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Consider the field Fy, consisting of ¢ elements. For any non-negative integer n, F" is the n-
dimensional vector space consisting of n-tuples of of elements in Fj,. Also, for any integer k such
that 0 < k < n, the Grassmann variety G(k,n)(F}) is the set of all k-dimensional subspaces of Fy'.
In this presentation, we shall attempt to count the elements of G(k,n)(Fy).

A few (more) definitions: A basis of a k-dimensional vector space V over Fj is a subset vy,
v2,. .., v of dim(V) x 1 column vectors in V that are linearly independent and span V. The
condition of linear independence is met if

k
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The vectors v; form a basis of V' if and only if every v € V can be written as

v = Z C; Uy (2)

=1

for some choice of ¢; € F,. Note that the choice of constants ¢; must be unique for every v since
there are exactly ¢* elements of V and exactly ¢* distinct choices for the ¢;. Or, more rigorously,
suppose there are two sets of constants ¢; and d; in F, such that ) cjv; = > djv; = v. Then
> (¢; —di)v; = v —v =0 and we see that ¢; = d; for all i. Equation 2 also implies that the basis
spans only V. That is, ) ¢;v; € V for any choice of ¢; € Fj,.

We will represent the set of basis vectors as the k x n matrix M.
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for a;; € F,. Thus, there is a unique k x 1 vector ¢, € F(f such that MT¢, = v. Our matrix
representation provides a very handy way to look at things.

Proposition: If M is a matrix of basis vectors for the subspace V, the rows of any matrix
resulting from row operations on M also form a basis for V.



Proof. Let B be a k x k matrix with entries in Fy. Since M = BM is a matrix resulting from row
operations on M, we will show that M”¢, € V for all ¢, € Fcf and for any choice of B.

M7Tc, = BM) ¢, =MTBT¢, =MT¢c; =€V (4)

Since ¢z can be any element in Fqk, we see that M and M are both basis matrices for the same

subspace. ]

Proposition: Every basis matrix M’ of a subspace V is equal to BM for some B (as defined
above), where M is another basis matrix for V.

Proof. Let the basis vectors composing M be v;, as before. In the same manner, let the basis
vectors composing M’ be v}. Since all of the v} are necessarily in V', we know the following:
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We have shown that more than one matrix can be a basis matrix for the same subspace. It
is important for us to ensure that we cast the basis matrices in a form that guarantees them to
represent one distinct subspace each. This can be accomplished by using row operations to cast M
in a reduced row echelon form Mg, which insists the following:

e If a;; is the first non-zero element in the i-th row of Mg, then a;y, = 6;m.

e If a;; and ayj are the first non zero elements in the i-th and ’-th rows, respectively, then
i>1 s 5>7.

It is easy to see that any subspace V is represented by a unique reduced row echelon form matrix
Mpg. Any other matrix representing V must be of the form BMp. However, BMp is in reduced
row echelon form if and only if B is the identity matrix.

Since every k-dimensional subspace of F' can be generated by a set of k basis vectors v; and
any two bases which generate the same subspace have the same Mpg representation, we may insist
that there is an isomorphism between k X n reduced row echelon matrices with rank k and entries
in Fy and k-dimensional subspaces of Fi'. Note: basis matrices with k rows must have rank k if
the basis vectors are to be linearly independent.



Definition: Let Mg(k,n)(F,) denote the set of all k x n reduced echelon matrices with entries in
F,. Thus #Mpg(k,n)(Fy) is the number of such matrices.

Using the above definition, we may say that

#Mpr(k,n)(Fy) = #G(k, n)(Fy) (7)

We will count Mg (k,n)(F,) by considering an arbitrary element m in Mp(k,n)(F,). m has one
and only one of the following properties:

Property 1: All entries in the first column of m are 0.

Property 2: The first column of m contains a single non-zero element. This element is 1 and
resides in the first row.

Since any m has one of these properties and the properties are mutually exclusive, we know that
#Mp(k,n)(F,) can be obtained by adding the number of elements with property 1 to the number
of elements with property 2. We will begin by counting the elements with property 1.

Any matrix m € Mgr(k,n)(F;) with property 1 can be drawn in the following manner:

0

m = com/ (8)

where m/ is an element of Mg(k,n — 1)(F,). Note that if m’ ¢ Mg(k,n — 1)(F;,) then m ¢
Mp(k,n)(Fy). Since there are #Mp(k,n—1)(F,) elements in M (k,n—1)(Fy), there are #Mpg(k,n—
1)(F,) matrices in Mg(k,n)(F,) with property 1. Any matrix m € Mg(k,n)(F,) with property 2
can be drawn in the following manner:

where v' € FJ'™! and m' is a (k — 1) X (n — 1) matrix. (the bars within the matrix are present only
to act as delimiters).

Fairly Straightforward Proposition: The matrix m/ in equation 9 is an element of Mp(k —
1,n—1)(Fy).

Proof. The matrix m’ is clearly composed of elements of F}, since m is composed of elements of Fj.
Also, m’ must be in reduced echelon form because we insist that m is in reduced echelon form. We
must verify that m’ is a basis matrix for a k — 1-dimensional subspace of F(;‘_l. The most trivial
property checks out, since m’ clearly has k — 1 rows and n — 1 columns. All that is left is to verify
that the rows of m’ are linearly independent. If the rows 7} of m’ were not linearly independent,
then there would be a non-trivial set of ¢; € F, such that Ecirg = 0. Since m' is reduced row
echelon, any row that is linearly dependent would be set to zero by row operations. If a row of m’
is zero, then a row of m is zero. Since we have already asserted that m € Mp(k,n)(Fy), no row of
m is zero. Thus, the rows of m' are linearly independent and m’ € Mgp(k — 1,n — 1)(F,). O



The number of matrices in Mpr(k —1,n—1)(Fy) is, of course, #Mpr(k —1,n—1)(F,). However,
we must decide how v affects the multiplicity. We may be drawn to the immediate conclusion that
each m’ has a multiplicity of ¢"~!, since v’ is composed of n — 1 seemingly arbitrary elements of
F,. This is not the case. Since m’ has k — 1 independent rows, it has a rank of k — 1. Thus, m/
has k — 1 pivot columns and only (n — 1) — (k — 1) = n — k free columns. Since m is in reduced
row echelon form, any entry in the first row of m that is directly above a pivot column of m’ is
zero. Only the entries of v that are directly above free columns of m’ are left alone (and are thus
arbitrary). This means that for any given m’, v/ only has n — k free variables. For any given m’,
the multiplicity is only ¢"~*. Thus, there are ¢"~*# Mg (k—1,n—1)(F,) matrices m with property 2.

Bringing it all together: We have shown that
#Mp(k, n)(Ey) = #Mp(k,n — 1)(Fy) + 4" #Mp(k — 1,n — 1)(F,) (10)

Incorporating equation 7, we arrive at the result
HG(k,n)(EFy) = #G(k,n — V)(F,) + " #G(k - 1n—1) (11)

which is a recursive formula for counting G(k,n)(F,). Our recursion will eventually terminate at
the base cases #G(0,n')(F,) and #G (K, k"), both of which are 1. This is so because the only
zero-dimensional subspace of any vector space is the subspace consisting of only the zero vector
and the only A&’-dimensional subspace of any k’-dimensional vector space is exactly itself.

In class, Professor Vogan presented the following result without proof:

#amE) = | | (12)

I spoke with him and found that he came upon this result via a different method than the one
presented here. So far I have not been able to close equation 11 to obtain the above form. If you
have any ideas, please let me know.



