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Gelfand’s abstract harmonic analysis

Topological grp G acts on X, have questions about X.

Step 1. Attach to X Hilbert space H (e.g. L2(X)).
Questions about X ~~ questions about H.

Step 2. Find finest G-eqvt decomp H = . Ha.
Questions about H ~~ questions about each H,,.

Each H,, is irreducible unitary representation of G:
indecomposable action of G on a Hilbert space.

Step 3. Understand Z;u = all irreducible unitary
representations of G: unitary dual problem.

Step 4. Answers about irr reps ~~ answers about X.

Topic today: what’s an irreducible unitary
representation look like?
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Representations of GL(V/(k))

Concentrate on group G(k) = GL(V/(k)) invertible
linear transformations of n-diml vector space V(k).

Stay vague about (locally compact) ground field k:
mostly R or C, but Fq, p-adic fields also interesting.

G(k) acts on (n — 1)-diml (over k) proj alg variety
X1,n—1(k) = {1-diml subspaces of V(k)}
Hilbert space
Hi,n_1(k) = {L? half-densities on X ,_1(k)}
k =R, C, p-adic: G(k) acts by irrrep p(1,n—1).
Question for today: how big is this Hilbert space?
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Size of L?(proj space) S

representations

David Vogan
Want “dimension” for inf-diml Hilbert space

Hi.n_1(k) = {L? half-densities on Xi ,_1(k)} Lessons from firite

fields
For guidance, look at fin-diml analogue: take base

field k = Fqy; then #V(Fq) = q",
G(Fq) = GL(V(Fq)) = finite group of linear
transformations of V(FFg).
G(Fq) acts on
X1,n—1(Fq) = {1-diml subspaces of V(Fq)};
#X1n-1(Fq) = (§"-1)/(q—1) = q" ' +q" 2+ - +1.
H1 n—1(Fq) = {functions on Xj ,_1(Fq)}
dim My 5 1(Fg) = #X1n-1(Fg) = ¢ +--- + 1
= poly in g, degree = dim(Xj ,_1).



About GL(V(F,))

To understand size of repns of GL(V), need size of
GL(V)...
The “g-analogue” of mis the polynomial

1 2 q" -1
qm _|_qu +---4+qg+1= 1
valueat g =1is m. q-
(Mg = (@™ +¢" %+ 1)@ 2+t 1) (g4 1)1

_q"-1 ¢ -1 g1 g1
qg-—1 g-1 g—-1 g-1
(g-analogue of m!; poly in g, deg = (3), val at 1 = m!)
Geometric meaning: number of complete flags in an
m-dimensional vector space over F.
Cardinality of GL(V/(F)) is (n!)4(q — 1)"q2).
GL(V(Fg)) is “g-analogue” of symmetric group.
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More representations over F

Continue with k = Fq, G(IFq) = GL(V(Fg)).
™= (p1,-..,Pm), >_;pj = n; G(Fq) acts on

X:(Fq) ={0=5y,C S; C---Sn = V(Fyg),

subspace chains, dim(S;/S;_1 = p;};
[F4-variety of dimension
d() =aer (3) — 25 (3)-
(n')gq

(P1Da(P2)g - (PmY)g’
Hr(Fq) = {functions on X, (Fq)}

#Xr (Fq) =

dimH.(Fq) = #X:(Fq) = poly in g of deg d(r).
Repn space ~ cplx fns on F4-variety of dim d(n)
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Moral of the I, story

G(Fq) = GL(V(Fq)) = g-analogue of symm group S
irr rep of G(Fy) ~~ partition 7 of n ~» X, = flags of type =
irr rep ~ functions on X (Fq)

dim(irr rep) = poly in g of degree dim X,

Problem: what partition is attached to each irr rep?
Dimension of representation provides a clue.

big reps «~- partitions with small parts.

Note: partition = «~ irreducible rep of S,,.
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About p-adic GL(V(k))

k p-adic field D O ring of integers D p maximal ideal
O/p = Fq residue field

V(k) n-diml vec space; fix basis ~~ V(k) ~ k".
Basis ~ V(9) ~ 9" C k" ~ V(k)

G(k) = GL(V(k)) ~ GL(n, k).

For r > 0, have open subgroups (nbhd base at /)

Gr={g9e GL(n,O)|g=/modp"}
= subgp of G(9) acting triv on V(9)/V(p") .
Note Gy = G(9) ~ GL(n, D).
Go/Gr ~ GL(V(®/p")) finite group, extension of
G(Fq) by nilp gp of order qrr.
G, ~ decompose G(k)-spaces, reps.
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Flag varieties over p-adic k R
representations

G(k) = GL(V(k)) D compact open Gy D Gy D - - - David Vogan
m™=(P1,...,Pm), >;Pj = n; G(k) acts on

X:(k)={0=SyC Sy C---Spn=V(k),
subspace chains, dim(S;/S;_1 = p;} e
==
X:(O)={0=LocLyC---Lpn=V(O),
lattice chains, rk(L;/L;_1) = p;}
L mr
Xe(O/p)={0=4b Cly C-lm=V(O/p’),
submodule chains, rk(¢;/¢j—1) = p;}
7, fibers = G, orbits on X (k); number of orbits is

" (n)q _rd(m)
#X ) = e (e ¢



Some representations over p-adic k T dmensional
representations
G(k) = GL(V(k)) D (small) compact open G, David Vogan

m™=(P1,...,Pm), >;Pj = n; G(k) acts on
X (k) = subspace chains of type =
d(7) =gt (3) =D (%) = dim X; racke ok,
Hilbert space "
H,(k) = {L2 half-densities on X;(k)}
carries unitary rep p(m) of G(k); space is incr union
Ha(K)® C Ha(K)® C oo C Ha(K)% C -

finite-diml reps of Gy.

dim(H.(k)) = number of orbits of G, on X, (k)

_ (n)q g
(P1!)q(P2!)q"'(Pm!)q .




General representations over p-adic k

ﬂ-:(p‘h"wpm)a Z/p]:n
X, (k) = subspace chains of type =

H (k) = {L? half-densities on X, (k)}
|
dim Hﬂ— k G _ (”-)q . Ard(m)
( ( ) ) (p1!)q(p2!)q"'(pm!)q a9
Theorem (Shalika germs)
If (p, ) arb irr rep of G(k), then for every partition = of n
there is an integer a,(p) so that for r > r(p)

H o~ arHx(K)

as (virtual) representations of G;.

Corollary = _
dimH“ = poly in q" of deg d(=(p)),

some partition w(p), and all r > r(p).
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Moral of the p-adic story

G(k) = GL(V(k)) has neighborhood base at 1 of
compact open subgroups Go D Gy D - D G D -+

irr rep of G(k) ~~ partition 7(p) of n~~ X, = flags of type =
irr rep on H ~ functions on X (k)

dim(HC) = poly in " of deg d(x) = dim X, (large r)
Problem: what partition is attached to each irr rep?
Rate of growth of chain of subspaces

’Hfoc']—(f1 C...’Hffc...

provides a clue.
big reps « partitions with small parts.
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Representations of GL(V(R)) e

representations

David Vogan

G(R) = GL(V(R)) ~ GL(n,R).
G(R) acts on (n — 1)-diml compact manifold
Xi.n1(R) = {1-diml subspaces of V(R)} ~ RP"""
Hin_1(R) = {L? half-densities on RP""}
Hilbert space carrying irr unitary rep of G(R). Repns over R, C

Question for today: how big is this Hilbert space?
Can we extract n — 1 from it?

Difficulty: all inf-diml separable Hilbert spaces are
isomorphic (as Hilbert spaces).

Same problem for other function spaces:

C=(RP" ') ~ C>(RP™ ") as topological vec space
Clx1,...,Xn-1] =2 C[y1,...,¥m—1] as vec space

Distinguish using exhaustion by fin-diml subspaces.



Lessons from real analysis

X compact d-diml Riemannian, Ax Laplacian
H = L2(X), H) = \-eigenspace of A.

Theorem (Weyl)

IFH(N) = >\ <ne Ha, thendim H(N) ~ cxNC.
Conclude: dim X «~ asymp distn of Ax eigenvalues

Example: X = RP"!, C®(X) = homog even fns on R”.
Hok(2k+(n—1)) = deg 2k pols  mod r? - (deg 2(k — 1) pols)

Aim Hokaks (n_1)) = [(2k+1)(2k+2)- ( n(z;;;n 3)|idk+n—2]

polynomial in k of degree n — 2.

H <2k1/ ot ) SK(R™)
dim (2km> ~ (nJ;2_k1 1>,

polynomial in k of degree n — 1.
O(n) ¢ GL(n,R) commutes with Ay, preserves H,.
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More representations over R
Choice of basis defines compact subgroup
O(n) c G(R) = GL(V(R)) ~ GL(n,R).
Casimir Qo) = — > X?, {X;} orth basis of Lie O(n).
7= (p1,.-.,Pm), >; P = n; G(R) acts on cpt Riemannian
X:(R) = subspace chains of type =
d(7) =get (3) = X () = dim X
O(n) transitive on X (R), Ax, = action of Qp(,); isotropy
O() =der O(p1) x --- O(Pm) < O(n).
Unitary rep p(r) on H.(R) = L2(X,(R)); res to O(n) is
Indg")(C) = 3, o0 (dim 1)
Therefore compute Laplacian eigenvalue distribution
Ha(N) = 32,0y <ne (dim ) .
dim .. (N) ~ a(r)N9"): res to O(n) computes d().
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General representations over R T dmensional

representations
(p, H) arbitrary irr rep of G(R) ~ GL(n,R). David Vogan
Restriction to cpt subgp O(n) decomposes
MY, oMW (my() non-neg integer).
Example of H, = L?(X,) suggests defining
H(N) =get Zu(mgm my, (1) -

Repns over R, C

Theorem
There is partition 7(p) of n, pos integer c(p) so that

dim #(N) ~ c(p)a(w(p)) N

Recall that dim . (N) ~ a(r)N9(™),
Definition
For pirr rep of G(R), the Gelfand-Kirillov dimension of p is

the non-neg integer Dim(p) = d(x(p)); measures asymp
distn of eigenvalues of Casimir Q¢ in p.



(First) moral of the real story

G(R) = GL(V(R)) has compact subgroup O(n).
irr rep of G(R) ~~ partition 7(p) of n ~ X, = flags of type =

irr rep on H =~ functions on X;(R), cpt homog space
for G(R) and for O(n). Precisely:

asymp distn of eigenvalues of Casimir Qo) in p ~
eigenvals of Laplacian on X;(R).

Problems: what partition is attached to each irr rep?
what else does partition tell you about irr rep?

To address these questions, use characters of
reps...
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Distribution characters

Idea of Gelfand-Kirillov dimension began with
dimension for fin-diml irr rep (p, H) of G.

Can write dim p = trldy = tr p(1).

Useful to consider character of p, function on G:
©,(g) =def tr p(9),

because character of p determines p up to equiv.

Inf-diml irr (p, H): p(g) never trace class. Regularize. ..

G(R) = GL(V(R)), ¢ cptly supp test density on G(R),

o(5) = / p(9)5(g) € End(H)
G(R)

is trace class operator (Harish-Chandra).
Map ©,(d) = tr p(9) is generalized function on G(R).
GK dim of p «~ singularity of ©, at 1 € G(R).
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More lessons from real ana|ySiS The size of infinite-

dimensional
representations

David Vogan
Tayl
f smooth on vec space W(R), fy(w) = f(iw); i

fr ~ 3020 tFPx, (t — o0), Px homog deg k poly.

Seek analogous expansion for non-smooth gen fns.
Theorem (Barbasch-V)
©, distn char of irr rep p of G(R), L gentn 6, on S dmension and

g(R) = Lie(G(R)) = n x n real matrices
Then 0, has asymptotic expansion
Op,t ~ koo £ Ti(p),

T« (p) tempered gen fn homog of deg k.

Leading terms match: T_y(,)(p) = ¢(p) T—d(x)(p(7(p))-

Conclusion: char ©, near 1 € G(R) equal to
c(p) - ©,(x) modulo lower order terms.



More about character leading terms

Looked at expansion 6, ~ Yk 5, t* Tk(p)-
Fin-diml rep: d(p) = 0, leading term Ty(p) = dim p.
Leading term T_(,) «~ analogue of dimension
Example: G(R) action on X;(R) ~~ moment map
pr: T Xz (R) — g(R)".
ur is birational onto closure of nilpotent conj class
0.+ C g(R)* ~ n x nreal matrices;

Natural measure on T*X;(R) ~= measure on O,

Fourier yeneralized function on g(R).

Leading term T_()(p(7)) is Fourier transform (7);
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(Second) moral of the real story

G(R) = GL(V(R))
irr rep p of G(R)

trace

—— distribution character ©, (gen fn on G(R))

2. generalized function 6, on g(R)

asymp
expansion
R

T_4(,)(p) temp, deg —d(p) gen fn on g(R)

Fourier

——— tempered degree [— dim(g(R)) + d(p)]
distribution on g(R)* ~ n x n real matrices

support . . .
SIPPO. conjugacy class O, of real nilp matrices

Jordan, partition (p) of n

That finds the partition attached to each irr rep.
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Other real reductive groups
G(R) real reductive group, K(R) maximal compact
subgroup, Qk(r) Casimir operator for K(R).
Example: Sp(2n,R), R-linear transf of C" preserving
symplectic form
w(v,w) =Im(v, w)
(imag part of std Herm form); K(R) = U(n).
Example: O(p, q) linear transf of R x RY9 preserving
symmetric form
((v1, v2), (W1, W2))p.q = (v1, W1) — (V2, Wa);

K(R) = O(p) x O(q)-
(Al)most general example: G(R) c GL(N,R) closed
subgp preserved by transpose, K(R) = G(R) N O(N).
Big idea:

G(R) rep “size” «~~ restriction to K(R) asymptotics
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GK dimension for other real reductive BB i

representations

David Vogan
G(R) real reductive group, K(R) maximal compact
subgroup, Q) Casimir operator for K(R).

(p, H) irr rep of G(R); then (Harish-Chandra)

H ~ ZME’(/(RT) my (1), (m,(x) non-neg integer).
As for GL(n), can define
H(N) —def ZH(QK(R))SNZ mp(M)M Other real

reductive groups
Theorem

There is a non-negative integer d(p) and a positive
constant b(p) so that

dim H(N) ~ b(p)N),

Call d(p) the Gelfand-Kirillov dimension of p.



What's wrong with GK dimension for other G = ™nessonar -

representations

David Vogan

Case of GL(n): have special homog spaces X (R)
(partial flag variety) so that reps L2(X,(R))
“approximately model” any irr rep.

Other G(R): have analogues of X; (real flag
varieties); but they no longer model allirr reps.
Example: G(R) = Mp(4,R) nonlinear double cover of
symplectic group. Four possible spaces “X;”: A s
point Xy (dim = 0)
(isotropic) lines Xy = {Ly c R*} = RP® (dim 3)
Lagrangian planes X; = {L, C R*} ~ U(2)/0(2) (dim 3)
isotr. flags Xi» = {Ly C L, C R*} ~ U(2)/0(1) x O(1) (dim 4)
Get GK dims 0, 3, 4; metaplectic repn has GK dim 2.

But asymptotic expansion of characters still works. . .



Character expansions for real groups

G(R) real reductive group, (p, H) irr rep
d cptly supp test density on G(R) ~- trace class op

o(5) = / p(9)5(g) € End(H)
G(R)

Map ©,(5) = tr p(9) is generalized function on G(R).
Lift via exp to gen fn 6, on g(R) = Lie(G(R))

Theorem (Barbasch-V)
0, has asymptotic expansion 6+ ~ 32 ., t“T(p),
Tk(p) tempered gen fn homog of deg k.
Leading term T_(,,) Is finite linear comb of Fourier
transforms of invt measures on nilp orbits in g(R)*:
T_d(p) = _dim 0=24(p) (P, O)O.
(Schmid-Vilonen) Coeffs c(p, ©) are non-neg ints.
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(Third) moral of the real story

G(R) real reductive
irr rep p of G(R)

trace...s ort .
208 ST, on-neg integer comb

T_d(p) = D_dim 0=24(p) (P> O)@

of several nilpotent orbits of G(R) on g(R)*
More to do...
Can (approx) describe p|kr) with orbits O

Relate unitarity of p to expansion; not understood.

Seek to compute constants ¢(p, O) using KL
calculation of character ©,; not understood.
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