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Outline

Introduction: a few things I didn’t learn from Bert

Commuting algebras: how representation theory works

Differential operator algebras: how orbit method works

Hamiltonian G-spaces: how Bert does the orbit method

Orbits for reductive groups: what else to steal from Bert

Meaning of it all

References (more theorems, fewer jokes)
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Abstract harmonic analysis

Say Lie group G acts on manifold M. Can ask about
I topology of M
I solutions of G-invariant differential equations
I special functions on M (automorphic forms, etc.)

Method step 1: LINEARIZE. Replace M by Hilbert
space L2(M). Now G acts by unitary operators.
Method step 2: DIAGONALIZE. Decompose L2(M)
into minimal G-invariant subspaces.
Method step 3: REPRESENTATION THEORY. Study
minimal pieces: irreducible unitary repns of G.
Difficult questions: how does DIAGONALIZE work,
and what do minimal pieces look like?
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Plan of talk

I Outline strategy for decomposing L2(M): analogy
with “double centralizers” in finite-diml algebra.

I Strategy Philosophy of coadjoint orbits:
irreducible unitary representations

of Lie group G

m
(nearly) symplectic manifolds with

(nearly) transitive Hamiltonian action of G

I “Strategy” and “philosophy” have a lot of wishful
thinking. Describe theorems supporting m.
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Decomposing a representation

Given: interesting operators A on Hilbert space H.
Goal: decompose H in A-invt way.
Finite-dimensional case:
V/C fin-diml, A ⊂ End(V ) cplx semisimple alg of ops.
Classical structure theorem:

W1, . . . , Wr list of all simple A-modules; then

A ' End(W1)× · · ·×End(Wr ) V ' m1W1 + · · ·+ mr Wr .

Positive integer mi is multiplicity of Wi in V .

Slicker version: define multiplicity space
Mi = HomA(Wi , V ); then mi = dim Mi , and

V ' M1 ⊗W1 + · · ·+ Mr ⊗Wr .

Slickest version: COMMUTING ALGEBRAS. . .
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Commuting algebras and all that

Theorem
Suppose A is semisimple algebras of operators on V as
above; define Z = Cent End(V )(A), a second semisimple
algebra of operators on V .

1. Relation between A and Z is symmetric:

A = Cent End(V )(Z).

2. There is a natural bijection between irr modules Wi
for A and irr modules Mi for Z, given by

Mi ' HomA(Wi , V ), Wi ' HomZ(Mi , V ).

3. V '
∑

i Mi ⊗Wi as a module for A×Z.

Example 1: finite G acts left and right on C[G].
Example 2: Sn and GL(E) act on V = T n(E).
But those are stories for other days. . .
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Infinite-dimensional representations

Need framework to study ops on inf-diml V .

Finite-diml ↔ infinite-diml dictionary

finite-diml V ↔ C∞(M)

repn of G on V ↔ action of G on M
End(V ) ↔ Diff(M)

A = im(C[G]) ⊂ End(V ) ↔ A = im(U(g)) ⊂ Diff(M)

Z = CentEnd(V )(A) ↔ Z = G-invt diff ops

Suggests: G-irreducible pieces of function space
correspond to simple modules for G-invt diff ops.

Which differential operators commute with G?

Answer leads to generalizations of dictionary. . .
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Differential operators and symbols

Diffn(M) = diff operators of order ≤ n.

Increasing filtration, (Diffp)(Diffq) ⊂ Diffp+q .

Theorem (Symbol calculus)
1. There is an isomorphism of graded algebras

σ : gr Diff(M) → Poly(T ∗(M))

to fns on T ∗(M) that are polynomial in fibers.
2.

σn : Diffn(M)/ Diffn−1(M) → Polyn(T ∗(M)).

3. Commutator of diff ops Poisson bracket {, } on
T ∗(M): for D ∈ Diffp(M), D′ ∈ Diffq(M),

σp+q−1([D, D′]) = {σp(D), σq(D′)}.

Diff ops comm with G! symbols Poisson-comm with g.
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Poisson structure and Lie group actions

X mfld w. Poisson {, } on fns (e.g. T ∗(M)).
Bracket with f  ξf ∈ Vect(X): ξf (g) = {f , g}.
Vector flds ξf called Hamiltonian; preserve {, }. Map C∞(X) → Vect(X),
f 7→ ξf is Lie alg hom.

G action on X  Lie alg hom g → Vect(X ), Y 7→ ξY .
Call X Hamiltonian G-space if the Lie alg action lifts

C∞(X )
↗ ↓

g → Vect(X )

fY
↗ ↓

Y → ξY

Map g → C∞(X) same as moment map µ : X → g∗.

Example. G acts on M ⇒ T∗(M) is Hamiltonian G-space: Lie alg elt
Y  vec fld ξY on M  function fY on T∗(M):

fY (m, λ) = λ(ξY (m)) (m ∈ M, λ ∈ T∗m(M)).

function f on X with {f , g} = 0 ⇔ f constant on G orbits.

G action transitive ⇒ only [C, G] = 0 ?
! irr repn of G
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Our story so far. . .

G acts on M ! T ∗(M) Hamiltonian G-space.
G-decomp of C∞(M)! (Diff M)G-modules.

(Diff M)G σ
! C∞(T ∗(M))G ! C∞((T ∗(M))/G).

Hope C∞(M) irr ⇔ G has dense orbit on T ∗(M).

Suggests generalization. . .

Hamiltonian G-cone X  graded alg Poly(X ).
Seek filtered alg D, symbol calc grD σ→Poly(X )
carrying [, ] on D to {, } on Poly(X ).
Seek to lift G action on Poly(X ) to G action on D via
Lie alg hom g → D1.
Seek simple D-module W (analogue of C∞(M)).
Hope W irr for G ⇔ G has dense orbit on X .
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Method of coadjoint orbits

Recall: Hamiltonian G-space X comes with
(G-equivariant) moment map µ : X → g∗.
Kostant’s theorem: homogeneous Hamiltonian
G-space = covering of G-orbit on g∗.
Includes classification of symp homog spaces for G.
(Riem homog spaces hopelessly complicated.)

Recall: commuting algebra formalism for diff operators
suggests irreducible representations! homogeneous
Hamiltonian G-spaces.

Kirillov-Kostant philosophy of coadjt orbits suggests

{irr unitary reps of G} = Ĝ! g∗/G. (?)

MORE PRECISELY. . . restrict right side to “admissible”
orbits (integrality cond). Expect to find “almost all” of Ĝ:
enough for interesting harmonic analysis.
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Evidence for orbit method

With the caveat about restricting to admissible orbits. . .

Ĝ! g∗/G. (?)

(?) is true for G simply conn nilpotent (Kirillov).

(?) is true for G type I solvable (Auslander-Kostant).

(?) for algebraic G reduces to reductive G (Duflo).

Case of reductive G is still open.
Actually (?) is false for connected nonabelian reductive G.

But there are still theorems close to (?).

Two ways to do repn theory for reductive G:
1. start with coadjt orbit, look for repn. Hard.
2. start with repn, look for coadjt orbit. Easy.

Really need to do both things at once. Having started
to do mathematics in the Ford administration, I find
this challenging. (Gave up chewing gum at that time.)
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Ĝ! g∗/G. (?)

(?) is true for G simply conn nilpotent (Kirillov).

(?) is true for G type I solvable (Auslander-Kostant).

(?) for algebraic G reduces to reductive G (Duflo).

Case of reductive G is still open.
Actually (?) is false for connected nonabelian reductive G.

But there are still theorems close to (?).

Two ways to do repn theory for reductive G:
1. start with coadjt orbit, look for repn. Hard.
2. start with repn, look for coadjt orbit. Easy.

Really need to do both things at once. Having started
to do mathematics in the Ford administration, I find
this challenging. (Gave up chewing gum at that time.)



The orbit method
for reductive

groups

David Vogan

Introduction

Commuting
algebras

Differential
operator algebras

Hamiltonian
G-spaces

Coadjoint orbits for
reductive groups

Conclusion

References

Structure theory for reductive Lie groups

Reductive Lie group G = closed subgp of GL(n, R)︸ ︷︷ ︸
main ex

s.t. G closed under transpose, and #G/G0 < ∞.
From now on G is reductive.
Lie(G) = g ⊂ n × n matrices. Bilinear form

T (X , Y ) = tr(XY ) ⇒ g
G-eqvt
' g∗

Orbits of G on g∗ ⊂ conjugacy classes of matrices.
Orbits of GL(n, R) on g∗ = conj classes of matrices.
Family of orbits: for real numbers λ1 and λn−1,

O(λ1, λn−1) = matrices, eigenvalue λp has mult p.

Base point in family:

O1,n−1 = nilp matrices, Jordan blocks 1, n − 1.
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One irreducible unitary representation

V n-diml real. G = GL(V ) acts on M = PV = lines in V .

X = T ∗(M) = {(v , λ) ∈ (V − 0)× V ∗ | λ(v) = 0}/ ∼ .

Relation is (v , λ) ∼ (tv , t−1λ).
Orbits of G on X : zero sec M, all else X1,n−1.
Moment map µ : T ∗(M) → gl(V )∗ ' End(V ),
µ(v , λ)(w) = λ(w)v .
Have µ : X1,n−1

∼→ O1,n−1: one coadjoint orbit!

X1,n−1 dense ⇒ C∞(T ∗(M))G = C hope⇒ C∞(M) irr.
This hope does disappoint us: C∞(M) ⊃ constants, so
rep is reducible. Also there’s no G-invt msre on M, so no
unitary Hilbert space version L2(M).
Fix both problems: δ1/2 = half-density bdle on PV .

Smooth half densities C∞(M, δ1/2) are irr rep of
GL(n, R), irr unitary rep π1,n−1 on L2(M, δ1/2).
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Family of irr unitary representations

Natural generalization: replace functions on M = PV
by sections of Hermitian line bundle.
Two natural (GL(V )-eqvt) real bdles on PV :
tautological line bdle L (fiber at line L is L); and Q
((n − 1) -diml real bundle, fiber at L is V/L).
Given real parameters λ1 and λn−1, get Hermitian
line bundle H(λ1, λn−1) = Liλ1 ⊗ (∧n−1Q)iλn−1 .
Define

π1,n−1(λ1, λn−1) = rep on L2(M, δ1/2 ⊗H(λ1, λn−1)).

These are irr unitary representations of GL(V );
naturally assoc to coadjt orbits O(λ1, λn−1).

Same techniques (still for reductive G) deal with all
hyperbolic coadjt orbits (that is, orbits of matrices
diagonalizable over R.
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And now for something completely different. . .

V 2m-dimensional real vector space, G = GL(V ). Fix real
tm ≥ 0, real sm, define coadjt orbit

O(sm+itm, sm−itm) = {A ∈ End(V ) | eigval sm ± itm mult m}.

Base point in family:

Om,m = {A ∈ End(V ) nilpotent, Jordan blocks m, m}.

Parameter sm corresponds to twisting by one-diml char of GL(V ):
cumbersome and dull. So pretend it doesn’t exist.

Corresponding repns related to cplx alg variety
X = complex structures on V , dim X = m2.

Have K -invariant projective subvariety

Z = orthogonal cplx structures dim Z = (m2−m)/2 = s.

Turns out (Schmid, Wolf) X is (s + 1)-complete, which
means Stein away from Z .
X has G-invt indef Kähler structure, signature ((m2 − m)/2, (m2 + m)/2);
underlying real symplectic mfld is O(itm,−itm) (any tm > 0).
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Om,m = {A ∈ End(V ) nilpotent, Jordan blocks m, m}.

Parameter sm corresponds to twisting by one-diml char of GL(V ):
cumbersome and dull. So pretend it doesn’t exist.

Corresponding repns related to cplx alg variety
X = complex structures on V , dim X = m2.

Have K -invariant projective subvariety

Z = orthogonal cplx structures dim Z = (m2−m)/2 = s.

Turns out (Schmid, Wolf) X is (s + 1)-complete, which
means Stein away from Z .
X has G-invt indef Kähler structure, signature ((m2 − m)/2, (m2 + m)/2);
underlying real symplectic mfld is O(itm,−itm) (any tm > 0).



The orbit method
for reductive

groups

David Vogan

Introduction

Commuting
algebras

Differential
operator algebras

Hamiltonian
G-spaces

Coadjoint orbits for
reductive groups

Conclusion

References

And now for something completely different. . .

V 2m-dimensional real vector space, G = GL(V ). Fix real
tm ≥ 0, define coadjt orbit

O(itm, − itm) = {A ∈ End(V ) | eigval ± itm mult m}.

Base point in family:

Om,m = {A ∈ End(V ) nilpotent, Jordan blocks m, m}.

Corresponding repns related to cplx alg variety
X = complex structures on V , dim X = m2.

Have K -invariant projective subvariety

Z = orthogonal cplx structures dim Z = (m2−m)/2 = s.

Turns out (Schmid, Wolf) X is (s + 1)-complete, which
means Stein away from Z .
X has G-invt indef Kähler structure, signature ((m2 − m)/2, (m2 + m)/2);
underlying real symplectic mfld is O(itm,−itm) (any tm > 0).



The orbit method
for reductive

groups

David Vogan

Introduction

Commuting
algebras

Differential
operator algebras

Hamiltonian
G-spaces

Coadjoint orbits for
reductive groups

Conclusion

References

And now for something completely different. . .

V 2m-dimensional real vector space, G = GL(V ). Fix real
tm ≥ 0, define coadjt orbit

O(itm, − itm) = {A ∈ End(V ) | eigval ± itm mult m}.

Base point in family:

Om,m = {A ∈ End(V ) nilpotent, Jordan blocks m, m}.

Corresponding repns related to cplx alg variety
X = complex structures on V , dim X = m2.

Have K -invariant projective subvariety

Z = orthogonal cplx structures dim Z = (m2−m)/2 = s.

Turns out (Schmid, Wolf) X is (s + 1)-complete, which
means Stein away from Z .
X has G-invt indef Kähler structure, signature ((m2 − m)/2, (m2 + m)/2);
underlying real symplectic mfld is O(itm,−itm) (any tm > 0).



The orbit method
for reductive

groups

David Vogan

Introduction

Commuting
algebras

Differential
operator algebras

Hamiltonian
G-spaces

Coadjoint orbits for
reductive groups

Conclusion

References

And now for something completely different. . .

V 2m-dimensional real vector space, G = GL(V ). Fix real
tm ≥ 0, define coadjt orbit

O(itm, − itm) = {A ∈ End(V ) | eigval ± itm mult m}.

Base point in family:

Om,m = {A ∈ End(V ) nilpotent, Jordan blocks m, m}.

Corresponding repns related to cplx alg variety
X = complex structures on V , dim X = m2.

Have K -invariant projective subvariety

Z = orthogonal cplx structures dim Z = (m2−m)/2 = s.

Turns out (Schmid, Wolf) X is (s + 1)-complete, which
means Stein away from Z .
X has G-invt indef Kähler structure, signature ((m2 − m)/2, (m2 + m)/2);
underlying real symplectic mfld is O(itm,−itm) (any tm > 0).



The orbit method
for reductive

groups

David Vogan

Introduction

Commuting
algebras

Differential
operator algebras

Hamiltonian
G-spaces

Coadjoint orbits for
reductive groups

Conclusion

References

And now for something completely different. . .

V 2m-dimensional real vector space, G = GL(V ). Fix real
tm ≥ 0, define coadjt orbit

O(itm, − itm) = {A ∈ End(V ) | eigval ± itm mult m}.

Base point in family:

Om,m = {A ∈ End(V ) nilpotent, Jordan blocks m, m}.

Corresponding repns related to cplx alg variety
X = complex structures on V , dim X = m2.

Have K -invariant projective subvariety

Z = orthogonal cplx structures dim Z = (m2−m)/2 = s.

Turns out (Schmid, Wolf) X is (s + 1)-complete, which
means Stein away from Z .
X has G-invt indef Kähler structure, signature ((m2 − m)/2, (m2 + m)/2);
underlying real symplectic mfld is O(itm,−itm) (any tm > 0).



The orbit method
for reductive

groups

David Vogan

Introduction

Commuting
algebras

Differential
operator algebras

Hamiltonian
G-spaces

Coadjoint orbits for
reductive groups

Conclusion

References

And now for something completely different. . .

V 2m-dimensional real vector space, G = GL(V ). Fix real
tm ≥ 0, define coadjt orbit

O(itm, − itm) = {A ∈ End(V ) | eigval ± itm mult m}.

Base point in family:

Om,m = {A ∈ End(V ) nilpotent, Jordan blocks m, m}.

Corresponding repns related to cplx alg variety
X = complex structures on V , dim X = m2.

Have K -invariant projective subvariety

Z = orthogonal cplx structures dim Z = (m2−m)/2 = s.

Turns out (Schmid, Wolf) X is (s + 1)-complete, which
means Stein away from Z .
X has G-invt indef Kähler structure, signature ((m2 − m)/2, (m2 + m)/2);
underlying real symplectic mfld is O(itm,−itm) (any tm > 0).



The orbit method
for reductive

groups

David Vogan

Introduction

Commuting
algebras

Differential
operator algebras

Hamiltonian
G-spaces

Coadjoint orbits for
reductive groups

Conclusion

References

Representations attached to O(itm,−itm)

Brought to you by Birgit Speh.

dim V = 2m, X = space of cplx structures on V .
n = dimC(X) = m2, s = dimC(maxl cpt subvar) = (m2 −m)/2.

Point x ∈ X interprets V as m-diml complex vector space
Vx . Defines (tautological) holomorphic vector bundle V on
X . Top exterior power of V is a holomorphic line bundle L.
Every eqvt hol line bdle on X is Lp, some p ∈ Z.
Actually can also twist by character | det |ism of GL(V ), but we’re
pretending that doesn’t exist.

Canonical bdle is ωX = L−2m.
Very rough idea: O(itm,−itm)! repn Γ(Lp).

Better: O(itm,−itm)! repn H0,s(X ,Lp).

Better: O(itm,−itm)! repn H0,s(X ,L−tm ⊗ ω
1/2
X ).

Best: O(itm,−itm)! repn Hn,n−s
c (X ,Ltm ⊗ ω

1/2
X ).

Call this (last) representation π(tm) (tm = 0, 1, 2, . . .).
Inclusion of compact subvariety Z gives lowest O(V )-type:
(tm + 1)-Cartan power of

Vm(V ). (Shift +1 since ωZ = ω
1/2
X ⊗ L−1.)

Parallel techniques deal with elliptic coadjt orbits (that is, orbits of
semisimple matrices with purely imaginary eigenvalues.
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Quantizing nilpotent orbits

For GL(n, R), nilp coadjt orbits = special points in families
of semisimp orbits quantize by continuity (see below).
For other reductive groups, not true: many nilpotent orbits
have no deformation to semsimple orbits.
Kostant-Rallis idea: nilp coadjt orbit OR has natural K -invt
cplx structure Oθ  holomorphic action of KC.
Get repn of K that quantizes Oθ ; look for a way to extend it to G. Carried
out by Brylinski and Kostant for minimal coadjt orbit in many cases.

Rossi-Vergne idea: Given semisimple orbits, quantizations

{O(λ) | λ dom reg} {π(λ) | λ dom reg adm}.

Repns make sense (but may not be unitary) for “all”
admissible λ (not dominant or regular).
Continuity above means limiting nilpotent orbit O(0) quantized by π(0).

Rossi-Vergne idea: smaller nilpotent orbits O′ (contained
in O(0)) should be quantized by smaller constituents of
representations π(λ′), with λ′ admissible, not dominant.
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Meaning of it all

My first class from Bert began February 4, 1975. In the first
hour he defined symplectic forms; symplectic manifolds;
symplectic structure on cotangent bundles; Lagrangian
submanifolds; and proved coadjoint orbits were symplectic.
After that the class picked up speed.
Many years later I took another class from Bert. At some point
he needed differential operators. So he gave an introduction:
“You form the algebra generated by the derivations of C∞.”
That’s Bert: mathematics at Mach 2, always exciting, and the
explanations are always complete; you’ll figure them out
eventually. The first third of a century has been fantastic, and I
hope to keep listening for a very long time.

HAPPY BIRTHDAY BERT!
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