any two Borel subgroups of G
are conjugate, and the normalizer in G of a Borel subgroup B0 is B0. It follows at
once that the inclusion of B0 in G defines a bijection

(3.5) X∗(B0) ' X∗
b (G).

This bijection provides a lattice structure on X∗
b (G), which is independent of the

choice of B0. Here is a more direct definition. Suppose (λ, B) and (λ′, B′) are
based rational characters for G. Choose an element g of G conjugating B ′ to B,
so that (λ′ ◦ Ad(g), B) is a based rational character for G equivalent to λ′. Then
the class of λ + λ′ is represented by (λ + (λ′ ◦ Ad(g)), B). (Perhaps the best way
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to think of X∗
b (G) is as the set of equivalence classes of equivariant line bundles on

the complete flag variety of Borel subgroups of G. In this interpretation, the lattice
structure is tensor product of line bundles. The lattice X∗

b (G) is therefore just an
equivariant Picard group.)

Dually, a based rational one-parameter subgroup of G is a pair (B, µ) with B a
Borel subgroup of G and

(3.6)(a) µ : F
×
→ B

an algebraic group homomorphism. Two such pairs are called equivalent if they
are conjugate by an element of G. The set of equivalence classes of based rational
one-parameter subgroups of G is denoted Xb

∗(G). If B0 is any Borel subgroup of
G, then the inclusion provides a bijection

(3.6)(b) X∗(B0) ' Xb
∗(G).

It follows that Xb
∗(G) is a lattice, and that there is a natural perfect pairing

(3.6)(c) X∗
b (G) × Xb

∗(G) → Z.

The dual lattices X∗
b (G) and Xb

∗(G) carry some additional structure in the non-
solvable case. Recall that a minimal parabolic subgroup of G is a subgroup P
properly containing a Borel subgroup B of G, with the property that B is maximal
in P . In this case the quotient space P/B is necessarily isomorphic to P1. In
particular, B acts by a rational character α = α(P/B) on (p/b)∗. (Here as usual
we denote Lie algebras by Gothic letters.) We call the based rational character
(B, α(P/B)) the simple root corresponding to P . The set of equivalence classes of
simple roots forms a finite subset

(3.7)(a) ∆(G) ⊂ X∗
b (G),

in one-to-one correspondence with the conjugacy classes of minimal parabolic sub-
groups. Dually, a simple coroot corresponding to P is a based rational one-parameter
subgroup (B, α∨) subject to two conditions. First,

(3.7)(b) α∨(F
×

) ⊂ B ∩ [P, P ].

Second,

(3.7)(c) α(P/B)(α∨(z)) = z2 (z ∈ F
x
).

These conditions determine α∨ up to conjugacy by B; we may sometimes overlook
this indeterminacy and write α∨(P/B). In any case the set of equivalence classes
of simple coroots forms a finite subset

(3.7)(d) ∆∨(G) ⊂ Xb
∗(G),

in one-to-one correspondence with the conjugacy classes of minimal parabolic sub-
groups (and therefore also with ∆(G)).
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Definition 3.8. (Grothendieck — see [28], 1.9. Suppose G is a connected alge-
braic group over the algebraically closed field F . The based root datum of G is the
quadruple

Ψ(G) = (X∗
b (G), ∆(G), Xb

∗(G), ∆∨(G))

defined in (3.5)–(3.7) above. A little more explicitly, we include in the based root
datum the lattice structures and the perfect pairing 〈, 〉 of (3.6)(c), and the bijection
∆(G) ↔ ∆∨(G) described after (3.7)(d).

The definition given here of X∗
b (G) seems to be a reasonably good one (particu-

larly in the “Picard group” interpretation). That of Xb
∗(G) is much less satisfactory.

(The difficulty of defining good Langlands parameters in the archimedean case, al-
ready mentioned in the introduction, has a similar flavor.) The reader is therefore
encouraged to look for improvements.

Example 3.9 Suppose G = GL(n). We can choose as a Borel subgroup the
group B0 of upper triangular matrices considered in Example 3.4. It follows at
once that

(3.9)(a) X∗
b (G) ' X∗(B0) ' Zn, Xb

∗(G) ' X∗(B0) ' Zn;

the isomorphisms are canonical. A minimal parabolic subgroup P containing B0

is parametrized by a pair (r, r + 1), with 1 ≤ r ≤ n − 1. It consists of matrices
(pij) with pij = 0 unless i ≤ j or (i, j) = (r + 1, r). The quotient of Lie algebras
p/b is spanned by the image of the matrix unit er+1,r. It follows easily that the
corresponding simple root is

(3.9)(b) α = (0, 0, . . . , 1,−1, 0, . . . , 0),

the non-zero entries being in the rth and (r+1)st places. The commutator subgroup
of P is

(3.9)(c) [P, P ] = {(pij ∈ P | pii = 1 for (i 6= r, r + 1), and det p = 1}.

From this one finds easily that a simple coroot corresponding to P must have

(3.9)(d) µrr(z) = z, µr+1,r+1(z) = z−1, µii(z) = 1 (i 6= r, r + 1).

Consequently

∆(G) = {er − er+1 | 1 ≤ r ≤ n − 1} ⊂ Zn,

∆∨(G) = {er − er+1 | 1 ≤ r ≤ n − 1} ⊂ Zn.(3.9)(e)

Example 3.10. Suppose G = SL(n). We can choose as a Borel subgroup the
intersection B1 of B0 with SL(n). Every rational character of B1 is the restriction
of a character of B0; the characters restricting to the trivial character on B1 are
precisely the powers of the determinant character on B0. In the parametrization of
Example 3.4, these correspond to the multiples of δ = (1, 1, . . . , 1). Hence

(3.10)(a) X∗
b (G) ' X∗(B1) ' Zn/Zδ,
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a lattice of rank n− 1. Dually, the one parameter subgroup µ of B0 takes values in
B1 if and only if the sum of the integers µi (cf. (3.4)(d)) is zero. Write

(3.10)(b) SZn = {µ ∈ Zn |
∑

µi = 0},

a lattice of rank n − 1. Then it follows that

(3.10)(c) Xb
∗(G) ' X∗(B1) ' SZn.

The usual pairing on Zn × Zn descends to

(3.10)(d) 〈, 〉 : Zn/Zδ × SZn → Z;

this is the pairing of (3.3)(a) and (3.6)(c). The simple roots of SL(n) are the
images of those for GL(n) under Zn → Zn/δZ. The simple coroots of GL(n)
actually belong to SZn ⊂ Zn, and as such give the simple coroots of SL(n).

This example provides a special case of the functoriality of the based root datum
with respect to algebraic group homomorphisms that are isomorphisms modulo
solvable radicals. Here is another.

Example 3.11. Suppose G = PGL(n), the quotient of GL(n) by its center. A
Borel subgroup of G is the quotient B2 of B0 by its center. A character λ of B0

factors to B2 if and only if the sum of the λi is zero, so

(3.11)(a) X∗
b (G) ' X∗(B2) ' SZn

(notation as in (3.10)(b)). Similarly

(3.11)(b) Xb
∗(G) ' X∗(B2) ' Zn/δZ.

The simple roots and coroots are the obvious ones.

Example 3.12. Suppose n is a positive integer, and G is a connected classical
group of rank n. By this we mean that G is either GL(n) (type An−1), SO(2n+1)
(type Bn), Sp(2n) (type Cn), or SO(2n) (type Dn). (Such closely related groups
as SL(n) and Spin(2n) are excluded.) Then the based root datum for G is very
close to that for GL(n). More precisely, there are canonical isomorphisms

(3.12)(a) X∗
b (G) ' Zn, Xb

∗(G) ' Zn,

and the pairing is the usual one. The simple roots and coroots are those for GL(n)
(Example 3.9) together with at most one additional pair (α ∈ ∆(G), α∨ ∈ ∆∨(G)).
Here are the extra pairs. In type Bn:

(3.12)(b) α = en, α∨ = 2en.

In type Cn:

(3.12)(c) α = 2en, α∨ = en.

In type Dn (n ≥ 2):

(3.12)(d) α = en−1 + en, α∨ = en−1 + en.

In the remaining cases (GL(n) and SO(2)) no pair is added; the based root datum
is that of GL(n).

Here is the first main theorem about root data.
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Theorem 3.13. (see [28], Theorem 2.9). Suppose G and G′ are connected reduc-
tive algebraic groups over an algebraically closed field F , and suppose j : Ψ(G) →
Ψ(G′) is an isomorphism (that is, a collection of four bijective maps preserving
the lattice structures, pairings, inclusions ∆ ↪→ X∗

b and ∆∨ ↪→ Xb
∗, and bijections

∆ ↔ ∆∨). Then j is induced by an isomorphism of algebraic groups

J : G → G′.

This isomorphism is unique up to inner automorphisms of G or G′.

The theorem says that the structure of a reductive group is completely encoded
by the discrete information in the based root datum. It is therefore natural to ask
what the possibilities for that discrete information are. To explain the answer, we
need a little notation. Suppose X∗ is any lattice (that is, a finitely generated free
abelian group), and

(3.14)(a) X∗ = HomZ(X∗, Z)

is the dual lattice. We write 〈, 〉 : X∗ × X∗ → Z for the natural pairing between
them. Suppose that we are given

(3.14)(b) (α, α∨) ∈ X∗ × X∗, 〈α, α∨〉 = 2.

Then we can define endomorphisms sα of X∗ and sα∨ of X∗ by the formulas

(3.14)(c) sα(λ) = λ − 〈λ, α∨〉α, sα∨(µ) = µ − 〈α, µ〉α∨.

They are transposes of each other:

(3.14)(d) 〈sα(λ), µ〉 = 〈λ, sα∨(µ)〉.

In addition, each has order two.
Suppose now that we are given a subset ∆ of X∗, a subset ∆∨ of X∗, and a

bijection α 7→ α∨ from ∆ to ∆∨. Assume that every pair (α, α∨) satisfies (3.14)(b).
Write W = W (∆, ∆∨) for the group of automorphisms of X∗ generated by the
various sα, and W∨ = W (∆∨, ∆) for the group of automorphisms of X∗ generated
by the sα∨ . Then

(3.15) W ' W∨, w 7→ (w−1)t.

(Here the superscript t denotes the transpose of an endomorphism of X∗). This
isomorphism carries sα to sα∨ .

Definition 3.16. (cf. [28], section 1.) An abstract based root datum is a quadruple
Ψ = (X∗, ∆, X∗, ∆

∨), together with a bijection α 7→ α∨ from ∆ to ∆∨. Here X∗

is a lattice, X∗ is the dual lattice, ∆ is a subset of X∗, and ∆∨ is a subset of X∗.
These data are subject to the following conditions:

(BRD1) Each pair (α, α∨) from ∆ × ∆∨ satisfies 〈α, α∨〉 = 2.
(BRD2) The group W (∆, ∆∨) generated by the sα (cf. (3.14) and (3.15)) is finite.
(BRD3) If α and β are distinct elements of ∆, then 〈α, β∨〉 ≤ 0.
(BRD4) The sets ∆ and ∆∨ are linearly independent.
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(It follows from the structure theory of algebraic groups that the based root datum
of an algebraic group satisfies these conditions.) We call W = W (∆, ∆∨) the Weyl
group of the based root datum. Define

Φ = W · ∆ ⊂ X∗, Φ∨ = W∨ · ∆∨ ⊂ X∗,

the root system and coroot system. The quadruple (X∗, Φ, X∗, Φ
∨) is a root datum

in the sense considered in [28], and ∆ is a set of simple roots.

The axioms given in [28] for a root datum are somewhat simpler than these for
a based root datum. We prefer to work with based root data to get the strong
uniqueness statement at the end of Theorem 3.13. It would certainly be nice to
have cleaner axioms. Of course (BRD1) might almost be absorbed in the preamble,
along with the assumption that X∗ is a lattice and so on. The main assumption
is (BRD2), and (BRD3) is more or less in the nature of fixing an “orientation.”
These first three conditions almost guarantee (BRD4), but not quite; for example,
one can add to a based root datum the pair (−β,−β∨), with β a highest root, to
get a system satisfying (BRD1–3) but not (BRD4). A variety of mild assumptions
could be imposed in place of (BRD4) to eliminate such possibilities.

Here is the main existence theorem for reductive groups.

Theorem 3.17. (see [28], Theorem 2.9). Suppose Ψ is an abstract based root
datum (Definition 3.16), and F is an algebraically closed field. Then there is a
connected reductive algebraic group G over F such that Ψ(G) ' Ψ (Definition 3.8).

Our main interest in this theorem arises from the symmetry of the axioms for a
based root datum.

Definition 3.18. ([8], 2.1) Suppose Ψ = (X∗, ∆, X∗, ∆
∨) is an abstract based root

datum. The dual based root datum is the quadruple

Ψ∨ = (X∗, ∆
∨, X∗, ∆).

It is an abstract based root datum (with a canonically isomorphic Weyl group) be-
cause of (3.15).

Suppose G is a connected reductive algebraic group over an algebraically closed
field F . A (complex) dual group for G is a complex connected reductive algebraic
group ∨G, together with an isomorphism of Ψ(G)∨ with Ψ(∨G):
(3.18)(a)

X∗(G) ' X∗(
∨G), ∆(G) ' ∆∨(∨G), X∗(G) ' X∗(∨G), ∆∨(G) ' ∆(∨G)

Theorem 3.17 guarantees that a complex dual group always exists. Theorem
3.13 implies that any two are isomorphic, and that the isomorphism is canonical
up to inner automorphisms.

Example 3.19. The based root data described in Examples 3.9–3.12 provide
examples of dual groups. A dual group for GL(n, F ) is GL(n, C) (since the based
root datum is evidently self-dual). A dual group for SL(n, F ) is PGL(n, C) (Ex-
amples 3.10 and 3.11), and a dual group for PGL(n, F ) is SL(n, C). A dual group
for SO(2n + 1, F ) is Sp(2n, C) (cf. (3.12)(b) and (3.12)(c)), and a dual group for
SO(2n, F ) is SO(2n, C) (cf. (3.12)(d)).
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Langlands’ notion of L-group extends this duality to include information about
the Galois group. So let F be a field with algebraic closure F and Galois group

(3.20)(a) Γ = Gal(F/F ).

(The field F may be local of characteristic zero as in (2.1), but we do not really
need this at the moment.) Fix a connected reductive algebraic group G over F .
Because of the naturality of the based root datum, every (algebraic) automorphism
of G defines an automorphism of Ψ(G). In this way we get a short exact sequence
([8], (1.2))

(3.20)(b) 1 → Int G → Aut G → Aut(Ψ(G)) → 1.

(This is an immediate consequence of Theorem 3.13.) Suppose now that G is
defined over F , so that the Galois group Γ acts on G. We want to construct a
homomorphism

(3.20)(c) µ(G/F ) : Γ → Aut(Ψ(G)).

The Galois action is not by algebraic automorphisms, so µ(G/F ) does not arise
trivially from (3.20)(b). There is no difficulty in constructing it, however. Suppose
for example that γ ∈ Γ, and (B, λ) is a based rational character of G. Write a(γ)
for the (non-algebraic) automorphism of G(F ) defined by γ. Then B ′ = a(γ)(B) is

a Borel subgroup of G, and λ ◦ a(γ)−1 is a group homomorphism from B′ to F
×

.
It is not a rational character of B′, however, because it is not a regular function.
This we can cure as in (2.3)(b): the homomorphism λ′ defined by

(3.20)(d) λ′(b′) = γ · λ(a(γ)−1b′)

is a rational character. We have therefore defined an action of Γ on based rational
characters, by γ · (λ, B) = (λ′, B′). This is well defined on equivalence classes and
respects the lattice structure, and so defines an action of Γ on X∗

b (G). The rest of
the construction of µ(G/F ) is similar.

If G is split over F , then the homomorphism µ(G/F ) is trivial (but not con-
versely). Because any reductive group splits over a finite extension field, the kernel
of µ(G/F ) is necessarily an open subgroup. Because Aut(Ψ(G)) is discrete, this is
equivalent to saying that µ(G/F ) is continuous.

Proposition 3.21. ([8], 1.3). In the setting (3.20), the homomorphism µ(G/F )
depends only on the inner class of the F -rational form of G. This establishes a
bijection between inner classes of F -rational forms of G and continuous homomor-
phisms

µ : Γ → Aut(Ψ(G)).

Example 3.22. Suppose F = R and G(R) is the unitary group U(n). In this
case G = GL(n, C), and the non-trivial element σ of Γ acts by

a(σ)(g) = tg−1,
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the inverse of the conjugate transpose of g. Suppose (B0, λ) is as in Example 3.4.
Then a(σ)(B0) = B′ is the group of lower triangular matrices, and

λ ◦ a(σ)−1(b′) = λ(tb′
−1

) = b
−λ1

11 . . . b′
−λn

nn .

The character λ′ is obtained by composition with complex conjugation:

λ′(b′) = b′
−λ1

11 . . . b′
−λn

nn .

To see which element of X∗
b (G) this represents, we must choose an element of G

conjugating B′ back to B. This can be accomplished by the permutation matrix h
reversing the order of 1, . . . , n; we find

λ′(h−1bh) = b−λn

11 . . . b−λ1

nn .

So finally we find that σ acts on X∗
b (G) ' Zn by

µ(σ)(λ1, . . . , λn) = (−λn, . . . ,−λ1).

Notice that this action preserves ∆ (as it must).

Example 3.23. Suppose F is arbitrary, and G = GL(1) = F
×

. Since G is
abelian, inner classes of rational forms are the same as rational forms. The based
root datum of G is (Z, ∅, Z, ∅). This has only two automorphisms, the identity
and −1. A non-trivial homomorphism of Γ into Aut(Ψ) is therefore determined
by its kernel, which can be any (closed) subgroup of Γ of index two. This means
that non-split F -rational forms of G correspond to separable quadratic extensions
of F . If E is such an extension, then the corresponding rational form has G(F )
isomorphic to the kernel of the norm map from E× to F×. The Galois action on

G(F ) = F
×

is a(γ)z = γ · z (if γ ∈ Gal(F/E)), a(γ) · z = (γ · z)−1 (otherwise).

Definition 3.24. Suppose F is a field with algebraic closure F and Galois group
Γ, and G is a connected reductive algebraic group over F . Fix an inner class of
F -rational forms of G, corresponding to a homomorphism µ : Γ → Aut(Ψ(G)). The
dual root datum has exactly the same automorphisms; write µ∨ : Γ → Aut(Ψ(G)∨)
accordingly.

Fix a complex dual group ∨G for G (Definition 3.18). A weak E-group for G (and
the specified inner class of F -rational forms) is a complex reductive pro-algebraic
group ∨G having the following structure.

1) There is a short exact sequence

1 → ∨G → ∨GΓ → Γ → 1.

2) If γ ∈ Γ, then any preimage gγ of γ in ∨GΓ acts by conjugation on ∨G according
to an automorphism defining µ∨(γ) ∈ Aut(Ψ(G)∨). (Here we use the mapping
(3.20)(b) for the group ∨G, and the identification Ψ(∨G) ' Ψ(G)∨ of Definition
3.18.)

3) There is an open subgroup Γ0 of Γ and an isomorphism of ∨G×Γ0 with an open
subgroup of ∨GΓ, respecting the maps of (1).

The homomorphism µ∨ : Γ → Aut(Ψ(G)∨) is called the first invariant of ∨GΓ.

Condition (3) of this definition is analogous to condition (2) of Definition 2.3.
It is not quite as compelling as the first two conditions; my understanding of the
Langlands conjectures is not deep enough to decide whether it should really be
imposed. In any case, it clarifies the structure of pro-algebraic group on ∨GΓ.
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Definition 3.25. (Langlands; see [8], 2.3). In the setting of Definition 3.24, a
distinguished splitting is a quadruple (∨δ, dB, dT , {Xα∨}). Here ∨δ : Γ → ∨GΓ is a
homomorphism splitting the exact sequence (1) of Definition 3.24; dB ⊃ dT are a
Borel subgroup and a maximal torus in ∨G; {Xα∨} is a collection of basis vectors
for the simple root spaces of dT in db; and the automorphisms ∨δ(γ) of ∨G (defined
by conjugation) preserve (dB, dT , {Xα∨}).

An L-group for G/F is a pair (∨GΓ,D) consisting of a weak E-group ∨GΓ and
a ∨G-conjugacy class D of distinguished splittings.

Proposition 3.26. (Langlands; see [8], 2.3) Suppose G is a connected reductive
algebraic group over F , endowed with an inner class of F -rational forms. Then
there is an L-group (∨GΓ,D) for G/F . If ((∨GΓ)′,D′) is another, then there is
an isomorphism from ∨GΓ to (∨GΓ)′ preserving the weak E-group structure and
carrying D to D′. This isomorphism is unique up to an inner automorphism from
∨G.

Not every weak E-group admits an L-group structure, and a discussion of en-
doscopy requires considering some that do not. With those applications in mind,
we make one more definition.

Definition 3.27. In the setting of Definition 3.24, a distinguished splitting mod-
ulo center is a quadruple (∨δ, dB, dT , {Xα∨}). Here ∨δ : Γ → ∨GΓ is a continuous
map (not necessarily a homomorphism) splitting the exact sequence (1) of Defini-
tion 3.24; dB ⊃ dT are a Borel subgroup and a maximal torus in ∨G; {Xα∨} is
a collection of basis vectors for the simple root spaces of dT in db; and the au-
tomorphisms ∨δ(γ) of ∨G (defined by conjugation) preserve (dB, dT , {Xα∨}). It
follows from these assumptions that the composition of ∨δ with the quotient map
into ∨GΓ/Z(∨G) is a homomorphism; so for every pair γ, γ ′ of elements of Γ there
is an element ∨z(γ, γ′) ∈ Z(∨G) so that

∨z(γ, γ′) = ∨δ(γγ′)−1∨δ(γ)∨δ(γ′).

This mapping is automatically a 2-cocycle of Γ with values in Z(∨G).
An E-group for G/F is a pair (∨GΓ,D) consisting of a weak E-group ∨GΓ and

a ∨G-conjugacy class D of distinguished splittings modulo center. The 2-cocycle ∨z
is the same for all the elements of D, and is therefore an invariant of the E-group
structure. It is called the second invariant of the E-group.

Proposition 3.28. Suppose G is a connected reductive algebraic group over F ,
endowed with an inner class of F -rational forms.

a) Every weak E-group ∨GΓ for G/F admits a distinguished splitting modulo center
(Definition 3.27), and therefore an E-group structure (∨GΓ,D).

b) Suppose (∨GΓ,D) is as in (a), and ∨z is the corresponding 2-cocycle (Definition
3.27). Then the cohomology class ∨ζ ∈ H2(Γ, Z(∨G)) of ∨z depends only on the
weak E-group, and not on the choice of splitting.

c) Suppose ∨ζ ∈ H2(Γ, Z(∨G)), and ∨z is a representative 2-cocycle. Then there is
an E-group (∨GΓ,D) for G/F having ∨z as second invariant.

d) Suppose (∨GΓ,D) and ((∨GΓ)′,D′) are E-groups for G/F having the same second
invariant. Then there is an isomorphism from ∨GΓ to (∨GΓ)′ preserving the weak
E-group structure and carrying D to D′. This isomorphism is unique up to an
inner automorphism from ∨G.
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This is a straightforward exercise in the relationship between group cohomology
and the classification of extensions; it is essentially proved for F = R in section 4
of [1]. Two remarks may be helpful, however. In part (d), the reader may wonder
what became of the first invariant µ∨ introduced in Definition 3.24. The point is
that the phrase “E-group for G/F” means “E-group with first invariant µ∨.” The
assumption that these invariants coincide for ∨GΓ and (∨GΓ)′ is therefore implicit
in the formulation of (d). A second subtlety is the meaning of the assumption
that the 2-cocycles ∨z and (∨z)′ are “the same,” when one takes values in Z(∨G)
and the other in Z(∨G

′
). The point is that ∨G and ∨G

′
are isomorphic, and

the isomorphism is canonical up to inner automorphism. The centers Z(∨G) and
Z(∨G

′
) are therefore canonically isomorphic.

4. Langlands parameters: p-adic case.

Suppose throughout this section that F is a non-archimedean local field of char-
acteristic zero. As usual we write Γ for the Galois group of F . We recall from
[29] the construction of the Weil group. Write kF for the residue field of of F ; this
is a finite field, say with qF elements. Our choice of algebraic closure F provides
an algebraic closure kF , and therefore a (surjective) homomorphism from Γ onto
Gal(kF /kF ). The kernel of this map is the inertia group IF ⊂ Γ. The Galois group

of a finite field is canonically isomorphic to the inverse limit Ẑ of the finite quotients
of Z, so we have a short exact sequence

(4.1)(a) 1 → IF → Γ → Ẑ → 1.

The compact group Ẑ contains Z as a dense subgroup; here 1 ∈ Z corresponds to
the automorphism x 7→ xqF of kF /kF . The preimage of Z in Γ is therefore a dense
subgroup WF :

(4.1)(b) 1 → IF → WF → Z → 1.

We topologize WF by making the compact group IF (a closed subgroup of the
pro-finite group Γ) an open subgroup of WF . The norm homomorphism from WF

to R× is

(4.1)(c) ‖w‖ = qn
F

whenever w maps to n in Z. (As an element of Γ, this means that w acts on kF

by raising elements to the power ‖w‖, or by extracting the corresponding root.)
Finally, we define the Weil-Deligne group W ′

F of F as the semidirect product

(4.1)(d) W ′
F = C o WF ,

in which w ∈ WF acts on C by multiplication by ‖w‖. This means that W ′
F is

generated by a copy of C and a copy of WF , subject to the relation

(4.1)(e) wxw−1 = ‖w‖x (x ∈ C, w ∈ WF ).

The product topology makes W ′
F a locally compact group, and the inclusion of WF

in Γ induces a natural homomorphism

(4.1)(f) W ′
F → Γ
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(trivial on C) with dense image.
Before we can define Langlands parameters, we need a notion of semisimple

elements in an E-group ∨GΓ (Definition 3.24). Choose a subgroup Γ0 of Γ as in
Definition 3.24(3), and a positive integer N so that every element of the finite group
Γ/Γ0 has order dividing N . If x ∈ ∨GΓ, then it follows that xN = (xg(N), xγ(N)) ∈
∨G × Γ0. We say that x is semisimple if xg(N) is a semisimple element of ∨G.
Because an element of a complex algebraic group is semsimple if and only if its
powers are, this definition is independent of choices.

Definition 4.2. (cf. [8], 8.1). Suppose ∨GΓ is a weak E-group (Definition 3.24).
A Langlands parameter is a continuous homomorphism φ : W ′

F → ∨GΓ with the
following additional properties:

1) φ respects the homomorphisms (3.24)(1) and (4.1)(f) to Γ;
2) the restriction of φ to C ⊂ W ′

F is algebraic (and therefore defines a unipotent
one-parameter subgroup of ∨G); and

3) φ(WF ) consists of semisimple elements of ∨GΓ.

Here in (3) semisimplicity is as defined after (4.1) above. The collection of
all Langlands parameters is written P (∨GΓ). The group ∨G acts on Langlands
parameters by conjugation on the range; parameters in the same orbit are called
equivalent, and the set of equivalence classes is denoted Φ(∨GΓ). If ∨GΓ is an L-
group for G/F (Definition 3.25), then we write instead P (G/F ) and Φ(G/F ); the
omission of the L-group from the notation is justified by Proposition 3.26.

Here is the basic Langlands conjecture.

Conjecture 4.3. (Langlands — see [24] and [8], Chapter III.) Suppose F is a
p-adic field, and G is a connected reductive algebraic group over F endowed with
an inner class of F -rational forms. Fix a pure extended group (GΓ,W), and an
L-group (∨GΓ,D) for G/F (Definitions 2.15 and 3.25). Then to each equivalence
class φ ∈ Φ(G/F ) of Langlands parameters is associated a set of representations
Πφ ⊂ Π(G/F ) (cf. (2.17)), called the L-packet of φ. This correspondence should
have the following properties.

1) The sets Πφ partition Π(G/F ).
2) If δ is a rigid rational form of GΓ, then the set

Πφ(δ) = {π ∈ Π(G(F, δ) | (π, δ) ∈ Πφ}

is finite. If δ is quasisplit, it is non-empty.
3) The following three conditions on φ are equivalent:

a) some representation in Πφ is square-integrable modulo center;
b) all representations in Πφ are square-integrable modulo center;
c) the image of φ is not contained in any proper Levi subgroup of ∨GΓ ([8], 3.4).

One can find in [8] many additional requirements on the sets Πφ.

We want to say a little more about the structure of the set P (∨GΓ). The most
interesting and difficult part of this problem is understanding the restriction of
Langlands parameters to WF . This is an arithmetic problem, and we will ignore it
entirely. In the setting of Definition 4.2, we therefore fix a continuous homomor-
phism

(4.4)(a) λ : WF → ∨GΓ
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satisfying conditions (1) and (3) of Definition 4.2. (We may regard λ as a Langlands
parameter trivial on the “unipotent radical” C of W ′

F .) Define

(4.4)(b) P (λ, ∨GΓ) = {φ ∈ P (∨GΓ) | φ|WF
= λ}.

The image λ(IF ) is a compact subgroup of ∨GΓ, so the centralizer in ∨G is a
(possibly disconnected) reductive algebraic subgroup:

(4.4)(c) ∨G
λ(IF )

= {g ∈ ∨G | gλ(x) = λ(x)g, all x ∈ IF }.

Fix a Frobenius element Fr of Γ (that is, one acting in the residue field kF by raising
elements to the power qF .) This means that Fr belongs to WF , and generates
WF /IF . Because IF is a normal subgroup of WF , λ(IF ) is normalized by λ(Fr). It

follows that λ(Fr) normalizes ∨G
λ(IF )

. By hypothesis (4.2)(3), λ(Fr) is a semisimple
element of ∨GΓ, so in particular

Ad(λ(Fr))

is a semisimple automorphism of the reductive Lie algebra

(4.4)(d) ∨g
λ(IF )

.

The Lie algebra is therefore a direct sum of eigenspaces of Ad(λ(Fr)), and we may
define

(4.4)(e) ∨g
λ(IF )
qF

= qF -eigenspace of Ad(λ(Fr)).

Because eigenvalues of an automorphism multiply under Lie bracket, it is immediate

that ∨g
λ(IF )
qF

consists of ad-nilpotent elements of ∨g. Finally, define

(4.4)(f) ∨G
λ

= {g ∈ ∨G | gλ(x) = λ(x)g, all x ∈ WF }.

This is the group of fixed points of the semisimple automorphism Ad(λ(Fr)) of

the reductive algebraic group ∨Gλ(IF ), and is therefore itself a reductive algebraic

group. It acts by the adjoint representation on the vector space ∨g
λ(IF )
qF

.

Proposition 4.5. Suppose we are in the setting (4.4)(a); use the notation of (4.4).

a) An element of P (λ, ∨GΓ) is completely determined by its restriction to C ⊂ W ′
F .

This restriction is a one-parameter unipotent subgroup

nφ : C → ∨G.

b) The homomorphism nφ is determined by a single nilpotent element Nφ ∈ ∨g
λ(IF )
qF

,
by the formula

nφ(z) = exp(zNφ).

c) The correspondences in (a) and (b) establish a bijection between P (λ, ∨GΓ) and

the vector space ∨g
λ(IF )
qF

. This correspondence respects the natural actions of ∨Gλ

on the two sets.
d) The vector space ∨g

λ(IF )
qF

is prehomogeneous for the group ∨G
λ
. That is, there

are only finitely many orbits.
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Corollary 4.6. In the setting of (4.4)(a), write OF for the collection of all conju-
gates of λ under ∨G. Define

P (OF , ∨GΓ) = {φ ∈ P (∨GΓ) | φ|WF
∈ OF }.

Then there is a ∨G-equivariant bijection between P (OF , ∨GΓ) and the (closed points
of the) complex affine algebraic variety

∨G ×∨Gλ

(
∨g

λ(IF )
qF

)
.

In particular, the orbits of ∨G on P (OF , ∨GΓ) are in one-to-one correspondence

with the orbits of ∨G
λ

on ∨g
λ(IF )
qF

. They are finite in number

In the terminology of Definition 1.10, OF is an infinitesimal character for G/F .
The corollary is therefore describing the set of Langlands parameters of a fixed
infinitesimal character. We write

(4.7) X(OF , ∨GΓ) = ∨G ×∨Gλ

(
∨g

λ(IF )
qF

)

for this affine algebraic variety. Of course it would be harmless to abuse notation
and call it simply P (OF , ∨GΓ). The reason we make a distinction is that in the
archimedean case the analogous construction of an algebraic variety from Langlands
parameters (Definition 5.12) will change even the underlying point set.

Proof of Proposition 4.5. Part (a) is clear from (4.1) and Definition 4.2. For
(b), the homomorphism nφ is evidently determined by a single nilpotent element
Nφ ∈ ∨g, which (in light of (4.1)(e)) may be anything satisfying the requirement

Ad(λ(w))(Nφ) = ‖w‖Nφ.

Taking w ∈ IF , we see first of all that this means that Nφ must belong to ∨g
λ(IF )

.
Taking w = Fr, we find that Nφ must belong to the qF -eigenspace of Ad(λ(Fr)), as
required.

For (c), the argument for (b) may easily be reversed to show that any N ∈ ∨g
λ(IF )
qF

gives rise to a continuous homomorphism from W ′
F to ∨GΓ. To see that φ is a

Langlands parameter, we only need to check that N is nilpotent. By the remark
before (4.4)(f), N is certainly ad-nilpotent. It therefore remains only to show that
∨g

λ(IF )
qF

does not meet the center ∨z of the Lie algebra ∨g. For this, notice that
the adjoint action of λ(WF ) on ∨z is the restriction of the Galois group action µ∨

appearing in the definition of an E-group. This action factors to some finite quotient
of Γ, so the eigenvalues of Ad(λ(Fr)) on ∨z are all roots of unity. In particular, qF

does not occur.
Part (d) is a special case of the following well-known fact (applied to the reductive

group ∨G
λ(IF )

and its semisimple automorphism Ad(λ(Fr)).)

Lemma 4.8. Suppose G is a complex semisimple algebraic group, and s is a
semisimple automorphism of G. Let H be the group of fixed points of s (a re-
ductive subgroup of G). For each complex number t that is not a root of unity,
define

gt = {X ∈ g | s(X) = tX }.
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Then H acts on the vector space gt with finitely many orbits.

We omit the proof. This completes the proof of Proposition 4.5. Corollary 4.6
is a formal consequence. (That the fiber product is an affine variety follows from

the fact that the isotropy subgroup ∨G
λ

is reductive.) Q.E.D.
Example 4.9. Unramified representations. In the setting of Conjecture 4.3,

suppose for simplicity that our fixed inner class of F -rational forms of G includes the
split form. This means that the action µ of Γ on the based root datum (cf. (3.20))
is trivial; so µ∨ is also trivial, and the L-group is

(4.9)(a) ∨GΓ = ∨G × Γ.

A Langlands parameter φ may therefore be identified with a continuous homomor-
phism

(4.9)(b) φ0 : W ′
F → ∨G

carrying WF to semisimple elements and C algebraically to unipotent elements.
The parameter is called unramified if φ0 is trivial on IF . An unramified Langlands
parameter may be identified with a pair (y, N). Here y = φ0(Fr) is a semisimple
element of ∨G; N is a nilpotent element of ∨g; and

(4.9)(c) Ad(y)(N) = qF N.

The conjugacy class of y corresponds to an unramified principal series represen-
tation, as follows. Fix a split rigid rational form δ for GΓ, and B ⊃ T a Borel
subgroup and maximal torus defined over F . Principal series representations cor-
respond to continuous complex characters of the group B(F, δ). Because T is split,
the characters of B(F, δ) may be identified as

(4.10)(a) B(F, δ)∧ ' X∗(B) ⊗Z Hom(F×, C×).

Here the last Hom is the group of continuous complex characters of the locally
compact group F×. A character of F× is called unramified if it is trivial on the
group UF of units of the ring of integers of F ; these are the elements of F× of
norm 1. A character of B(F, δ) is called unramified if it is trivial on the image
µ(UF ), with µ any rational one-parameter subgroup of B. These characters may
be identified as

B(F, δ)∧unramified ' X∗(B) ⊗Z Hom(F×/UF , C×).

Because F×/UF is naturally isomorphic to Z, this last Hom may be identified with
C×:

(4.10)(c) B(F, δ)∧unramified ' X∗(B) ⊗Z C×.

On the other hand, fix dB ⊃ dT a Borel subgroup and a maximal torus in ∨G.
Once these choices are made, the definition of the dual group provides a natural
identification

(4.10)(d) X∗(
dT ) ' X∗(B).
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Combining this with (4.10)(c), we find

(4.10)(e) B(F, δ)∧unramified ' X∗(
dT ) ⊗Z C× ' dT .

That is, given our fixed choices of Borel subgroups and maximal tori, there is a
natural bijection

(4.10)(f) unramified principal series representations ↔ elements of dT .

Now every semisimple conjugacy class in ∨G meets dT in a single Weyl group orbit.
The corresponding characters of B(F, δ) also differ by the action of the Weyl group,
so the principal series representations all have the same irreducible composition
factors.

Fix now an element y ∈ dT , and write

(4.11)(a) λ : WF → ∨GΓ

for the corresponding unramified Langlands parameter. Write η for the character
of B(δ, F ) or T (δ, F ) defined by y, and I(η, δ) for the corresponding principal series
representation of G(F, δ). The Langlands conjecture may be made a bit more
explicit in this setting. It says first of all that the collection Π(η, δ) of irreducible
composition factors of I(η, δ) is a union of L-packets:

(4.11)(b) Π(η, δ) =
⋃

φ∈P (λ,∨GΓ)

Πφ(δ).

Now the representation I(η, δ) can be reducible in two rather different ways.
The more subtle of these involves unitary induction, tempered representations, and
L-indistinguishability (that is, sets Πφ(δ) having more than one element.) We do
not wish to consider this at the moment. The other possibility is that there is a root
subgroup Mα of G containing T , and that the corresponding induced representation
IMα

(η, δ) contains a one-dimensional composition factor. (By a root subgroup, I
mean one generated by T and the one-dimensional unipotent subgroups for some
roots ±α. Thus Mα is essentially SL(2).) From this we can get reducibility of
I(η, δ) by induction by stages. On the other hand, the condition for IMα

(η, δ) to
contain a one-dimensional composition factor may be found by calculation in SL(2).
In terms of the rational coroot α∨ : F× → T (F, δ), it is that

(4.11)(c) η(α∨(z)) = ‖z‖±1.

Of course α∨ may be regarded as a root of dT in the dual group ∨G, and (4.11)(c)
may be rewritten on the dual group as

(4.11)(d) α∨(y) = q±1
F .

It follows that I(η, δ) exhibits reducibility of the second kind if and only if the qF -
eigenspace of Ad(y) on ∨g is non-zero. Because of Proposition 4.5, this is precisely
the condition under which P (λ, ∨GΓ) has more than one Langlands parameter in
it. This is encouraging for (4.11)(b). We conclude this example with a special case
in which the evidence is even stronger.
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Suppose in the setting of (4.11)(a) that y satisfies

(4.12)(a) α∨(y) = qF

for every simple root α∨ of dT in ∨G. Then the centralizer ∨G
λ

of y in ∨G is
precisely dT , and the qF -eigenspace of y is precisely the sum of the simple root
spaces:

(4.12)(b) ∨gqF
=

∑

α∨∈∆(∨G)

gα∨ .

Write l for the cardinality of ∆(∨G). Two elements of this sum are conjugate by
∨G

λ
= dT if and only if their non-zero components occur at exactly the same

simple roots. There are exactly 2l orbits. By Proposition 4.5, there are exactly
2l inequivalent Langlands parameters in P (λ, ∨GΓ), parametrized by subsets of
∆(∨G).

On the representation-theoretic side, (4.12)(a) means that I(η, δ) has a one-
dimensional irreducible quotient. The composition factors of such an induced rep-
resentation have been determined by Casselman (see [10], section X.4). There are
exactly 2l of them (each occurring with multiplicity one), parametrized naturally
by subsets of ∆(G). In this case we therefore have a bijection between equivalence
classes of representations in Π(η, δ) and equivalence classes of Langlands parameters
in P (λ, ∨GΓ).

Example 4.13. Pure rational forms of tori. We continue here with Example
2.13. Suppose therefore that (T Γ,W) is a pure extended group for the F -rational
torus T (Definition 2.15). This means that W is a T -conjugacy class of pure rational
forms of T . (All of the rational forms in the inner class defined by T Γ are identical;
it is only the rigid rational forms that differ.) In Example 2.13, we found that the set
of all T -conjugacy classs of pure F -rational forms was in one-to-one correspondence
with a certain subquotient X1/X0 of the lattice X∗(T ). We want to identify that
subquotient in terms of the L-group ∨TΓ. According to a result of Langlands
(see [8], section 9) there is a natural bijection between the group of continuous
complex characters of T (F ), and the set Φ(T/F ) of equivalence classes of Langlands
parameters. So fix a character π of T (F ), and a corresponding Langlands parameter
φ ∈ P (G/F ). Because ∨T has no nilpotent elements, φ is trivial on C ⊂ W ′

F . Write
∨T

φ
for the centralizer in ∨T of the image of φ. Because ∨T is abelian, and φ is a

section (on the dense subgroup WF ⊂ Γ) of the map (3.24)(1) from ∨TΓ to Γ, we
find that

(4.13)(a) ∨T
φ

is the set of fixed points of Γ on ∨T .

In particular, it is independent of φ.
Now the definition of the dual group identifies X∗(T ) with the lattice X∗(∨T )

of rational characters of ∨T . The action of Γ on this lattice induced by the action
of Γ on ∨T is the same as the action used in Example 2.13 to define X0 ⊂ X1.
The lattice X0 is the span of the characters of the form τ − γ · τ (with τ a rational
character and γ in Γ). Any such character is obviously trivial on the fixed points
of Γ. It is an elementary fact that the converse is also true:

(4.13)(b) X0 = lattice of rational characters of ∨T trivial on ∨T
φ
.
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(Here one should remember that the action of Γ on ∨T factors through a finite
quotient of Γ.) Similarly, one checks that X1 consists of the characters whose
differentials are trivial on ∨tφ. Consequently

(4.13)(c) X1 = lattice of rational characters of ∨T trivial on ∨T
φ
0 .

Combining these two observations, we find a natural identification

(4.13)(d) X1/X0 = group of characters of ∨T
φ
/∨T

φ
0 .

That is, the set of T -conjugacy classes of pure rational forms of T Γ is in a natural
one-to-correspondence with the group of characters of the component group of the
stabilizer in ∨T of any Langlands parameter φ. (Notice that this bijection depends
on the choice of the distinguished conjugacy class W of pure rational forms.)

With this example in mind, we can sharpen Conjecture 4.3 to include a parametriza-
tion of the (pure) L-packets.

Definition 4.14. In the setting of Definition 4.2, suppose φ is a Langlands pa-

rameter. Define ∨G
φ

to be the centralizer in ∨G of the image of φ (an algebraic
subgroup of ∨G). Define

Aloc
φ = ∨G

φ
/∨G

φ
0 ,

the (pure) Langlands component group for φ. A complete pure Langlands parameter
is a pair (φ, τ), with φ a Langlands parameter and τ an irreducible representation of
Aloc

φ . The group ∨G acts by conjugation on the complete pure Langlands parameters.

Conjugate parameters will be called equivalent, and we write Ξpure(
∨GΓ) for the set

of equivalence classes. If OF is a conjugacy class of admissible homomorphisms
of WF into ∨GΓ as in Corollary 4.6, then we write Ξpure(OF , ∨GΓ) for the set of
equivalence classes of pairs (φ, τ) with φ|WF

∈ OF . If ∨GΓ is an L-group, then we
may write G/F instead of ∨GΓ in this notation.

Conjecture 4.15. In the setting of Conjecture 4.3, there is a natural bijection

Πpure(G/F ) ↔ Ξpure(G/F ).

That is, the set of G-conjugacy classes of pairs (π, δ) (with δ a pure rational form
of GΓ (Definition 2.6) and π an irreducible admissible representation of G(F, δ))
is in one-to-one correspondence with the set of ∨G-conjugacy classes of pairs (φ, τ)
(Definition 4.14). In the setting of Conjecture 4.3, this means that the “pure” part
Πpure,φ of the L-packet Πφ (consisting of the equivalence classes of pairs (π, δ) in
Πφ with δ pure) is parametrized by the irreducible representations of the group of

connected components of ∨G
φ
.

For the case of tori, Conjecture 4.15 is contained in Example 4.13; of course
the main point is Langlands’ proof of Conjecture 4.3 for tori. The idea that the

component group of ∨G
φ

should control the structure of the L-packets is due to
Langlands; the case of SL(2) was developed by Labesse-Langlands. The most
general theorems of this nature in the archimedean case were proved by Shelstad.

We can interpret a result of Kottwitz as saying precisely how the complete Lang-
lands parameter should determine the pure rational form.
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Proposition 4.16. ([21], Proposition 6.4). Suppose ∨GΓ is a weak E-group (Def-
inition 3.24). Write X∗(

∨G)Γ for the lattice of rational one-parameter central sub-
groups of ∨G fixed by Γ-fixed; that is, the lattice of one-parameter subgroups of
Z(∨G)Γ. Fix a Γ-stable maximal torus dT ⊂ ∨G. Define

X∗(dT ) = lattice of rational characters of dT .

In X∗(dT ) we define four sublattices:

R∗(∨G, dT ) = root lattice of dT in ∨G;

X∗,0(dT ) = lattice generated by elements λ − γ · λ (λ ∈ X∗(dT ), γ ∈ Γ);

X∗,1(dT ) = lattice of rational characters trivial on X∗(T )Γ; and

X∗,1(∨G, dT ) = lattice of rational characters trivial on X∗(
∨G)Γ.

a) X∗,1(∨G, dT ) is the lattice of rational characters of dT trivial on the subgroup
(Z(∨G)Γ)0.

b) R∗(∨G, dT ) + X∗,0(dT ) is the lattice of rational characters of dT trivial on
Z(∨G)Γ.

c) The quotient X∗,1(∨G, dT )/(R∗(∨G, dT )+X∗,0(dT ) is canonically isomorphic to
the finite abelian group of characters of Z(∨G)Γ/(Z(∨G)Γ)0. In particular, it is
independent of the choice of ∨δ and T (up to canonical isomorphism).

d) Suppose ∨G
Γ

is a weak E-group for G, and that σ is a fixed rational form
of G in the inner class corresponding to ∨GΓ. Then the finite abelian group
X1

∗(G, T )/(R∗(G, T ) + X0
∗ (T )) of Proposition 2.20 is canonically isomorphic to

X∗,1(∨G, dT )/(R∗(∨G, dT ) + X∗,0(dT )). Consequently there is a canonical iso-
morphism

H1(Γ, G) ' (Z(∨G)Γ/(Z(∨G)Γ)0)
∧.

e) Suppose GΓ,W is a pure extended group, and ∨GΓ is a weak E-group for GΓ.
Then there is a canonical bijection

{equivalence classes of pure rational forms of G} ↔ (Z(∨G)Γ/(Z(∨G)Γ)0)
∧.

Actually there is no need for ∨δ to be distinguished. If it is not, the existence of
a Γ-stable T must be imposed as an additional assumption, however.

Sketch of proof. The center Z(∨G) is necessarily contained in the maximal torus
dT . Part (a) is obvious. The lattice of characters trivial on Z(∨G) is R∗(∨G, dT );

the lattice trivial on dT
Γ

is X∗,0(dT ) (cf. (4.13)(b). It follows that the lattice trivial
on the intersection Z(∨G)Γ is R∗(∨G, dT ) + X∗,0(dT ). Now (c) is immediate from
(a) and (b). For (d), we know that the group from Proposition 2.20 depends only on
the inner class of σ; so we may calculate it using a quasisplit form and a maximally
split torus T . Similarly, we may calculate the group for ∨GΓ using the torus dT
appearing in Definition 3.27. In this setting, the definition of dual group provides
Γ-equivariant isomorphisms

X∗,1(∨G, dT ) ' X1
∗(G, T ), R∗(∨G, dT ) ' R∗(G, T ), X∗,0(dT ) ' X0

∗ (T ).

This gives (d), and (e) follows from (2.19). Q.E.D.
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In the setting of Definition 4.14, we always have

(4.17)(a) Z(∨G)Γ ⊂ ∨G
φ
, (Z(∨G)Γ)0) ⊂

∨G
φ
0 .

Accordingly there are always natural maps

(4.17)(b) Z(∨G)Γ/(Z(∨G)Γ)0 → Aloc
φ , (Aloc

φ )∧ → (Z(∨G)Γ/(Z(∨G)Γ)0)
∧.

The first of these need not be injective, since elements of Z(∨G)Γ not in the identity

component may nevertheless lie in the identity component of ∨G
φ
. Consequently

the second map need not be surjective. Suppose now that we are in the setting
of Conjecture 4.15. Composing the second map of (4.17)(b) with the bijection of
Proposition 4.16(e), we get a natural map

(4.17)(c) (Aloc
φ )∧ → equivalence classes of pure rational forms of G.

These may be assembled over various φ to give

(4.17)(d) Ξpure(G/F ) → equivalence classes of pure rational forms of G.

Of course we ask that this map should be the one implicit in the bijection of
Conjecture 4.15.

Example 4.18. We return to the setting of Example 4.9, particularly (4.12).

Fix φ ∈ P (λ, ∨G) corresponding to a subset J of ∆(∨G) (cf. (4.12)(b)) Because ∨G
λ

is the maximal torus dT , we see that ∨G
φ

is the subgroup of dT acting trivially on
the nilpotent element Nφ ∈ ∨gqF

. Consequently

(4.18)(a) ∨G
φ

= { t ∈ dT | α∨(t) = 1, all α∨ ∈ J }.

We concentrate on the two extreme possibilities. First, if J is empty (so that φ =

λ factors to WF ), then ∨G
φ

= dT is connected, so there is only one complete pure
Langlands parameter. The corresponding representation is the one-dimensional
Langlands quotient representation of I(η, δ).

Next, suppose J = ∆(∨G). Then ∨G
φ

= Z(∨G), so the equivalence classes of
complete pure Langlands parameters are parametrized by (Z(∨G)/Z(∨G0))

∧. The
corresponding composition factor of I(η, δ) is the Steinberg representation. Now
the Steinberg representation can be defined for any rational form of G, and all
the Steinberg representations of all the rational forms should constitute a single
L-packet. Conjecture 4.15 therefore says that the pure rational forms of GΓ should
be parametrized precisely by (Z(∨G)/Z(∨G)0)

∧
. Of course this is a consequence of

Proposition 4.16.

It is an entertaining exercise to analyze the intermediate cases. These involve
Steinberg representations of parabolic subgroups of G; the size of the corresponding
L-packet depends on the rational forms over which these parabolic subgroups are
defined. The size of the finite group Aloc

φ exhibits a parallel behavior. We leave the
details to the reader.
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5. Langlands parameters: complex case.

Suppose throughout this section that F = C, so that the Galois group Γ is
trivial. A weak extended group G = GΓ is then just a complex connected reductive
algebraic group. Such a group has a unique pure rational form, and a unique pure
extended group structure. A weak E-group is a dual group ∨G = ∨GΓ. There is
a unique L-group structure on ∨GΓ, consisting of the unique homomorphism ∨δ of
Γ into ∨G. (An E-group structure is a central element of finite order in ∨G.) The
Weil group WC is the multiplicative group C×.

Definition 5.1. Suppose ∨GΓ is a weak E-group. A Langlands parameter is a con-
tinuous homomorphism φ : WC → ∨GΓ (that is, from C× to ∨G) with semisimple

image. The collection of all Langlands parameters is written P (∨G
Γ
). The group

∨G acts on Langlands parameters by conjugation; parameters in the same orbit are

called equivalent, and the set of equivalence classes is written Φ(∨GΓ). If ∨GΓ is
an L-group for G/C, then we write instead P (G/C) and Φ(G/C). (Of course in
the complex case a weak E-group is an L-group as soon as we decide to think of it
as one.)

In analogy with Definition 4.14, we can define ∨G
φ

to be the centralizer in ∨G
of the image of φ. This is always a Levi subgroup of G (see Corollary 5.5 below),
so the (pure) Langlands component group for φ,

(5.2)(a) Aloc
φ = ∨G

φ
/∨G

φ
0

is always trivial. We may therefore write in analogy with Definition 4.14

(5.2)(b) Ξpure(
∨GΓ) = Φ(∨GΓ), Ξpure(G/C) = Φ(G/C)

We can combine analogues of Conjectures 4.3 and 4.15 into one simple statement.
Langlands observed that this statement amounts to a reformulation of Zhelobenko’s
classification of the representations of complex groups. That is,

Theorem 5.3. (Zhelobenko — see [13] and [24].) Suppose G is a complex con-
nected reductive algebraic group. Fix an L-group ∨GΓ for G. Then to each equiv-
alence class φ ∈ Φ(G/C) of Langlands parameters is associated an irreducible ad-
missible representation πφ of G. Every irreducible representation arises in this way
exactly once, so that there is a bijection

Πpure(G/C) ↔ Ξpure(G/C).

The requirement (3) of Conjecture 4.3 is trivially satisfied: all three conditions
are equivalent to the requirement that G be abelian.

We want to analyze the geometry of the set of Langlands parameters, in analogy
with (4.4)–(4.8).

Lemma 5.4.. Suppose H is a complex Lie group, with Lie algebra h. Then the set
of continuous homomorphisms φ from C× into H may be identified with the set of
pairs (λ1, λ2) ∈ h × h, subject to the following requirements:

i) [λ1, λ2] = 0; and
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ii) exp(2πiλ1) = exp(2πiλ2).

The homomorphism φ is then given by

φ(eteiθ) = exp(t(λ1 + λ2)) exp(iθ(λ1 − λ2)) (t, θ ∈ R).

This is elementary and well-known. The last formula is often written as

φ(z) = zλ1zλ2 .

Corollary 5.5. Suppose ∨GΓ is a weak E-group over C. Then the set of Langlands
parameters φ for ∨GΓ may be identified with the set of pairs (λ1, λ2) ∈ ∨g × ∨g,
subject to the following requirements:

i) [λ1, λ2] = 0;
ii) exp(2πiλ1) = exp(2πiλ2); and
iii) λ1 and λ2 are semisimple.

The isotropy group ∨G
φ

is therefore the intersection of the Levi subgroups Li cen-
tralizing λi; it contains a maximal torus of ∨G.

When φ corresponds to (λ1, λ2), we sometimes write λ1(φ), λ2(φ) or φ(λ1, λ2)
to emphasize the relationship.

Although we do not want to use the most obvious analogue of (4.4)–(4.8) here,
a brief outline of it will help to set the stage for the slightly more complicated
construction to follow. Recall from Definition 1.10 that an infinitesimal character
is defined in the complex case to be a pair

(5.6)(a) OC = (O1,O2)

of semisimple conjugacy classes in ∨g. We require in addition that exp(2πiλ1) be
conjugate to exp(2πiλ2) whenever λi ∈ Oi. Write

(5.6)(b) C(OC) = exp(2πiO1) = exp(2πiO2) ⊂
∨G

for the corresponding semisimple conjugacy class. Define

(5.6)(c) P (OC, ∨GΓ) = {φ ∈ P (∨GΓ) | λ1(φ) ∈ O1, λ2(φ) ∈ O2 },

the set of Langlands parameters of infinitesimal character OC. Fix c ∈ C(OC). This
element plays the rôle of the Frobenius element in (4.4). Put

(5.6)(d) P (c,OC, ∨GΓ) = {φ ∈ P (OC, ∨GΓ) | exp(2πiλ1(φ)) = c }.

Evidently P (c,OC, ∨GΓ) meets every ∨G-orbit on P (OC, ∨GΓ). Define

(5.6)(e) ∨G(c) = centralizer in ∨G of c,

a reductive subgroup of G. This group plays the rôle of ∨G
λ

in (4.4). Finally,
define

(5.6)(f) Oi(c) = {λi ∈ Oi | exp(2πiλi) = c } ⊂ ∨g(c),

and

(5.6)(g) Ocomm
C (c) = { (λ1, λ2) | λi ∈ Oi(c), [λ1, λ2] = 0 }.
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Proposition 5.7. Suppose we are in the setting (5.6); use the notation there.

a) Corollary 5.5 identifies P (c,OC, ∨GΓ) with Ocomm
C (c). This identification re-

spects the actions of ∨G(c) on the two sets.
b) Each set Oi(c) is a semisimple orbit of ∨G(c) on ∨g(c).
c) The group ∨G(c) acts on Ocomm

C (c) with finitely many orbits.
d) There is a ∨G-equivariant bijection between P (OC, ∨GΓ) and

∨G ×∨G(c) O
comm
C (c).

In particular, the orbits of ∨G on P (OC, ∨GΓ) are in one-to-one correspondence
with the orbits of ∨G(c) on Ocomm

C (c).

This is elementary. The space in (d) is an affine algebraic variety, and appears
at first to be a natural analogue of the variety X(OF , ∨GΓ) of (4.7). The difference
is that in the present case all the isotropy groups for the action of ∨G are Levi
subgroups, and therefore reductive. It follows that the orbits of ∨G are (open and)
closed. Our goal is Conjecture 1.12 of the introduction, which says that interesting
aspects of the representation theory should be encoded by the closure relationships
among the orbits. To achieve that, we must therefore use a different approach.

This new approach requires some elementary but rather convoluted constructions
from [1]. The main point is this: in the p-adic case only the qF -eigenspace of the
Frobenius element matters. Here all the integral eigenspaces of λ1 and λ2 have a
similar importance. Suppose therefore that λ ∈ ∨g is semisimple element. Define

(5.8)(a) ∨g(λ)n = {µ ∈ ∨g | [λ, µ] = nµ } (n ∈ Z)

(5.8)(b) ∨g(λ) =
∑

n∈Z

∨g(λ)n

(5.8)(c) l(λ) = ∨g(λ)0 = centralizer of λ in ∨g

(5.8)(d) n(λ) =
∑

n=1,2,...

∨g(λ)n

(5.8)(e) p(λ) = l(λ) + n(λ)

Then ∨g(λ) is a reductive subalgebra of ∨g, and (5.8)(e) is a Levi decomposition of
a parabolic subalgebra of ∨g(λ). There are analogous objects on the group level.
Put

(5.9)(a) e(λ) = exp(2πiλ) ∈ ∨G

(5.9)(b) ∨G(λ) = centralizer in ∨G of e(λ)

(5.9)(c) L(λ) = centralizer in ∨G of λ

(5.9)(d) N(λ) = connected unipotent subgroup with Lie algebra n(λ)

P (λ) = L(λ)N(λ).

The Lie algebras of these algebraic groups are as indicated by the notation; (5.9)(d)
gives a Levi decomposition of a parabolic subgroup of the reductive group ∨G(λ).
The canonical flat through λ is the affine subspace

(5.10) F(λ) = Ad(P (λ)) · λ = Ad(N(λ)) · λ = λ + n(λ).

(For the equality of the last three spaces, see [1], Lemma 6.3). The next result
collects some easy general facts about canonical flats.
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Proposition 5.11. ([1], chapter 6). Suppose O ⊂ ∨g is a semisimple orbit of
the adjoint action. Write F(O) for the set of canonical flats in O, a set of affine
subspaces of ∨g. Set C(O) = e(O) (cf. (5.9)(a)), a semisimple conjugacy class in
∨G. Fix λ ∈ O, and define Λ = F(λ) ∈ F(O) to be the corresponding canonical
flat (cf. (5.10)), and c = e(λ).

a) The canonical flats partition O.
b) The normalized exponential map e of (5.9) is constant on canonical flats.

Because of (b), we may write

e : F(O) → C(O).

Define
F(O)(c) = {Λ′ ∈ F(O) | e(Λ′) = c }.

c) The groups P (λ), N(λ), and ∨G(λ) all depend only on the canonical flat Λ
containing λ. The group ∨G(λ) depends only on c = e(λ) = e(Λ).

d) The sets O, F(O), and C(O) are all homogeneous spaces for ∨G, with isotropy
groups

L(λ) ⊂ P (λ) ⊂ ∨G(λ)

respectively. The maps

O
F
→ F(O)

e
→ C(O)

correspond to the natural projections of homogeneous spaces

∨G/L(λ) → ∨G/P (λ) → ∨G/∨G(λ).

The first map is an affine bundle, and the second is a projective morphism.
e) The set F(O)(c) is a projective homogeneous space for ∨G(c). It may be identified

with the variety of parabolic subgroups of ∨G(c) conjugate to P (Λ).

Because of (c), we may write P (Λ), N(Λ), and ∨G(Λ) or ∨G(c). Of course this
last notation is consistent with (5.6)(e).

The main idea now is to imitate the definition of Langlands parameters as closely
as possible, but to use canonical flats instead of individual elements of ∨g. This
implements the suggestion made before (5.8) that all the integral eigenspaces of λ1

and λ2 should be treated like the qF -eigenspace of the Frobenius element in the
p-adic case. It is the description of Langlands parameters in Corollary 5.5 that
we will follow. Condition (iii) there is assured by confining our attention to the
semisimple orbits Oi; and Proposition 5.11(b) will allow us to formulate a condition
like Corollary 5.5(ii). What is interesting is condition (i) in Corollary 5.5. We
cannot hope to impose it on all pairs of elements from two canonical flats; in that
sense a canonical flat does not usually “commute” even with itself. The alternative
is to require it only for some pair of elements taken from the two canonical flats.
In that form the requirement turns out to be vacuous; so we are led to a definition
that is in some sense actually simpler than that of Definition 5.1.

Definition 5.12. Suppose ∨GΓ is a weak E-group, and OC = (O1,O2) is an infin-
itesimal character. A geometric parameter of infinitesimal character OC is a pair
(Λ1, Λ2) with

Λi ∈ F(Oi), e(Λ1) = e(Λ2)”
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(cf. Proposition 5.11). A little more geometrically, we define the geometric param-
eter space of infinitesimal character OC as the fiber product

X(OC, ∨GΓ) = F(O1) ×C(OC) F(O2);

the fiber product is formed using the morphisms e : F(Oi) → C(OC) of Proposition
5.11(b). The group ∨G acts on X(OC, ∨GΓ) by conjugation; conjugate geometric
parameters are called equivalent. We do not introduce any notation for the set of
equivalence classes of geometric parameters, because we will see in a moment that
they may be naturally identified with Φ(∨GΓ) (Definition 5.1).

Proposition 5.11 provides a good description of the geometric parameter space.

Proposition 5.13. In the setting of Definition 5.12, fix c ∈ C(OC), and Λi ∈
F(Oi)(c) (Proposition 5.11); put Pi = P (Λi) (a parabolic subgroup of ∨G(c)), and
write Pi for the projective variety of parabolic subgroups of ∨G(c) conjugate to Pi

(Proposition 5.11). Then there is a ∨G-equivariant isomorphism

X(OC, ∨GΓ) ' ∨G ×∨G(c) (P1 ×P2).

In particular, the orbits of ∨G on X(OC, ∨GΓ) are in one-to-one correspondence
with the orbits of ∨G(c) on P1 × P2. They are finite in number. The isotropy
group ∨G

x
of the action at the point x = (Λ1, Λ2) is the intersection P1 ∩P2 of two

parabolic subgroups of ∨G(c).

This is immediate from Proposition 5.11 and the definitions. (The finiteness
assertion follows from the Bruhat decomposition of ∨G(c).)

Finally, we need to relate the geometric parameter space to Langlands parame-
ters.

Proposition 5.14. (cf. [1], Proposition 6.17). In the setting of Definition 5.12,
there is a natural ∨G-equivariant map

p : P (OC, ∨GΓ) → X(OC, ∨GΓ), p(φ(λ1, λ2)) = (F(λ1),F(λ2)).

This map induces a bijection from equivalence classes of Langlands parameters to
equivalence classes of geometric parameters. If x = p(φ), then the isotropy group
∨G

φ
is a Levi subgroup of ∨G

x
. In particular, the fiber p−1(x) is a principal homo-

geneous space for the unipotent radical of ∨G
x
.

This result follows from Corollary 5.5, Proposition 5.12, and standard structure
theory. Perhaps the main point is the fact that two parabolic subgroups of a
reductive group must contain a common maximal torus; this of course is more or
less equivalent to the Bruhat decomposition.

6. Langlands parameters: real case.

Suppose throughout this section that F = R, so that the Galois group Γ is Z/2Z.
The Weil group WR is generated by a copy of C× and an element j, subject to the
relations

(6.1)(a) jzj−1 = z, j2 = −1 ∈ C×.

Accordingly there is a short exact sequence

(6.1)(b) 1 → C× → WR → Γ → 1,

sending j to the non-trivial element of Γ. The Weil-Deligne group W ′
R is just WR.
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Definition 6.2. Suppose ∨GΓ is a weak E-group (Definition 3.24). A Langlands
parameter is a continuous homomorphism φ : WR → ∨GΓ with the following addi-
tional properties:

1) φ respects the homomorphisms (3.24)(1) and (6.1)(b) to Γ; and
2) the image of φ consists of semisimple elements of ∨GΓ.

Here in (2) semisimplicity is defined in analogy with the discussion before Definition
4.2. It is therefore equivalent to require

2′) φ(C×) consists of semisimple elements of ∨G.

The collection of all Langlands parameters is written P (∨GΓ). The group ∨G acts
by conjugation on the range. Parameters in the same orbit are called equivalent,
and the set of equivalence classes is denoted Φ(∨GΓ). If ∨GΓ is an L-group for
G/R, then we write instead P (G/R) and Φ(G/R).

Suppose φ is a Langlands parameter. Define ∨G
φ

to be the centralizer in ∨G of
the image of φ (an algebraic subgroup of ∨G). Set

Aloc
φ = ∨G

φ
/∨G

φ
0 ,

the (pure) Langlands component group for φ. A complete pure Langlands parameter
is a pair (φ, τ), with τ an irreducible representation of Aloc

φ . The group ∨G acts by
conjugation on the set of complete pure Langlands paramters. Conjugate parameters
are said to be equivalent, and we write Ξpure(

∨GΓ) (or Ξpure(G/R) in the case of
an L-group) for the set of equivalence classes.

In this case again Langlands has proved the analogue of Conjecture 4.3. The
analogue of Conjecture 4.15 is a consequence of Langlands’ results and the Knapp-
Zuckerman classification of tempered representations; various forms of it may be
found in [27] and in unpublished work of Langlands. The form given here is from
[1].

Theorem 6.3. ([24]; see also [1]). Suppose G is a complex connected reductive
algebraic group endowed with an inner class of real forms. Fix a pure extended group
(GΓ,W), and an L-group (∨GΓ,D) for G/R (Definitions 2.15 and 3.25). Then to
each equivalence class φ ∈ Φ(G/R) there is a associated a collection Πφ ⊂ Π(G/R)
(called an L-packet) of equivalence classes of representations of rigid real forms of
G (Definition 2.14 and (2.17)). These sets have the following properties.

a) The L-packets Πφ partition Π(G/R).

b) If δ is a rigid real form of GΓ, then the set

Πφ(δ) = {π ∈ Π(G(F, δ) | (π, δ) ∈ Πφ}

is finite. If δ is quasisplit, it is non-empty.
c) The following three conditions on φ are equivalent:

1) some representation in Πφ is square-integrable modulo center;
2) all representations in Πφ are square-integrable modulo center;

3) the image of φ is not contained in any proper Levi subgroup of ∨GΓ ([8], 3.4).

Write Πpure,φ for the classes of pairs (π, δ) ∈ Πφ with δ a pure real form (a pure
L-packet).
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d) There is a natural bijection between Πpure,φ and the set of irreducible represen-
tations of Aloc

φ . Equivalently, there is a natural bijection

Πpure(G/R) ↔ Ξpure(G/R)

between equivalence classes of representations of pure rational forms of G (Def-
inition 2.14) and equivalence classes of complete pure Langlands parameters.

As in section 5, we now wish to analyze and modify the geometry of the set of
Langlands parameters.

Lemma 6.4. ([1], Proposition 5.6). Suppose H is a complex Lie group, with Lie
algebra h. Then the set of continuous homomorphisms from WR into H may be
identified with the set of pairs (y, λ) ∈ H × h, subject to the following requirements:

i) [λ,Ad(y)(λ)] = 0; and
ii) y2 = exp(2πiλ).

The corresponding homomorphism φ is given by

φ(z) = zλzy·λ (z ∈ C×), φ(j) = exp(−πiλ)y

(notation after Lemma 5.4).

We omit the elementary argument (based on Lemma 5.4).

Corollary 6.5. Suppose ∨GΓ is a weak E-group over R. Then the set of Langlands
parameters φ for ∨GΓ may be identified with the set of pairs (y, λ) ∈ ∨G×∨g, subject
to the following conditions:

i) [λ,Ad(y)(λ)] = 0;
ii) y2 = exp(2πiλ); and
iii) λ is semisimple; and
iv) y ∈ ∨GΓ − ∨G.

When φ corresponds to (y, λ), we may write (y(φ), λ(φ)) or φ(y, λ) to emphasize
the relationship.

By an infinitesimal character for G/R, we mean a pair

(6.6)(a) OR = (Y ,O)

with O a semisimple conjugacy class of ∨G in ∨g and Y a semisimple conjugacy
class of ∨G in ∨GΓ − ∨G. We require also that y2 be conjugate to e(λ) for every
y ∈ Y and λ ∈ O; we write

(6.6)(b) C(OR) = Y2 = e(O)

for the corresponding semisimple conjugacy class in ∨G. Define

(6.6)(c) P (OR, ∨GΓ) = {φ ∈ P (∨GΓ) | y(φ) ∈ Y , λ(φ) ∈ O },

the set of Langlands parameters of infinitesimal character OR. For y ∈ Y , define

(6.6)(d) K(y) = centralizer of y in ∨G.

Now fix c ∈ C(OR), and define

(6.7)(a) O(c) = {λ ∈ O | e(λ) = c }, Y(c) = { y ∈ Y | y2 = c }.

Each element y ∈ Y(c) acts by conjugation on ∨G(c) as an involutive automorphism
θ(y), with fixed point group K(y). For y ∈ Y(c), define

(6.7)(b) Ocomm
R (c, y) = {λ ∈ O(c) | [λ, θ(y)λ] = 0 }

(6.7)(c) P (c, y,OR) = {φ ∈ P (OR, ∨GΓ) | y(φ) = y }.
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Proposition 6.8. Suppose we are in the setting of (6.6) and (6.7).

a) Corollary 6.5 identifies P (c, y,OR) with Ocomm
R (c, y). This identification respects

the actions of K(y) on the two sets.
b) The set O(c) is a semisimple orbit of ∨G(c) on ∨g(c).
c) The set Y(c) is a semisimple orbit of ∨G(c).
d) The group K(y) acts on Ocomm

R (c, y) with finitely many orbits.

e) Fix y ∈ Y(c). There is a ∨G-equivariant bijection between P (OR, ∨GΓ) and the
fiber product

∨G ×K(y) O
comm
R (c, y).

In particular, the orbits of ∨G on P (OR, ∨GΓ) are in one-to-one correspondence
with the orbits of K(y) on Ocomm

R (c, y).

The only assertion here with any content is the finiteness in (d). This amounts
to the fact that there are finitely many K-conjugacy classes of θ-stable maximal
tori in a reductive group H with involution θ and K = Hθ.

Proposition 6.8 also shows what an isotropy group ∨G
φ

can look like (Definition
6.2). It is the intersection with K(y) of a connected θ(y)-stable Levi subgroup L

of ∨G(c). (Here L = L(λ) ∩ L(θ(y)λ).) In particular, ∨G
φ

is itself the fixed point
group of an involution on a connected reductive group. From this (and the structure
theory of reductive groups with involutions) it follows that the pure component
group Aloc

φ is a product of copies of Z/2Z; the number of copies is bounded by the

rank of ∨G.
Just as in Definition 5.12, we can now formulate an analogue of Langlands pa-

rameters using canonical flats instead of Lie algebra elements.

Definition 6.9. ([1], Definition 6.9). Suppose ∨GΓ is a weak E-group over R, and
OR = (Y ,O) is an infinitesimal character (cf. (6.6)). A geometric parameter of
infinitesimal character OR is a pair (y, Λ) with

y ∈ Y , Λ ∈ F(O), y2 = e(Λ)

(cf. Proposition 5.11). The geometric parameter space of infinitesimal character
OR is the fiber product

X(OR, ∨GΓ) = Y ×C(OR) F(O);

the fiber product is formed using the projective morphism e : F(O) → C(OR) and the
squaring map from Y to C(OR). The group ∨G acts on X(OR, ∨GΓ) by conjugation;
conjugate geometric parameters are called equivalent. We will see in a moment that
the equivalence classes are naturally parametrized by Φ(OR, ∨GΓ), so we need no
separate notation for them.

Suppose x is a geometric parameter. Define ∨G
x ⊂ ∨G to be the isotropy sub-

group for the action of ∨G at x. Set

Aloc
x = ∨G

x
/∨G

x
0 ,

the (pure) geometric component group for x. A complete pure geometric parameter
is a pair (x, τ), with τ an irreducible representation of Aloc

x . The group ∨G acts by
conjugation on the set of complete pure Langlands paramters. Conjugate parameters
are said to be equivalent. We will see in a moment (Proposition 6.11) that the
equivalence classes are parametrized by Ξpure(

∨GΓ).
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Proposition 6.10. In the setting of Definition 6.9, fix c ∈ C(OR) and Λ ∈ F(O);
put P = P (Λ) (a parabolic subgroup of ∨G(c)), and write P for the projective
variety of parabolic subgroups of ∨G(c) conjugate to P . Finally, choose y ∈ Y(c)
(cf. (6.7)(a)). Then there is a ∨G-equivariant isomorphism

X(OR, ∨GΓ) ' ∨G ×K(y) P .

In particular, the orbits of ∨G on X(OR, ∨GΓ) are in one-to-one correspondence
with the orbits of K(y) on P. They are finite in number. The isotropy group ∨G

x

of the action at the point (y, Λ) is the intersection K(y) ∩ P (Λ) of the fixed points
of an involution and a parabolic subgroup in the reductive group ∨G(c).

This is a consequence of Proposition 6.8 and the definitions. The finiteness
assertion comes from the fact that the group of fixed points of an involution of a
reductive group acts with finitely many orbits on a flag variety.

Proposition 6.11. ([1], Proposition 6.17). In the setting of Definition 6.9, there
is a natural ∨G-equivariant map

p : P (OR, ∨GΓ) → X(OR, ∨GΓ), p(φ(y, λ)) = (y,F(λ)).

This map induces a bijection from equivalence classes of Langlands parameters to
equivalence classes of geometric parameters. If x = p(φ), then the isotropy group
∨G

φ
is a Levi subgroup of ∨G

x
. In particular, the fiber p−1(x) is a principal ho-

mogeneous space for the unipotent radical of ∨G
x
; and the inclusion induces an

isomorphism of component groups

Aloc
φ ' Aloc

x .

This is somewhat more complicated to prove than Proposition 5.14, but it is a
consequence of known structural results for fixed points of involutions on reductive
groups.

7. Infinitesimal characters.

In this section we will outline the representation-theoretic ideas that correspond
to the notion of infinitesimal character introduced for Langlands parameters in
sections 4–6. They are due to Harish-Chandra in the archimedean case and to
Bernstein-Zelevinsky and Casselman in the p-adic case. Over each field, we will
recall the “classical” notion of infinitesimal character. In the complex case, this
notion coincides precisely with the infinitesimal character of section 5. In the real
case, there is a finite-to-one map from the infinitesimal characters of section 6 to
classical infinitesimal characters. In the p-adic case, there is conjecturally a finite-
to-one map from the classical infinitesimal characters to those of section 4.

Suppose first that g is a complex reductive Lie algebra. Write U(g) for the
universal enveloping algebra of g, and Z(g) for the center of U(g). A module V
for U(g) is called quasisimple if any z ∈ Z(g) acts on V by a scalar χV (z). (An
irreducible module is automatically quasisimple.) At least if V is not zero, these
scalars define an algebra homomorphism

(7.1)(a) χV : Z(g) → C
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called the (classical) infinitesimal character of V . We want to study the possibil-
ities for such homomorphisms. Algebra homomorphisms from Z(g) to C may be
identified with maximal ideals in Z(g), so we write

(7.1)(b) MaxZ(g) ' Homalg(Z(g), C).

Suppose t is a Cartan subalgebra of g; write W for the Weyl group of t in g. The
Harish-Chandra isomorphism is an algebra isomorphism

(7.1)(c) ξ : Z(g) → S(t)W

(see for example [14]). The construction of ξ requires a choice of a Borel subalgebra
b containing t, but the map is independent of the choice. Now every algebra ho-
momorphism from S(t) to C is given by evaluation of polynomial at a point λ ∈ t∗,
so

(7.1)(d) Homalg(S(t), C) ' t∗.

Because the inclusion of S(t)W in S(t) is an integral ring extension (since W is a
finite group), it follows that any algebra homomorphism from S(t)W to C extends
to S(t); the corresponding element λ ∈ t∗ is uniquely determined up to the action
of W . Combining these observations, we get a bijection

(7.1)(e) Homalg(Z(g), C) ' t∗/W ;

the quotient on the right denotes the set of orbits of W on t∗.
Suppose now that g is the Lie algebra of a connected reductive complex algebraic

group G. The right side in (7.1)(e) may be described in terms of the based root
datum of G (Definition 3.8) as

(7.2)(a) t∗/W ' (X∗
b (G) ⊗Z C)/Wb;

here we write Wb for the Weyl group of the based root datum. (To see this, fix a
Borel subgroup B ⊃ T . The choice of B provides a bijection between X∗

b (G) and
the lattice of rational characters of T . By taking differentials, we identify this last
lattice with a lattice in t∗, and so get an isomorphism

t∗ ' X∗
b (G) ⊗Z C.

This isomorphism identifies the two Weyl groups, and the quotient identification
(7.2)(a) is independent of the choice of B.) Now fix a dual group ∨G for G (Defi-
nition 3.18), and a maximal torus dT ⊂ ∨G. Write dW for the Weyl group of dT
in ∨G. Any semisimple orbit of ∨G on ∨g meets dt in a single orbit of dW . This
provides a natural bijection

(7.2)(b) {semisimple conjugacy classes in ∨g } ' dt/dW.

We can describe the right side in terms of the based root datum for ∨G, in analogy
with (7.2)(a). The conclusion is that there is a natural bijection

(7.2)(c) dt/dW ' (Xb
∗(

∨G) ⊗Z C)/Wb.

Now the definition of dual group identifies the right sides of (7.2)(a) and (7.2)(c).
From (7.1) and (7.2), we find
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Lemma 7.3. (see [1], Lemma 15.4). Suppose G and ∨G are complex dual groups.
Then there is a natural one-to-one correspondence between classical infinitesimal
characters for the Lie algebra g (cf. (7.1)(a)) and semisimple orbits of ∨G on ∨g.

Notice that this lemma attaches to any irreducible representation of the Lie
algebra g a semisimple orbit of the dual group on its Lie algebra ∨g. This cor-
respondence may be regarded as a primitive form of the Langlands classification
(over R). It is compatible with the full classification of Theorem 6.3, as the next
result shows.

Proposition 7.4. In the setting of Theorem 6.3, suppose φ ∈ P (G/R) is a Lang-
lands parameter, and (π, δ) ∈ Πφ is a representation of a rigid real form of G in
the L-packet of φ. Then the space of smooth vectors in π is a quasisimple repre-
sentation of U(g); write χπ for its classical infinitesimal character (cf. (7.1)(a)),
and Oπ ⊂ ∨g for the corresponding semisimple orbit (Lemma 7.3). The element
λ(φ) (Corollary 6.5) belongs to Oπ. If φ has infinitesimal character OR = (Y ,O)
(cf. (6.6)), then Oπ = O.

Sketch of proof. That π (an irreducible admissible representation) is quasisimple
is a classical result of Harish-Chandra ([18], Corollary 8.14). The relation between
χπ and λ(φ) is clear from an inspection of Langlands’ (rather complicated) con-
struction of the L-packet Πφ; this is the main point of the proposition. The last
assertion is just a reformulation of it. Q.E.D.

The connection between classical infinitesimal characters and Problem B of the
introduction is provided by the following elementary and well-known fact. (This
fact is at the heart of the omitted “inspection” step in the proof of Proposition 7.4.)

Proposition 7.5. ([18], Proposition 8.22). Suppose σ is a real form of the complex
connected reductive algebraic group G, P = MN is a Levi decomposition defined
over R of a parabolic subgroup of G, and πM is a quasisimple representation of
M(R, σ). Define

πG = Ind
G(R,σ)
P (R,σ)(πM )”

(normalized induction). Then πG is a quasisimple representation of G(R, σ).

Corollary 7.6. In the setting of Proposition 7.5, suppose π1 and π2 are irreducible
admissible representations of G(R, σ). Write M1 = M(π1) for the standard rep-
resentation of which π1 is a quotient (cf. (1.3)(a)). If π2 occurs as a composition
factor of M1 — equivalently, if m(π2, π1) 6= 0 (cf. (1.3)(b)) — then π1 and π2 must
have the same classical infinitesimal character.

Proof. The standard representation M1 is of the form Ind
G(R,σ)
P (R,σ)(ρ1), with ρ1 an

irreducible representation of M(R, σ). By Proposition 7.4, ρ1 is quasisimple; so by
Proposition 7.5, M1 is quasisimple as well. It follows that any z ∈ Z(g) acts by a
scalar χM1

(z) on any subquotient of M1. By (1.3)(a), χπ1
= χM1

. If π2 is also a
composition factor, then χπ2

= χM1
, and the result follows. Q.E.D.

The full “infinitesimal character” defined in (6.6) is not quite so easy to explain
on G, and we will confine ourselves to some general comments. In terms of the
distribution character of π, the classical infinitesimal character provides some dif-
ferential equations that guarantee good behavior along each connected component
of a Cartan subgroup of G(R, σ). Roughly speaking, the conjugacy class Y provides
some control on the relationship between different connected components. Part of
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this information is encoded in the invariant c(π) (the “compactness” of π) intro-
duced in [30], Definition 9.2.17. In terms of the Langlands parameters (if π ∈ Πφ,
y(φ) = y, and y2 = c), then c(π) is the rank of the symmetric space ∨G(c)/K(y)
(notation (6.6)). Obviously this rank depends only on the conjugacy class of y, and
so on the infinitesimal character OR. Proposition 9.2.12 of [30] shows that c(π) is
the same for all composition factors of a standard representation. The proof of that
proposition actually shows

Proposition 7.7. In the setting of Corollary 7.6, suppose that πi ∈ Πφi
, and

that π2 occurs as a composition factor of M1. Then φ1 and φ2 have the same
infinitesimal character (cf. (6.6)).

In the case of complex groups, matters are somewhat simpler. If π is an irre-
ducible admissible representation, then its space of smooth vectors is (by Proposi-
tion 7.4) a quasisimple representation of the real Lie algebra g|R. It is therefore a
quasisimple representation of the complexified Lie algebra

(7.8)(a) gC = (g|R) ⊗R C.

Now gC is isomorphic to a product of two copies of g, so

(7.8)(b) Z(gC) ' Z(g) ⊗Z(g).

Now Lemma 7.3 implies

Lemma 7.9. Suppose G and ∨G are complex dual groups. Then there is a natural
one-to-one correspondence between classical infinitesimal characters for the under-
lying real Lie algebra g|R (cf. (7.8)) and pairs of semisimple orbits of ∨G on ∨g.

Proposition 7.10. In the setting of Theorem 5.3, suppose φ ∈ P (G/C) is a Lang-
lands parameter, and πφ is the corresponding irreducible representation of G. Then
the space of smooth vectors in πφ is a quasisimple representation of g|R; write χφ for
its classical infinitesimal character (cf. (7.1)(a) and (7.8)), and OC = (O1,O2) for
the corresponding pair of semisimple orbits (Lemma 7.9). Then φ has infinitesimal
character OC (cf. (5.6)).

This may be proved in the same way as Proposition 7.4 (or even deduced from
Proposition 7.4 and a trivial “base change” argument).

We turn now to the p-adic case. The difficulty over R was that the center
of the enveloping algebra was a little too small to reflect completely the notion of
infinitesimal character defined for Langlands parameters. In the p-adic case we have
the opposite problem: the “Bernstein center” is a little too big for our purposes
(since it distinguishes some L-indistinguishable representations).

Definition 7.11. (see [5] or [6]). Suppose that G is a connected reductive algebraic
group defined over an algebraic closure F of a p-adic field F of characteristic zero,
and that σ is an F -rational form of G. A cuspidal pair for G(F, σ) is a pair (M, ρ)
with M an F -rational Levi subgroup of an F -rational parabolic subgroup P = MN
of G, and ρ a supercuspidal irreducible representation of M(F, σ). (This means that
the matrix coefficients of ρ are compactly supported modulo the center of M(F, σ).)
Two such pairs are called equivalent if they are conjugate by G(F, σ). An equiva-
lence class of cuspidal pairs is called a classical infinitesimal character for G(F, σ).
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The set of equivalence classes is written Ω(G(F, σ)). This set carries a natural
structure of a complex affine algebraic variety with infinitely many components;
each component is a quotient of a complex torus by a finite group action.

The Bernstein center Z(G(F, σ)) is the algebra of regular functions on the variety
Ω(G(F, σ)). Obviously

Max(Z(G(F, σ))) ' Homalg(Z(G(F, σ)), C) ' Ω(G(F, σ)).

Write H(G(F, σ)) for the convolution algebra of compactly supported smooth
densities on G(F, σ); this is the Hecke algebra of G(F, σ). If h ∈ H(G(F, σ)) and π
is an admissible representation of G(F, σ), then we can define a finite rank operator

(7.12) π(h) =

∫

G(F,σ)

h(g)π(g)

on the space of π. This defines a representation of the Hecke algebra.

Theorem 7.13. ([5] or [6]). There is a unique structure of Z(G(F, σ))-module
on the Hecke algebra with the following property. Suppose P = MN is a parabolic
subgroup, and (M, ρ) is a cuspidal pair. Write ω ∈ Ω(G(F, σ)) for the equivalence
class represented by (M, ρ). Define

π = Ind
G(F,σ)
P (F,σ)(ρ),

an admissible representation of G(F, σ). Then for any h ∈ H(G(F, σ)) and z ∈
Z(G(F, σ)), we have

π(z · h) = z(ω)π(h).

This action of the Bernstein center on the Hecke algebra is analogous to the
action of Z(g) on test densities in the real case. One could formulate and prove a
(much easier) parallel theorem in that case, with the difference that Z(g) is a rather
small part of the algebra of regular functions on the analogue of Ω(G(R, σ)). (If
one tries to replace Z(g) by the full algebra of regular functions, then the analogue
of Theorem 7.13 is false in the archimedean cases.)

Following the discussion at (7.1), we now say that an admissible representation
π of G(F, σ) is quasisimple if for every z ∈ Z(G(F, σ)), we have

(7.14)(a) π(z · h) = χπ(z)π(h).

In this case Definition 7.11 guarantees that there must be an ωπ ∈ Ω(G(F, σ)) so
that

(7.14)(b) χπ(z) = z(ωπ)

for all z. We call ωπ the classical infinitesimal character of π.
Every irreducible representation is quasisimple. This is a consequence of the

following much stronger result of Casselman and Bernstein-Zelevinsky.

Theorem 7.15. ([7]). In the setting of Definition 7.11, suppose π is an irreducible
admissible representation of G(F, σ). Then there is a parabolic subgroup P = MN
of G defined over F , and a cuspidal pair (M, ρ), so that π is a subrepresentation of

Ind
G(F,σ)
P (F,σ)(ρ). The equivalence class of (M, ρ) is unique.

Theorem 7.13 implies that (just as in Proposition 7.5) any representation parabol-
ically induced from an irreducible representation must be quasisimple. Arguing as
for Corollary 7.6, we find
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Corollary 7.16. In the setting of Theorem 7.15, suppose π1 and π2 are irreducible
admissible representations of G(F, σ). Write M1 = M(π1) for the standard repre-
sentation of which π1 is a quotient (cf. (1.3)(a)). If π2 occurs as a composition
factor of M1 — equivalently, if m(π2, π1) 6= 0 (cf. (1.3)(b))) — then π1 and π2

must have the same classical infinitesimal character.

Here the conclusion just means that π1 and π2 are subquotients of a common
induced-from-supercuspidal representation.

We cannot prove an analogue of Proposition 7.4 in the p-adic case, but we would
like to formulate a crude version of what it would say. It will be in the form of a
desideratum for the correspondence of Conjecture 4.3. To begin with, we need to
understand the set of infinitesimal characters (in the sense of Definition 1.10) in
the p-adic case. Suppose that λ and λ′ are as in (4.4)(a). We say that λ and λ′ are
connected if there is a homomorphism

(7.17)(a) ζλ,λ′ : WF /IF → Z(∨G
λ
)0, λ′(x) = λ(x)ζλ,λ′ (x).

This assumption implies immediately that ∨G
λ

= ∨G
λ′

, and we deduce that con-
nectedness is an equivalence relation. Each equivalence class is a principal homo-
geneous space for the complex torus

(7.17)(b) Hom(Z, Z(∨G
λ
)0) ' Z(∨G

λ
)0

(with λ any representative of the class), and so is an affine algebraic variety. Two
infinitesimal characters OF and O′

F are said to be connected if there is a connected
pair (λ, λ′) ∈ OF × O′

F . Connectedness is an equivalence relation on infinitesimal
characters as well. The equivalence classes are called connected components of the
set of infinitesimal characters. To see what they look like, fix λ ∈ OF . Every infin-
itesimal character in the connected component C(OF ) of OF has a representative
in the connected component C(λ) of λ; we only need to understand which define
the same infinitesimal characters. Define

(7.17)(c)
∨G

C(λ)
= { g ∈ ∨G | g · C(λ) = C(λ) }

= { g ∈ ∨G | g · λ ∈ C(λ) }

The connected component C(OF ) may be identified with the set of orbits of ∨G
C(λ)

on C(λ). The identity component of ∨G
C(λ)

is ∨G
λ
0 , which acts trivially on C(λ); so

we see finally that C(OF ) is the quotient of a complex torus by a finite group action.
We may therefore regard the set of all infinitesimal characters for ∨GΓ as an affine
algebraic variety having infinitely many components. In analogy with Definition
7.11, we write

(7.17)(d) Ω(∨G
Γ
) = variety of infinitesimal characters for ∨GΓ

(7.17)(e) Z(∨GΓ) = algebra of regular functions on Ω(∨GΓ).

If ∨GΓ is an L-group, we write Ω(G/F ) and Z(G/F ). We call Z(G/F ) the stable
Bernstein center.



54 DAVID A. VOGAN, JR.

Conjecture 7.18. In the setting of Conjecture 4.3, suppose σ is a rational form
of GΓ (Definition 2.6). Then there is a natural finite map of algebraic varieties

f : Ω(G(F, σ)) → Ω(G/F ),

having the following property. Suppose π is an irreducible representation of G(F, σ)
of classical infinitesimal character ω (cf. (7.14)), and that π belongs to an L-packet
Πφ (Conjecture 4.3). Then φ must have infinitesimal character f(ω).

If G is quasisplit, then the map f is surjective.

Equivalently, there should be a map from the stable Bernstein center Z(G/F )
to the Bernstein center Z(G(F, σ)). The map should be injective if G(F, σ) is qua-
sisplit, and should be an integral ring homomorphism in general. This immediately
suggests the problem of characterizing the image. It is more or less the same as
asking when two supercuspidal representations should belong to the same L-packet.

8. Kazhdan-Lusztig conjectures.

In this section we formulate again the main conjectures of the introduction,
with the additional precision allowed by the discussion in section 2 and sections
4–6. For more detailed accounts of almost everything, we refer to [1]. We begin
with the geometric category in terms of which everything will be formulated. We
will be applying this definition with Y a geometric Langlands parameter space
X(OF , G/F ) and H the dual group ∨G.

Definition 8.1. Suppose Y is a smooth complex algebraic variety on which the
complex algebraic group H acts with finitely many orbits. Write DY for the sheaf
of algebraic differential operators on Y ([9], VI.1). Define

D(Y, H) = category of H-equivariant coherent sheaves of DY -modules on Y .

The sheaves are taken in the Zariski topology. By [9], Theorem VII.12.11, the
modules in this category are automatically regular holonomic. Sometimes it is con-
venient to consider instead

P(Y, H) = category of H-equivariant perverse sheaves of complex vector spaces on
Y ,

for which we refer to [4]. In this case it is necessary to work in the analytic
topology. (A serious technical problem is that there is no complete treatment of H-
equivariant perverse sheaves in the published literature. Because of the use of derived
categories in the theory, this is not a routine generalization. We will ignore this
difficulty, however.) The Riemann-Hilbert correspondence ([9], Theorem VIII.14.4)
provides an equivalence of categories between D(Y, H) and P(Y, H).

These categories are abelian, and every object has finite length; in fact there
are only finitely many irreducible objects. Consequently each category has a nice
Grothendieck group, isomorphic to a lattice with basis corresponding to the ir-
reducible objects. We write KP(Y, H) for either Grothendieck group, using the
Riemann-Hilbert correspondence to identify them.

The next definition introduces the notation we need to describe KP(Y, H) more
explicitly. Some of the teminology is chosen to fit with established usage for the
Langlands classification.
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Definition 8.2. Suppose Y is a smooth complex algebraic variety on which the
algebraic group H acts with finitely many orbits. A local geometric parameter for
H acting on Y is a point of Y . Two such points are called equivalent if they differ
by the action of H. The set of equivalence classes of local geometric parameters —
that is, the set of orbits of H on Y — is written Φ(Y, H).

Suppose y ∈ Y ; write Hy for the isotropy group of the action of H at y. The
local equivariant fundamental group at y is

(8.2)(a) Aloc
y = Hy/(Hy)0;

it is finite because Hy is algebraic. If y′ is another point equivalent to y, then any
element of H carrying y to y′ induces an isomorphism

(8.2)(b) Aloc
y ' Aloc

y′ .

This isomorphism is unique up to inner automorphism of Aloc
y . If S ∈ Φ(Y, H) is

an H-orbit, we may therefore define the equivariant fundamental group of S by

(8.2)(c) Aloc
S = Aloc

y (y ∈ S);

this group is well-defined up to inner automorphism.
A local complete geometric parameter for H acting on Y is a pair (y, τ) with

y ∈ Y and τ ∈ (Aloc
y )∧ an irreducible representation. Two such parameters (y, τ)

and (y′, τ ′) are called equivalent if y and y′ belong to the same orbit and τ and τ ′

are identified by the isomorphisms (8.2)(c). The set of equivalence classes of local
complete geometric parameters is written Ξ(Y, H). We may therefore also think of
an element of Ξ(Y, H) as a pair (S(ξ), τ(ξ)), with S(ξ) ∈ Φ(Y, H) an H-orbit and
τ(ξ) ∈ (Aloc

S )∧ an irreducible representation. We write

(8.2)(d) d(ξ) = dim S(ξ)

for the dimension of the H-orbit corresponding to ξ ∈ Ξ(Y, H). The isotropy rep-
resentations τ define an irreducible H-equivariant local system V(ξ) on S(ξ). We
may call the pair (S(ξ),V(ξ)) a complete geometric parameter.

We will describe two examples of these definitions. The first is related to repre-
sentations of PGL(n) over a p-adic field, in the block of the trivial representation
(Example 4.18). The second is related to representations of U(p, q) over R, again
in the block of the trivial representation.

Example 8.3. Suppose H is the group of (complex) diagonal matrices of de-
terminant one:

H ' {h = (h1, . . . , hn) ∈ (C×)n |
∏

zi = 1 }.

We take for Y the linear space of matrices with zeros everywhere except immediately
above the main diagonal:

Y ' { (y1, . . . , yn−1) ∈ Cn−1 }.

The group H acts on Y by conjugation. In coordinates,

h · y = ((h1h
−1
2 )y1, (h2h

−1
3 )y2, . . . , (hn−1h

−1
n )yn−1).
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The orbits of H on Y are parametrized by subsets of {1, . . . , n− 1}: if A is such a
subset, then

SA = { y ∈ Y | yi 6= 0 ⇔ i ∈ A }.

If y ∈ SA, then
Hy = {h ∈ H | hi = hi+1, all i ∈ A }.

To calculate the component group of Hy, it is convenient to identify the subsets A
of {1, . . . , n} with partitions P of the sequence (1, . . . , n) into “connected” subse-
quences, according to the rule that i and i + 1 belong to the same subsequence if
and only if i ∈ A. (Thus for example the subset {2, 3} of {1, 2, 3, 4} corresponds to
the partition ((1)(2, 3, 4)(5)) of the sequence (1, 2, 3, 4, 5).) Now if y belongs to SA,
and A corresponds to P , then

Hy = {h ∈ H | h is constant on the parts of P }.

Now suppose that the subsequences in P have lengths π1, . . . , πr. Then

Hy = {h ∈ H | h = (z1, . . . , z1, z2, . . . , z2, . . . , zr, . . . , zr) };

the repeated sequences have length π1, π2, and so on. To belong to H , such an
element must have determinant one. Accordingly

Hy ' { z ∈ (C×)r | zπ1

1 · · · zπr
r = 1 }.

Let d be the greatest common divisor of the πj . By an elementary argument, the
group

{ z ∈ (C×)r | z
π1/d
1 · · · zπr/d

r = 1 }

is connected. It must therefore be the identity component of Hy, and we get

Aloc
y ' group of dth roots of unity in C×.

From this we can easily calculate the total number of complete geometric parameters
in this example: it is ∑

d|n

2(n/d)−1φ(d),

with φ the Euler phi-function.

Example 8.4. Suppose H = O(n) is the group of complex orthogonal matrices,
and Y is the variety of Borel subgroups of GL(n). (Following the usual fear of
regarding subgroups as points, we will actually write By for the Borel subgroup
corresponding to a point y ∈ Y .) The relative position of any two Borel subgroups
B and B′ of GL(n) is measured by a permutation σ(B, B′) of {1, . . . , n}. We have
σ(B, B′) = 1 if and only if B = B′, and σ(B, B′) = σ(B′, B)−1. Write w0 for the
permutation that reverses {1, . . . , n}. Then the transpose antiautomorphism on G
acts by conjugation by w0 on relative positions:

(*) σ(tB, tB′) = w0σ(B, B′)w0.

If y ∈ Y , write
φ(y) = σ(By , tBy)w0.
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Because tk = k−1 for k in O(n), φ(y) is an invariant of the O(n) orbit of y. Because
the transpose is an anti-automorphism, (∗) shows that φ(y) is an element of order
two in the symmetric group. It turns out that this establishes a bijection

(8.4)(a) Φ(Y, H) ↔ permutations of order 2.

Now a permutation of order 2 must be a product of disjoint 2-cycles; write r(y) for
the number of 2-cycles in φ(y), and l(y) for the length of φ(y). Then it turns out
that

(8.4)(b) Hy ' (O(1)n−2r(y) × SO(2)r(y))Ny,

with Ny the unipotent radical, a group of dimension (l(y)− r(y))/2. It follows that
the codimension of the orbit H · y in Y is (l(y) + r(y))/2, and that

(8.4)(c) Aloc
y ' (Z/2Z)n−2r(y).

(I am grateful to Roger Howe for enlightening discussions of this example.)

Definition 8.5. Suppose Y is a smooth complex algebraic variety on which the
complex algebraic group H acts with finitely many orbits. Suppose P is an H-
equivariant perverse sheaf on Y , and y ∈ Y . Then the cohomology sheaves H iP
are H-equivariant constructible sheaves on Y , so the stalks (H iP )y are finite-
dimensional vector spaces carrying representations of Aloc

y . The equivariant local
Euler characteristic of P at y is the formal alternating sum

(8.5)(a) hloc
y (P ) =

∑

i

(−1)i(H iP )y,

a virtual representation of Aloc
y . The character of this virtual representation is a

class function on Aloc
y , denoted χloc

y (P ):

(8.5)(b) χloc
y (P )(σ) =

∑

i

(−1)itr(σon (H iP )y) (σ ∈ Aloc
y ).

In particular,

(8.5)(c) χloc
y (P ) = χloc

y (P )(1) =
∑

i

(−1)i dim(H iP )y

is the geometric local Euler characteristic considered in the introduction. If τ ∈
(Aloc

y )∧, we will also write

(8.5)(d) χloc
y,τ (P ) = multiplicity of τ in hloc

y (P ).

We may regard these as defined on Aloc
S (Definition 8.2(c)), writing in that case

hloc
S , χloc

S , and χloc
S,τ .

The local Euler characteristics can be described directly in terms of DY -mod-
ules as well. This is perhaps most simply explained if we replace P by its Verdier
dual DP . If then DP corresponds to an equivariant DY -module M (Definition
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8.1), then (H iP )y is the local solution space Ext−i
DY

(M, ÔY,y), which also carries a

natural representation of Aloc
y . (If i = 0, this is the space of formal power series

solutions at y of the system of differential equations represented by M.) We omit
the details.

Finally, we will need a “microlocal Euler characteristic,” which we will discuss
only in its geometric form. (For the equivariant version, see [1], chapter 24.)
Suppose P is an H-equivariant perverse sheaf on Y . The characteristic cycle of
P is a formal sum, with non-negative integer coefficients, of conormal bundles of
orbits of H on Y . We write it as

Ch(P ) =
∑

S∈Φ(Y,H)

χmic
S (P )T ∗

S(Y ).

(Actually this invariant is much easier to define on the level of DY -modules; we
speak of perverse sheaves only for consistency with the discussion of χloc

S .

Using the local Euler characteristics, it is easy to characterize the irreducible
objects in P(Y, H).

Theorem 8.6. (see [4], Théorème 4.3.1, or [9], Theorem VII.10.6). Suppose Y is
a smooth complex algebraic variety on which the algebraic group H acts with finitely
many orbits. Then the equivalence classes of irreducible objects in the category
P(Y, H) (Definition 8.1) are in one-to-one correspondence with the set Ξ(Y, H) of
equivalence classes of local complete geometric parameters (Definition 8.2). The
irreducible perverse sheaf P (ξ) corresponding to ξ may be characterized (among all
irreducible H-equivariant perverse sheaves) as follows.

i) The cohomology sheaves H iP are supported on S(ξ); and
ii) the restriction of H iP to S(ξ) is the local system V(ξ) if i = −d(ξ), and

zero otherwise.

In the language of Definition 8.6, this is equivalent to the following con-
ditions.

i′) The local Euler characteristic hloc
S′ (P (ξ)) = 0 unless S′ ⊂ S(ξ); and

ii′) hloc
S(ξ)(P (ξ)) = (−1)d(ξ)τ(ξ).

These conditions in turn are equivalent (still for P irreducible) to

i′′) The local Euler characteristic χloc
S′,τ ′(P (ξ)) = 0 unless S′ ⊂ S(ξ);

ii′′) χloc
S,τ ′(P (ξ)) = 0 unless τ = τ ′; and

iii′′) χloc
S,τ(P (ξ)) = (−1)d(ξ).

Actually it is probably easier to prove this theorem directly for DY modules than
for perverse sheaves; we have used the perverse sheaf formulation only because the
result stated in [4] is slightly closer to what we need than the one in [9].

For the purposes of Kazhdan-Lusztig theory, “understanding” a perverse sheaf P
generally means (at least) calculating all the equivariant local Euler characteristics
hloc

y (P ). All such information is encoded in the geometric character matrix for H
acting on Y . This is an array of integers indexed by Ξ(Y, H) × Ξ(Y, H), given by

(8.7)(a) cg(ξ, γ) = (−1)d(ξ)χloc
S(ξ),τ(ξ)(P (γ)) ξ, γ ∈ Ξ(Y, H).
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According to Theorem 8.6,

(8.7)(b) cg(ξ, ξ) = 1, cg(ξ, γ) 6= 0only if d(ξ) < d(γ) (ξ 6= γ).

The matrix cg is therefore upper triangular with ones on the diagonal.
Finally, it is helpful to have available some easy general nonsense about fiber

products.

Proposition 8.8. ([1], Proposition 7.14). Suppose Y is a smooth complex alge-
braic variety on which the complex algebraic group H acts with finitely many orbits,
and suppose G is an algebraic group containing H. Form the fiber product

X = G ×H Y.

a) X is a smooth complex algebraic variety on which G acts with finitely many
orbits.

b) Every orbit of G on X meets Y in a single H orbit. Accordingly the inclusion
of i : Y → X induces a bijection

i : Φ(Y, H) → Φ(X, G).

c) For every y ∈ Y , the isotropy group of G at i(y) is Gi(y) = Hy. Consequently

Aloc
i(y) = Aloc

y , Ξ(X, G) ' Ξ(Y, H).

d) There are natural equivalences of categories

D(X, G) ' D(Y, H), P(X, G) ' P(Y, H).

These are compatible with the parametrizations of irreducibles given by Theorem
8.6 and the bijections of (c).

e) The geometric character matrices for G acting on X and H acting on Y coincide:
cg(i(ξ), i(γ)) = cg(ξ, γ).

We turn now to the Kazhdan-Lusztig conjectures. Suppose F is a local field of
characteristic zero, F is an algebraic closure of F , and G is a connected reductive
algebraic group over F . Fix an inner class of F -rational forms of G, a corresponding
pure extended group (GΓ,W) (Definition 2.15), and an L-group (∨GΓ,D) (Defini-
tion 3.25). Fix an infinitesimal character OF for G/F (described in Definition 1.10
and section 4 in the p-adic case; in (5.6) in the complex case; and in (6.6) in the
real case. “Define”

(8.9)(a) Π(OF , G/F )

to be the set of equivalence classes of irreducible representations of rigid rational
forms of infinitesimal character OF . (In the p-adic case, to say that a pair (π, δ)
has infinitesimal character OF means that the image of the Bernstein infinitesimal
character ωπ ∈ Ω(G(F, δ)) under the map f of Conjecture 7.18 is OF . As in the
introduction, we use the quotation marks to signal the dependence of the definition
on Conjecture 7.18. In the archimedean cases, the definition is complete because
of Theorems 5.3 and 6.3.) Similarly, we define Πpure(OF , G/F ) (Definition 2.14).
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We want to define a representation-theoretic multiplicity matrix mr indexed by
Π(OF , G/F ). Suppose Θ, Λ ∈ Π(OF , G/F ); choose representatives (π(Θ), δ(Θ))
and (π(Λ), δ(Λ)) for the equivalence classes. As in (1.3), we write M(Λ) for the
standard representation of G(F, δ(Λ)) of which π(Λ) is the Langlands quotient. We
want mr(Θ, Λ) to be in some sense the multiplicity of (π(Θ), δ(Θ)) in M(Λ). Of
course the difficulty is that these are representations of different groups. First,
if δ(Θ) and δ(Λ) are inequivalent, we define mr(Θ, Λ) to be zero. Next, suppose
that g ∈ G conjugates δ(Θ) to δ(Λ). Then π(Θ) ◦ Ad(g−1) is a representation of
G(F, δ(Λ)), and we define

(8.9)(b) mr(Θ, Λ) = multiplicity of π(Θ) ◦ Ad(g−1) in M(Λ).

It is easy to check that this definition is independent of the choice of g, because we
are using rigid rational forms and not merely rational forms.

Define

(8.9)(c) KΠpure(OF , G/F ) = lattice with basis Πpure(OF , G/F ).

This may be interpreted as a Grothendieck group in the following way. Pick repre-
sentatives δ1, . . . , δr for the equivalence classes of pure rational forms of G. When-
ever σ is a rational form of G in our inner class, we can define

(8.9)(d) R(OF , σ) = category of finite length representations of G(F, σ)

of infinitesimal character OF .

(In the p-adic case, we use smooth representations. In the archimedean case some
care is required to get a nice abelian category — see [1], chapter 15.) Put

(8.9)(e) Rpure(OF , G/F ) =

r∑

i=1

R(OF , δi).

This is an abelian category in which every object has finite length. The irreducibles
are parametrized by Πpure(OF , G/F ), so there is a natural isomorphism

(8.9)(f) KΠpure(OF , G/F ) = Grothendieck group of Rpure(OF , G/F ).

(The problem of finding a better description of the category Rpure(OF , G/F ) is an
interesting one. The analogy with Langlands parameters suggests that one should
consider the space of all pure rational forms as some kind of variety with a G action;
objects in Rpure(OF , G/F ) should be regarded as infinite-dimensional equivariant
vector bundles on that variety.)

Still in the setting of (8.9), recall from (4.7), Definition 5.12, and Definition 6.9
the geometric parameter space X(OF , G/F ) of infinitesimal character OF . This
is a smooth complex algebraic variety on which the algebraic group ∨G acts with
finitely many orbits. We may therefore apply the ideas of Definitions 8.1, 8.2, 8.5,
and 8.7. We write

(8.10)(a) Ppure(OF , G/F ) = P(X(OF , G/F ), ∨G)
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for the category of equivariant perverse sheaves, and KPpure(OF , G/F ) for its
Grothendieck group. Write

(8.10)(b) Ξpure(OF , G/F ) = Ξ(X(OF , G/F ), ∨G)

for the set of complete geometric parameters for ∨G acting on the geometric pa-
rameter space. Comparing Definitions 4.14, 5.1, and 6.2 with Definition 8.2, and
applying Propositions 5.14 and 6.11, we find that Ξpure(OF , G/F ) may be iden-
tified with the set of equivalence classes of complete pure Langlands parameters
of infinitesimal character OF . The basic Langlands conjecture (Conjecture 4.15,
Theorem 5.3, and Theorem 6.3) therefore asks for a bijection

(8.10)(c) Ξpure(OF , G/F ) ↔ Πpure(OF , G/F ), ξ ↔ Λ(ξ).

We will write (π(ξ), δ(ξ)) for a representative of the (conjectural) equivalence class
Λ(ξ), and M(ξ) for the standard representation of G(F, δ) of which π(ξ) is a quo-
tient. Using this conjectural bijection, we may therefore transfer the representation-
theoretic multiplicity matrix to Ξpure(OF , G/F ), defining

(8.10)(d) mr(ξ, γ) = mr(Λ(ξ), Λ(γ)) = multiplicity of π(ξ) in M(γ)

(see (8.9)(b)).
Now Theorem 8.6 says that each complete geometric parameter ξ also defines

an irreducible ∨G-equivariant perverse sheaf P (ξ). Here is the simplest form of the
Kazhdan-Lusztig conjecture.

Conjecture 8.11. (cf. [32]). In the setting of (8.9)–(8.10), suppose ξ and γ
are complete geometric parameters in Ξpure(OF , G/F ). Then the representation-
theoretic multiplicity matrix (8.9)(b) and the geometric character matrix (8.7)(b)
are related by

(8.11) mr(ξ, γ) = (−1)d(ξ)cg(γ, ξ).

That is, the multiplicity of the irreducible representation π(ξ) in the standard rep-
resentation M(γ) is (up to sign) the multiplicity of the representation τ(γ) in the
local Euler characteristic of the perverse sheaf P (ξ).

Even over C this conjecture is somewhat cleaner than the original Kazhdan-
Lusztig conjecture, in that it provides a direct geometric interpretation of the mul-
tiplicity matrix even at singular infinitesimal character. (The original conjecture
computes not multiplicities but irreducible characters, and the formula at a singular
infinitesimal character has a sum with extensive cancellations.)

The varieties X(OF , G/F ) are very nice from the point of view of naturality,
but they are unnecessarily large and cumbersome for calculations. Corollary 4.6,
Proposition 5.7, and Proposition 6.10 provide fiber product decompositions of this
variety. By Proposition 8.8, this reduces the calculation of cg to the smaller va-

riety (∨G
λ

acting on ∨g
λ(IF )
qF

, or ∨G(c) acting on P1 × P2, or K(y) acting on P ,
respectively). In the last two cases (corresponding to archimedean F ) the matrices
cg (that is, the local Euler characteristics of intersection homology) are known. In
the first case (corresponding to p-adic F ) they are not; we refer to [32] for some
examples.

As explained in the introduction, there is another formulation of Conjecture 8.11.
The equivalence of the two forms is elementary.
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Conjecture 8.11′. In the setting of (8.9)–(8.10), “define” a perfect pairing between
the lattices KΠpure(OF , G/F ) and KPpure(OF , G/F ) by

(8.11′)(a) 〈π(ξ), P (γ)〉 = e(δ(ξ))(−1)d(ξ)δξ,γ .

Here e(δ(ξ)) = ±1 is the Kottwitz invariant of the pure rational form δ(ξ) (see [20]),
δξ,γ is a Kronecker delta, and the other terms are defined in (8.10). (The quotation
marks indicate the dependence of this definition on the basic Langlands conjecture.)
In this way every virtual representation of pure rational forms is identified with an
additive (for short exact sequences) Z-valued map on equivariant perverse sheaves.
Then the standard representation M(ξ) corresponds (up to sign) to the additive
function sending a perverse sheaf P to the multiplicity of τ(ξ) in the local Euler
characteristic hloc

S(ξ)(P ). Explicitly,

(8.11′)(b) 〈M(ξ), P 〉 = e(δ(ξ))χloc
S(ξ),τ(ξ)(P ).

From this point of view, the irreducible representation P (ξ) corresponds (up to
sign) to the additive function sending a perverse sheaf P to the multiplicity of P (ξ)
in the composition series of P . That is, the definition (8.11′)(a) may be rewritten
as

(8.12) 〈π(ξ), P 〉 = e(δ(ξ))(−1)d(ξ)(multiplicity of P (ξ) in P ).

One of the main theorems of [1] is that Conjecture 8.11 is true in the archime-
dean case. (Over C this is equivalent to the original Kazhdan-Lusztig conjecture, if
one uses in addition the inversion formula for the Kazhdan-Lusztig polynomials.)

Although it is not strictly speaking Kazhdan-Lusztig theory, we will conclude this
section with a restatement of Conjecture 1.13 (on strongly stable representations).
Just as in (1.6), we can define the lattice of strongly stable virtual representations
of infinitesimal character OF of pure rational forms of G,

(8.13) KΠpure(OF , G/F )st

Here is the standard conjecture on stable characters.

Conjecture 8.14. (Langlands, Shelstad). Fix a Langlands parameter φ of infin-
itesimal character OF . For each τ ∈ (Aloc

φ )∧, the pair (φ, τ) is a complete pure

Langlands parameter, and so corresponds (conjecturally) to an irreducible represen-
tation π(φ, τ) of a pure rational form δ(τ). This in turn is a quotient of a standard
representation M(φ, τ). Then the formal sum of standard representations “defined”
by

(8.14) M(φ) =
∑

τ∈(Aloc
φ

)∧

e(δ(φ, τ)) dim(τ)M(φ, τ)

is strongly stable (cf. (1.6)). As φ varies over Φ(OF , G/F ), the virtual representa-
tions M(φ) form a basis for the lattice KΠpure(OF , G/F )st.

This has been proved by Shelstad in the archimedean case. Now Conjecture
8.11′ suggests that we should try to understand M(φ) as an additive map from
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KPpure(OF , G/F ) to Z. Write S for the orbit on X(OF , G/F ) corresponding to φ.
Then (8.14) and (8.11′)(b) give

〈M(φ), P 〉 =
∑

τ∈(Aloc
S

)∧

dim(τ)χloc
S,τ (P ).

The sum on the left is just a geometric local Euler characteristic:

〈M(φ), P 〉 = χloc
S (P )

(cf. (8.5)). This leads to the formulation of Conjecture 8.14 given in the introduc-
tion.

Conjecture 8.14′. Suppose S is an orbit of ∨G on the geometric parameter space
X(OF , G/F ). “Define” M loc(S) to be the virtual representation corresponding (in
the pairing of Conjecture 8.11′) to the function χloc

S on equivariant perverse sheaves:

〈M(S), P 〉 = χloc
S (P ).

Then M loc(S) is strongly stable. As S varies over the orbits of ∨G, these virtual
representations form a basis for the lattice KΠpure(OF , G/F )st.

The lattice of strongly stable virtual representations is a sublattice of all virtual
representations, and we know (conjecturally) the dual lattice of the larger lattice.
It is therefore natural to try to characterize strongly stable representations as the
annihilator of a sublattice of the Grothendieck group of perverse sheaves. Conjec-
ture 8.14′ essentially does that. In the setting of Definition 8.5, let us say that a
virtual perverse sheaf P ∈ KP(Y, H) is stably trivial if all the geometric local Euler
characteristics χloc

y (P ) are zero. Now Conjecture 8.14 may be reformulated as

Conjecture 8.15. In the pairing of Conjecture 8.11′, the lattices of strongly stable
virtual representations and of stably trivial virtual perverse sheaves are each other’s
annihilators. That is, M is a strongly stable virtual representation if and only if

〈M, P 〉 = 0

for every stably trivial virtual perverse sheaf P (and similarly with the rôles of M
and P exchanged).

Finally, we recall from Definition 8.5 the Z-valued additive function χmic
S on

KPpure(OF , G/F ). Define Mmic
S (in terms of the conjectural pairing (8.11′)(a)

to be the corresponding virtual representation. That is, Mmic
S is defined by the

requirement that

(8.16)(a) 〈Mmic
S , P 〉 = χmic

S (P ).

Using (8.11′)(a), we can calculate

(8.16)(b) Mmic
S =

∑

ξ∈Ξpure(OF ,G/F )

e(δ(ξ)(−1)d(ξ)−dimS(χmic
S (P (ξ))π(ξ).

That is, Mmic
S is a sum of all the irreducible representations for which the corre-

sponding irreducible perverse sheaf has the conormal bundle of S in its characteristic
cycle. This collection of representations is called the Arthur packet attached to the
orbit S. It contains the L-packet attached to S. As explained in the introduction,
the index theorem in [15] establishes the equivalence of Conjecture 8.15 and



64 DAVID A. VOGAN, JR.

Conjecture 8.15′. The virtual representations Mmic
S of (8.16) form a basis of the

lattice of strongly stable virtual representations KPpure(OF , G/F )st.

9. Strong rational forms.

A serious shortcoming of the conjectures in section 8 is that they refer only to
pure rational forms of G. As we saw in section 2 (Example 2.12, for instance) this is
a significant restriction. If G = SL(n) in the p-adic case, the only pure rational form
is the split one. Now we also saw in Lemma 2.10 that the difference between pure
rational forms and arbitrary ones is measured by the center Z(G). This suggests
that on the L-group side, the corresponding phenomenon is the failure of ∨G to be
simply connected. If H is any connected complex algebraic group, we define

(9.1)(a) Halg = algebraic universal cover of H ;

this is the inverse limit of the (connected) algebraic covering groups of H . There
is an exact sequence

(9.1)(b) 1 → πalg
1 (H) → Halg → H → 1,

with πalg
1 a pro-finite group (the algebraic fundamental group of H). The group

Halg is pro-algebraic, and there is no problem in extending the discussion in 8.1–
8.8 to such groups. (For example, an action of Halg on an algebraic variety just
means an action of some finite cover of H .) Whenever ∨GΓ is an E-group, we may
therefore define

(9.1)(c) P(OF , ∨GΓ) = P(X(OF , ∨GΓ), ∨G
alg

),

the category of ∨G
alg

-equivariant perverse sheaves on the geometric parameter
space. Irreducible objects in this category are parametrized by

(9.1)(d) Ξ(OF , ∨GΓ) = Ξ(X(OF , ∨GΓ), ∨G
alg

).

If we are in the setting of (8.9) and (8.10), we may write instead P(OF , G/F ) and
Ξ(OF , G/F ). Just as in (8.7), we get a geometric character matrix

(9.1)(e) cg(ξ, γ) = (−1)d(ξ)χloc
S(ξ),τ(ξ)(P (γ)) (ξ, γ ∈ Ξ(OF , ∨GΓ)).

This is an upper triangular matrix of integers with ones on the diagonal.
To identify these parameters in more classical terms, fix a Langlands parameter

φ, and write as usual ∨G
φ

for the centralizer in ∨G of its image (Definitions 4.14,
5.1, and 6.2). Then we write

(9.2)(a) (∨G
alg

)φ = preimage of ∨G
φ

in ∨G
alg

(9.2)(b) Aloc,alg
φ = (∨G

alg
)φ/(∨G

alg
)φ
0 ,

the universal component group for φ. Evidently there is an exact sequence

(9.2)(c) πalg
1 (∨G) → Aloc,alg

φ → Aloc
φ → 1;
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the first map need not be injective. A complete Langlands parameter is a pair

(φ, τ) with φ a Langlands parameter and τ an irreducible representation of Aloc,alg
φ .

The group ∨G acts by conjugation on complete Langlands parameters; conjugate
parameters are called equivalent. We write Ξ(∨GΓ) for the set of equivalence classes.
Again this is partitioned by infinitesimal characters. Suppose φ corresponds to a
point p(φ) of a geometric parameter space. Because of Propositions 5.14 and 6.11
(and trivially in the p-adic case) there is a natural isomorphism

(9.2)(d) Aloc,alg
φ ' local equivariant fundamental group of ∨G

alg
at p(φ).

It follows that the geometric parameters Ξ(OF , ∨GΓ) of (9.1)(d) are in one-to-one
correspondence with equivalence classes of complete Langlands parameters.

Now we have the L-group half of an extension of Conjecture 8.11. Here is what
is wanted for the representation-theoretic half.

Problem 9.3. Suppose GΓ is a weak extended group. Find a natural class of rigid
rational forms of GΓ (Definition 2.6), to be called strong rational forms, and having
the following properties.

1) Every pure rational form (Definition 2.6) is strong.
2) Every rational form in the inner class defined by GΓ is represented by at least

one strong rational form.
3) If δ and δ′ are equivalent rigid rational forms, then both are strong or neither is.
4) Suppose Z is a Γ-stable algebraic central subgroup of G, and δ is a strong rational

form of GΓ. Then the natural quotient rigid rational form δ of (GΓ)/Z is strong.
5) Suppose Γ0 is an open subgroup of Γ of finite index, and δ is a strong rational

form of GΓ. Then the restriction δ0 of δ to Γ0 is a strong rational form of GΓ0 .
6) Suppose F is archimedean. Then δ is strong if and only if δ(1) = 1.
7) Suppose F is p-adic, (GΓ,W) is a pure extended group (Definition 2.15), and

∨GΓ is a weak E-group for G (Definition 3.24). Then the equivalence classes of
strong rational forms of G are naturally parametrized by the rational characters
of the pro-finite group

[Z(∨G)Γ]alg/[Z(∨G)Γ]alg
0 .

Here Z(∨G)Γ denotes the subgroup of Z(∨G) on which Γ acts trivially, and

[Z(∨G)Γ]alg is its preimage in the algebraic universal cover ∨G
alg

.

Condition (6) defines strong rational forms in the archimedean case, and it is easy
to check that the other requirements are satisfied. The condition in (7) is of course
a natural extension of Kottwitz’s formulation of Kneser’s results (Proposition 4.16
above). Despite this very precise desideratum, in the p-adic case I have not been
able to find a satisfactory definition of strong rational form. Assuming that this
problem can be resolved, let us complete the extension of Conjecture 8.11 to strong
rational forms.

Following Definition 2.14, we define a representation of a strong rational form of
GΓ to be a pair (π, δ), with δ a strong rational form (Problem 9.3), and π an ad-
missible representation of G(F, σ(δ)). Equivalence is defined as for representations
of rigid rational forms (Definition 2.14), and we write Πstrong(G

Γ) for the set of
equivalence classes of irreducible representations of strong rational forms. Hence

(9.4)(a) Πpure(G
Γ) ⊂ Πstrong(G

Γ) ⊂ Π(GΓ).
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In particular, we can now speak of a representation-theoretic multiplicity matrix
indexed by Πstrong(G

Γ) (cf. (8.9)). If we choose a collection of representatives
{δi | i ∈ I} for the equivalence classes of strong rational forms, then

(9.4)(b) Πstrong(G
Γ) '

⋃

i∈I

Π(G(F, σ(δi)))

(cf. (1.2)(b).) If (GΓ,W) is a pure extended group, we write Πstrong(G/F ), etc. In
the setting of (8.9), we “define” Πstrong(OF , G/F ) to be the classes of representa-
tions of infinitesimal character OF . Set

(9.4)(c) KΠstrong(OF , G/F ) = free abelian group with basis Πstrong(OF , G/F ).

(We say free abelian group instead of lattice because there may be infinitely many
inequivalent strong rational forms. Even though each equivalence class contributes
only finitely many irreducible representations of infinitesimal character OF , the
complete set Πstrong(OF , G/F ) may be infinite.)

Conjecture 9.5. Suppose we are in the setting of (8.9) and (9.4). Then there is
a natural bijection

(9.5)(a) Ξ(OF , G/F ) ↔ Πstrong(OF , G/F ), ξ ↔ Λ(ξ)

between complete geometric parameters (for ∨G
alg

-equivariant irreducible perverse
sheaves on the geometric parameter space) and equivalence classes of irreducible
representations of strong rational forms of GΓ. Write (π(ξ), δ(ξ)) for a representa-

tive of the class Λ(ξ). The group [Z(∨G)Γ]alg/[Z(∨G)Γ]alg
0 acts by scalars on any

complete geometric parameter ξ (or on the corresponding irreducible equivariant
D-module or perverse sheaf). Write ζ(ξ) for the corresponding character. If F is
p-adic, then the equivalence class of δ(ξ) should correspond to ζ(ξ) by condition (7)
of Problem 9.3.

Use the conjectural bijection (9.5)(a) to transfer the representation-theoretic mul-
tiplicity matrix to Ξ(OF , G/F ) as in (8.10)(d). Then we should have

(9.5)(b) mr(ξ, γ) = (−1)d(ξ)cg(γ, ξ)

(cf. (8.11) and (9.1)(e)). Similarly, the analogues of Conjectures 8.11′, 8.14, and
8.15 should hold.

In section 8 we discussed endoscopy only in its simplest aspect, the structure
of stable characters. One would like to give a more complete discussion, along the
lines of section 26 of [1]. (This refers only to the problems peculiar to non-tempered
irreducible representations, and not to the more fundamental and harder problems
associated with lifting standard representations. The results in [1] are complete
only because Shelstad has solved those fundamental problems in the archimedean
case.) Here is a very brief sketch of what is involved. In the setting of (8.9), an
endoscopic group arises in the following way. Fix a semisimple element s ∈ ∨G.
Assume that the centralizer ∨GΓ(s) of s in ∨GΓ maps surjectively to Γ in the map
of (3.24)(1):

(9.6)(a) 1 → ∨G(s) → ∨GΓ(s) → Γ → 1.



THE LOCAL LANGLANDS CONJECTURE 67

We want to make a weak E-group out of ∨GΓ(s) (Definition 3.24); the problem is
that the reductive group ∨G(s) need not be connected. Write ∨H = ∨G(s)0 for its
identity component. Fix a subgroup ∨HΓ ⊂ ∨GΓ(s) with the property that ∨HΓ

still maps surjectively to Γ, and the kernel of the map is ∨H:

(9.6)(b) 1 → ∨H → ∨HΓ → Γ → 1.

The choice of such a group ∨HΓ amounts to the choice of a splitting of the finite
extension

(9.6)(c) 1 → ∨G(s)/∨H → ∨GΓ(s)/∨H → Γ → 1

of Γ arising from (9.6)(a). (There may not be such a splitting in general.) The
group ∨HΓ is by construction a weak E-group; it is therefore a weak E-group for
some pure extended group (HΓ,WH). The group H , with the inner class of rational
forms defined by HΓ, is an endoscopic group for G.

At any rate, the pair (s, ∨HΓ) is part of what is called an endoscopic datum.
Now the geometric formalism of section 8 does not require an L-group structure at
all; we can introduce an infinitesimal character OF,H and a geometric parameter
space X(OF,H , ∨HΓ). Applying fixed point formulas for the action of s (as in [1])
one can relate ∨G-equivariant perverse sheaves on X(OF , G/F ) to ∨H-equivariant
perverse sheaves on X(OF,H , ∨HΓ).

In order to give such relationships representation-theoretic content, we would like
to invoke (8.10)(c). To do that, we need an L-group structure on ∨HΓ (Definition
3.25). Unfortunately such a structure need not exist; so we must content ourselves
with fixing an E-group structure DH (Definition 3.27). The question then is what to
put on the right side of (8.10)(c) when we have an E-group instead of an L-group
on the left. The answer (suggested by Langlands) is representations of certain
coverings of rational forms of H : more precisely, of the preimages of rational forms
in algebraic covers of H . We therefore need a way to associate to an E-group a

complex character of πalg
1 (H). For the real case this is provided by [1], Theorem

10.4. In the p-adic case it leads to a problem parallel to Problem 9.3. I hope to
return to these issues in a future paper.
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