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Grassmann varieties

Definition 1. Suppose that F is a field, n is a non-negative integer, and F n is the
standard n-dimensional vector space consisting of n-tuples of elements of F . For us
it will generally be best to regard F n as consisting of n× 1 column vectors, so that
n×n matrices can act on the left by matrix multiplication. The Grassmann variety

G(k, n)(F ) of k-planes in F n is the set of all k-dimensional vector subspaces of F n.
This set is non-empty for integers k between 0 and n: 0 ≤ k ≤ n.

Recall that G = GL(n, F ) is the group of invertible n×n matrices with entries in
F . There is an action of G on the Grassmann variety G(k, n)(F ), defined as follows.
Suppose that V is a k-dimensional subspace of F n, so that V ∈ G(k, n)(F ). We
define a new k-dimensional subspace g · V of F n by

g · V = {g · v | v ∈ V }.

That is, we apply the matrix g to each of the vectors in V . It’s very easy to check
that g · V is indeed a k-dimensional subspace, and that this is an action of G on
the Grassmann variety.

The Grassmann varieties (“Grassmannians” for short) are fundamental to all
kinds of mathematics. When the field F is R or C, G(k, n)(F ) is a manifold; it
turns out to be a compact manifold of dimension k(n− k) (if F = R) or 2k(n− k)
(if F = C). For arbitrary fields, the Grassmann variety consists of the “F -points”
of a smooth algebraic variety of dimension k(n − k).

Today I want to concentrate on counting points in a Grassmann variety over a
finite field, and what that has to do with GL(n).

There is one obvious k-dimensional subspace of F n: the collection of vectors
whose last n−k coordinates are all zero. This subspace has a natural identification
with F k, and I’ll write it as F k ⊂ F n. If g ∈ GL(n, F ), then

(1) g · F k = span of the first k columns of g.

Now the first k columns of a matrix in GL(n, F ) can be any k linearly indepen-
dent vectors. (The reason is that any set of k independent vectors can be enlarged
to a basis of F n; and the bases of F n are precisely the sets of columns of invertible
matrices.) In the language of group actions, this means

GL(n, F ) · F k = G(k, n)(F ).

That is, the Grassmann variety is a single orbit of GL(n, F ). (The mathematical
word is transitive: the action of GL(n, F ) on G(k, n)(F ) is transitive.)

Because of this fact, it is interesting to understand the isotropy group

(2) GL(n, F )F k = {g ∈ GL(n, F ) | g · F k = F k}.
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Proposition 1. Suppose 0 ≤ k ≤ n are integers. Then the isotropy group at F k

for the action of GL(n, F ) on the Grassmann variety G(k, n)(F ) is

GL(n, F )F k =

{

g =

(

A B

0 C

)

| A ∈ GL(k, F ),

C ∈ GL(n − k, F ), B ∈ M(k × (n − k), F ))

}

.

Here M(p × q, F ) is the collection of all p × q matrices with entries in F , and 0 is

the (n − k) × k zero matrix.

Proof. Because g ·F k is a k-dimensional subspace of F n (for any g ∈ GL(n, F )), it
is equal to F k if and only if it is contained in F k. We may therefore rewrite (2) as

(3) GL(n, F )F k = {g ∈ GL(n, F ) | g · F k ⊂ F k}.

A vector v ∈ F n belongs to F k if and only if its last n− k coordinates are zero. In
light of (1), we may therefore write (3) as

(4) GL(n, F )F k =

{

g ∈ GL(n, F ) | g =

(

A B

0 C

)

, A ∈ M(k × k, F ),

C ∈ M((n − k) × (n − k), F ), B ∈ M(k × (n − k), F ))

}

.

For a matrix g as in (4), det g = (det A)(det C); so g belongs to GL(n, F ) if and
only if both A ∈ GL(k, F ) and C ∈ GL(n − k, F ). �

Proposition 2. Suppose Fq is a finite field with q elements. Then

|GL(n, Fq)| = |G(k, n)(Fq)| · |GL(n, Fq)Fk
q
|

= |G(k, n)(Fq)| · |GL(k, Fq)| · q
k(n−k) · |GL(n − k, Fq)|.

Equivalently,

|G(k, n)(Fq)| =
|GL(n, Fq)|

qk(n−k) · |GL(k, Fq)| · |GL(n − k, Fq)|
.

The last three factors in the second formula count the elements of GL(n, Fq)Fk
q
,

as described in Proposition 1; they are the number of choices for the matrices A, B,
and C respectively. The entire formula is therefore our basic formula for counting
points in an orbit of a group action.

Last week Gabe Cunningham proved a formula for the number of elements in
the general linear group over a finite field:

(5) |GL(n, Fq)| = qn(n−1)/2
n

∏

k=1

(qk − 1).

It’s often useful to rewrite this a bit, by removing the common factor of q − 1 from
each of the last n factors:

(6)

|GL(n, Fq)| = qn(n−1)/2(q − q)n
n

∏

k=1

qk − 1

q − 1

= qn(n−1)/2(q − 1)n
n

∏

k=1

(qk−1 + qk−2 + · · · + 1).
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Definition 2. Suppose f is a function taking integer values. (I haven’t specified the
domain; often it’s the non-negative integers, but anything is allowed.) Explicitly,

f : X → Z.

A q-analogue of f is a function

fq: S → Z[q]

taking values in polynomials in q, with the property that f1 = f ; that is, that the
value at q = 1 of the polynomial fq(s) is equal to the integer f(s).

It’s clear that a q-analogue of f is not unique. (There is always a stupid q-
analogue, in which fq(s) is the constant polynomial f(s).) But some q-analogues
arise often enough to have names of their own; they’re called “the” q-analogue,
even though there are others. The q-analogue of n (defined for every non-negative
integer n) is

[n]q =

n
∑

j=1

qn−j = qn−1 + qn−2 + · · · + 1 =
qn − 1

q − 1
.

We use the convention that an empty sum is zero, so

[0]q = 0

[1]q = 1

[2]q = q + 1

[3]q = q2 + q + 1.

The q-analogue of n! (defined for every non-negative n is

[n!]q =

n
∏

k=1

[n]q =

n
∏

k=1

qn − 1

q − 1
.

We use the convention that an empty product is 1 (why is that reasonable?), so
that [0!]q = 1. For example,

[3!]q = 1(q + 1)(q2 + q + 1) = q3 + 2q2 + 2q + 1.

Using these factorials, we can formally define the q-analogue of
(

n
k

)

as

[

n

k

]

q

=
[n!]q

[k!]q [(n − k)!]q
.

It isn’t clear from this definition that this function of n and q is actually a poly-
nomial (with integer coefficients) in q. We’ll see that eventually. One reason that
this definition is interesting is Proposition 4 below.

You can read much more about q-analogues in Quantum Calculus, by Victor Kac
and Pokman Cheung.
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Using Definition 2, we can rewrite the formula (6) for the cardinality of GL(n, Fq)
as

(7) |GL(n, Fq)| = qn(n−1)/2(q − 1)n[n!]q .

This is a q-analogue of 1, times a q-analogue of 0, times “the” q-analogue of n!. By
ignoring the zero part, we get a really important metamathematical idea:

(8) GL(n, Fq) is a q-analogue of the symmetric group Sn.

This isn’t mathematics: there’s no definition of a q-analogue of a group along the
lines of Definition 2. But it’s a useful idea to keep in mind. Ideas that tell you
something about GL(n, Fq) may often tell you something about Sn, and vice versa.

Now we can plug (7) (three times, for n and k and n−k) into the second formula
of Proposition 2, and get

Proposition 3. Suppose Fq is a finite field with q elements. Then

|G(k, n)(Fq)| =
[n!]q

[k!]q[(n − k)!]q
=

[

n

k

]

q

.

That is, the number of k-dimensional subspaces of Fn
q is equal to the q-binomial

coefficient

[

n

k

]

q

.

To prove this, one has to check that the powers of (q − 1) all cancel (easy), and
that the powers of q all cancel (straightforward but not quite as easy; I usually have
to do it a couple of times before I get the signs right). I’ll omit the details.

The metamathematical idea here is

(9) G(k, n)(Fq) is a q-analogue of k-element subsets of {1, . . . , n}.

This statement has a bit more concrete content than (8): the cardinality of the first
set is indeed a q-analogue of the cardinality of the second, according to Proposition
3.

There are many cheerful facts about binomial coefficients, and many of these
facts have q-analogues. Here is the most fundamental.

Proposition 4. Suppose 0 < k < n are strictly positive integers. Then

[

n

k

]

q

= qn−k

[

n − 1
k − 1

]

q

+

[

n − 1
k

]

q

=

[

n − 1
k − 1

]

q

+ qk

[

n − 1
k

]

q

.

Notice that the two formulas here are not the same when q is not 1. If I get
ambitious I’ll prove this formula in the seminar on Tuesday, but I’m too lazy to
write the proof here.

The formula in Proposition 4 implies (by induction on n) that the q-binomial
coefficient is indeed a polynomial in q, with non-negative integer coefficients. The
next Proposition more or less gives an interpretation for the coefficients: it says
that they solve a certain counting problem.
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Proposition 4. Suppose 0 ≤ k ≤ n are non-negative integers. Write

N = {1, 2, . . . , n}.

Fix a k-element subset

S = {i1 < i2 < · · · < ik} ⊂ N.

We attach to S a non-negative integer

l(S) =
k

∑

j=1

number of elements of N − S strictly larger than ik.

(1) We have l(S) ≤ k(n − k), with equality if and only if S = {1, 2, . . . , k}.
(2) We have l(S) ≥ 0, with equality if and only if S = {n−k+1, n−k+2, . . . , n}.
(3) The q-binomial coefficient satisfies

[

n

k

]

q

=
∑

S⊂N,|S|=k

ql(S).

Consequently the q-binomial coefficient is a polynomial with non-negative coeffi-

cients, of degree k(n − k), with constant and leading coefficients both equal to 1.

You should be able to see (1) and (2) pretty easily; the tricky part is (3). Again
I’ll hope to prove this in the seminar.


