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Consider the field Fq, consisting of q elements. For any non-negative integer n, Fn
q is the n-

dimensional vector space consisting of n-tuples of of elements in Fq. Also, for any integer k such
that 0 ≤ k ≤ n, the Grassmann variety G(k, n)(Fq) is the set of all k-dimensional subspaces of Fn

q .
In this presentation, we shall attempt to count the elements of G(k, n)(Fq).

A few (more) definitions: A basis of a k-dimensional vector space V over Fq is a subset v1,
v2,. . ., vk of dim(V ) × 1 column vectors in V that are linearly independent and span V . The
condition of linear independence is met if

For ci ∈ Fq,
k∑

i=1

civi = 0 ⇒ ci = 0 ∀i (1)

The vectors vi form a basis of V if and only if every v ∈ V can be written as

v =
k∑

i=1

civi (2)

for some choice of ci ∈ Fq. Note that the choice of constants ci must be unique for every v since
there are exactly qk elements of V and exactly qk distinct choices for the ci. Or, more rigorously,
suppose there are two sets of constants ci and di in Fq such that

∑
civi =

∑
divi = v. Then∑

(ci − di)vi = v − v = 0 and we see that ci = di for all i. Equation 2 also implies that the basis
spans only V. That is,

∑
civi ∈ V for any choice of ci ∈ Fq.

We will represent the set of basis vectors as the k × n matrix M.

M = ( v1 v2 · · · vk )T =


vT
1

vT
2
...

vT
k

 =


a11 a12 · · · a1n

a21 a22
...

...
. . .

...
ak1 · · · · · · akn

 (3)

for aij ∈ Fq. Thus, there is a unique k × 1 vector cv ∈ F k
q such that MT cv = v. Our matrix

representation provides a very handy way to look at things.

Proposition: If M is a matrix of basis vectors for the subspace V , the rows of any matrix
resulting from row operations on M also form a basis for V .

1



Proof. Let B be a k × k matrix with entries in Fq. Since M̃ = BM is a matrix resulting from row
operations on M, we will show that M̃T cv ∈ V for all cv ∈ F k

q and for any choice of B.

M̃T cv = (BM)T cv = MTBT cv = MT cṽ = ṽ ∈ V (4)

Since cṽ can be any element in F k
q , we see that M and M̃ are both basis matrices for the same

subspace.

Proposition: Every basis matrix M′ of a subspace V is equal to BM for some B (as defined
above), where M is another basis matrix for V .

Proof. Let the basis vectors composing M be vi, as before. In the same manner, let the basis
vectors composing M′ be v′i. Since all of the v′i are necessarily in V , we know the following:

M′ =


v′1

T

v′2
T

...
v′k

T

 =


∑k

i=0 b1ivi
T∑k

i=0 b2ivi
T

...∑k
i=0 bkivi

T

 (5)

for some set of bij ∈ Fq. However,
b11v

T
1 + b12v

T
2 + . . . + b1kv

T
k

b21v
T
1 + b22v

T
2 + . . . + b2kv

T
k

...
bk1v

T
1 + bk2v

T
2 + . . . + bkkv

T
k

 =


b11 b12 · · · b1k

b21 b22
...

...
. . .

...
bk1 · · · · · · bkk




v1
T

v2
T

...
vk

T

 = BM (6)

for some B.

We have shown that more than one matrix can be a basis matrix for the same subspace. It
is important for us to ensure that we cast the basis matrices in a form that guarantees them to
represent one distinct subspace each. This can be accomplished by using row operations to cast M
in a reduced row echelon form MR, which insists the following:

• If aij is the first non-zero element in the i-th row of MR, then aim = δj,m.

• If aij and ai′j′ are the first non zero elements in the i-th and i′-th rows, respectively, then
i > i′ ⇔ j > j′.

It is easy to see that any subspace V is represented by a unique reduced row echelon form matrix
MR. Any other matrix representing V must be of the form BMR. However, BMR is in reduced
row echelon form if and only if B is the identity matrix.

Since every k-dimensional subspace of Fn
q can be generated by a set of k basis vectors vi and

any two bases which generate the same subspace have the same MR representation, we may insist
that there is an isomorphism between k × n reduced row echelon matrices with rank k and entries
in Fq and k-dimensional subspaces of Fn

q . Note: basis matrices with k rows must have rank k if
the basis vectors are to be linearly independent.
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Definition: Let MR(k, n)(Fq) denote the set of all k × n reduced echelon matrices with entries in
Fq. Thus #MR(k, n)(Fq) is the number of such matrices.

Using the above definition, we may say that

#MR(k, n)(Fq) = #G(k, n)(Fq) (7)

We will count MR(k, n)(Fq) by considering an arbitrary element m in MR(k, n)(Fq). m has one
and only one of the following properties:

Property 1: All entries in the first column of m are 0.

Property 2: The first column of m contains a single non-zero element. This element is 1 and
resides in the first row.

Since any m has one of these properties and the properties are mutually exclusive, we know that
#MR(k, n)(Fq) can be obtained by adding the number of elements with property 1 to the number
of elements with property 2. We will begin by counting the elements with property 1.

Any matrix m ∈ MR(k, n)(Fq) with property 1 can be drawn in the following manner:

m =

 0
... m′

0

 (8)

where m′ is an element of MR(k, n − 1)(Fq). Note that if m′ /∈ MR(k, n − 1)(Fq) then m /∈
MR(k, n)(Fq). Since there are #MR(k, n−1)(Fq) elements in MR(k, n−1)(Fq), there are #MR(k, n−
1)(Fq) matrices in MR(k, n)(Fq) with property 1. Any matrix m ∈ MR(k, n)(Fq) with property 2
can be drawn in the following manner:

m =


1 v′

0
... m′

0

 (9)

where v′ ∈ Fn−1
q and m′ is a (k− 1)× (n− 1) matrix. (the bars within the matrix are present only

to act as delimiters).

Fairly Straightforward Proposition: The matrix m′ in equation 9 is an element of MR(k −
1, n− 1)(Fq).

Proof. The matrix m′ is clearly composed of elements of Fq since m is composed of elements of Fq.
Also, m′ must be in reduced echelon form because we insist that m is in reduced echelon form. We
must verify that m′ is a basis matrix for a k − 1-dimensional subspace of Fn−1

q . The most trivial
property checks out, since m′ clearly has k− 1 rows and n− 1 columns. All that is left is to verify
that the rows of m′ are linearly independent. If the rows r′i of m′ were not linearly independent,
then there would be a non-trivial set of ci ∈ Fq such that

∑
cir

′
i = 0. Since m′ is reduced row

echelon, any row that is linearly dependent would be set to zero by row operations. If a row of m′

is zero, then a row of m is zero. Since we have already asserted that m ∈ MR(k, n)(Fq), no row of
m is zero. Thus, the rows of m′ are linearly independent and m′ ∈ MR(k − 1, n− 1)(Fq).
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The number of matrices in MR(k− 1, n− 1)(Fq) is, of course, #MR(k− 1, n− 1)(Fq). However,
we must decide how v′ affects the multiplicity. We may be drawn to the immediate conclusion that
each m′ has a multiplicity of qn−1, since v′ is composed of n − 1 seemingly arbitrary elements of
Fq. This is not the case. Since m′ has k − 1 independent rows, it has a rank of k − 1. Thus, m′

has k − 1 pivot columns and only (n − 1) − (k − 1) = n − k free columns. Since m is in reduced
row echelon form, any entry in the first row of m that is directly above a pivot column of m′ is
zero. Only the entries of v′ that are directly above free columns of m′ are left alone (and are thus
arbitrary). This means that for any given m′, v′ only has n − k free variables. For any given m′,
the multiplicity is only qn−k. Thus, there are qn−k#MR(k−1, n−1)(Fq) matrices m with property 2.

Bringing it all together: We have shown that

#MR(k, n)(Fq) = #MR(k, n− 1)(Fq) + qn−k#MR(k − 1, n− 1)(Fq) (10)

Incorporating equation 7, we arrive at the result

#G(k, n)(Fq) = #G(k, n− 1)(Fq) + qn−k#G(k − 1, n− 1) (11)

which is a recursive formula for counting G(k, n)(Fq). Our recursion will eventually terminate at
the base cases #G(0, n′)(Fq) and #G(k′, k′), both of which are 1. This is so because the only
zero-dimensional subspace of any vector space is the subspace consisting of only the zero vector
and the only k′-dimensional subspace of any k′-dimensional vector space is exactly itself.

In class, Professor Vogan presented the following result without proof:

#G(k, n)(Fq) =
[

n
k

]
q

. (12)

I spoke with him and found that he came upon this result via a different method than the one
presented here. So far I have not been able to close equation 11 to obtain the above form. If you
have any ideas, please let me know.
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