
Free associative algebras

February 16, 2015

The point of these notes is to recall some linear algebra that we’ll be
using in many forms in 18.745. You can think of the notes as a makeup for
the canceled class February 10.

Vector spaces can be thought of as a very nice place to study addition.
The notion of direct sum of vector spaces provides a place to add things
even in different vector spaces, and turns out to be a very powerful tool for
studying vector spaces. The theory of bases says that any vector space can
be written as a direct sum of lines.

In the same way, algebras are a very nice place to study multiplication.
There is a notion analogous to direct sum, called tensor product, which
makes it possible to multiply things even in different vector spaces. The
theory of tensor products turns out to be a very powerful tool for studying
algebras. I won’t write down the definition of tensor product (which you
can find in lots of serious algebra books, or even on Wikipedia); but I will
write the key property relating them to bilinear maps.

Suppose U1, U2, and W are vector spaces over the same field k. A
bilinear map from U1 × U2 to W is a function

β : U1 × U2 →W (0.1)

which is assumed to be linear in each variable separately:

β(au1 + bu′1, u2) = aβ(u1, u2) + bβ(u′1, u2),

β(u1, cu2 + u′2) = cβ(u1, u2) + dβ(u1, u
′
2)

(0.2)

(all u1, u
′
1 in U1, all u2, u

′
2 in U2, and all a, b, c, d in k). Examples of bilinear

maps that you should know include a bilinear form on a vector space V0
(in which case U1 and U2 are both V0, and W is k); and composition of
linear maps (in which case U1 is Hom(V2, V3); U2 is Hom(V1, V2); and W is
Hom(V1, V3)). (I am writing Hom(V,W ) for the vector space of all k-linear
maps from V to W .)
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You should convince yourself that that the collection of bilinear maps
from U1 × U2 to W is in a natural way a vector space. As far as I can tell
there is not a standard notation for this vector space, but we could call it

Bil(U1, U2;W ) = all bilinear maps from U1 × U2 to W . (0.3)

You should convince yourself that there are natural vector space isomor-
phisms

Bil(U1, V2;W ) ' Hom(U1,Hom(U2,W )) ' Hom(U2,Hom(U1,W )). (0.4)

Here are the basic properties of tensor products of vector spaces. Suppose
U1 and U2 are vector spaces over the same field k. The tensor product of U1

and U2 is a vector space U1 ⊗ U2 over k with the following properties

1. There is a bilinear map

U1 × U2 → U1 ⊗ U2, (u1, u2) 7→ u1 ⊗ u2. (0.5a)

2. Tensor product is a covariant functor in the variables U1 and U2. That
is, any linear maps Ti : Ui → Vi induce a linear map

T1⊗T2 : U1⊗U2 → V1⊗V2, T1⊗T2(u1⊗u2) = (T1(u1))⊗(T2(u2)).
(0.5b)

3. If {ui1 | i ∈ I} is a basis of U1, and {uj2 | j ∈ J} is a basis of U2, then

{ui1 ⊗ u
j
2 | (i, j) ∈ I × J} is a basis of U1 ⊗ U2.

4. If U1 and U2 are finite-dimensional, then

dim(U1 ⊗ U2) = dim(U1) · dim(U2). (0.5c)

5. If β : U1 × U2 → W is any bilinear map, then there is a unique linear
map B : U1 ⊗ U2 →W with the property that

B(u1 ⊗ u2) = β(u1, u2) (u1 ∈ U1, u2 ∈ U2) (0.5d)

The last statement is the universality property which is the reason-for-being
of the tensor product. It may be written

Bil(U1, U2;W ) ' Hom(U1 ⊗ U2,W ). (0.5e)
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In terms of the natural isomorphisms (0.4), this amounts to

Hom(U1 ⊗ U2,W ) ' Hom(U1,Hom(U2,W )) ' Hom(U2,Hom(U1,W )).
(0.5f)

The first equality says that the tensor product functor U1 7→ U1 ⊗ U2 is a
left adjoint to the Hom functor W 7→ Hom(U2,W ). (In both cases U2 is a
fixed “parameter.”)

Everything that’s written above about “bi” can be replaced by “multi,”
if we start not with two vector spaces U1 and U2 but with n (for any positive
integer n). We can therefore define an n-fold tensor product U1 ⊗ · · · ⊗ Un,
spanned by elements u1 ⊗ · · · ⊗ un, with the property that

Mult(U1, . . . , Un;W ) ' Hom(U1 ⊗ · · · ⊗ Un,W ). (0.6a)

Here’s why it’s not necessary to define n-fold tensor products separately.
Suppose n = p+ q, with p and q both positive integers. It’s easy to see that
an n-linear map from U1 × · · · × Un to W is the same thing as a bilinear
map

Mult(U1, . . . , Up;W )×Mult(Up+1, . . . , Up+q;W ). (0.6b)

This statement amounts to a natural isomorphism

[U1 ⊗ · · · ⊗ Up]⊗ [Up+1 ⊗ · · ·Up+q] ' U1 ⊗ · · ·Un. (0.6c)

Repeating this procedure, we find that any n-fold tensor product can be
expressed as an iterated binary tensor product, in fact usually in several
different ways. For example,

[U1 ⊗ U2]⊗ [U3] ' U1 ⊗ U2 ⊗ U3 ' [U1]⊗ [U2 ⊗ U3]. (0.6d)

The number of different ways of doing this in general is the (n+1)st Catalan
number: the number of ways of writing an n-fold product as an iteration of
2-fold products. Each way corresponds to some distribution of parentheses
in the iterated product; the isomorphisms arise by removing parentheses or
putting them back in. A little more precisely, the isomorphisms in (0.6d)
are characterized by

[u1 ⊗ u2]⊗ [u3] 7→ u1 ⊗ u2 ⊗ u3 7→ [u1]⊗ [u2 ⊗ u3].

Recall that an algebra over a field k is a vector space A over k endowed
with a bilinear multiplication map

∗ : A×A→ A. (0.7a)
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Equivalently (because of (0.5d)), we can think of ∗ as a linear map

Π: A⊗A→ A. (0.7b)

(The capital Π is meant to stand for “product.”) Because of functoriality of
tensor product (0.5b), linear maps

iV : V → A, iW : W → A

induce
iV⊗W = Π ◦ (iV ⊗ iW ) : V ⊗W → A.

We say that V generates A if the smallest subalgebra of A containing
the image of iV is A itself. This smallest subalgebra is written

〈V 〉 = smallest subalgebra containing im iV . (0.7c)

It is easy to see that

〈V 〉 = im iV + im iV⊗V + im i[V⊗V ]⊗[V ] + im i[V ]⊗[V⊗V ] + · · · (0.7d)

Here the first term is the image of V ; the second is the span of all products
of two elements of V ; and the next two are all products of three elements of
V . The next terms in · · · are five terms like i[V⊗V ]⊗[V⊗V ] representing all
products of four terms from V (with parentheses arranged in any of the five
possible ways).

The kernels of these linear maps can be thought of as relations: special
properties of the multiplication in A that are not consequences of the bi-
linearity assumption. For example, the assertion that elements of V satisfy
the commutative law amounts to the statement that

ker iV⊗V ⊃ {v ⊗ v′ − v′ ⊗ v | v, v′ ∈ V }.

The assertion that elements of V satisfy the associative law is

i[V⊗V ]⊗[V ] = i[V ]⊗[V⊗V ];

here the equality is interpreted by identifying the domains of the linear maps
using (0.6d).

To say that a mathematical object is “free” is to say that it the only
relations that are true are the ones forced by the nature of the object. This
leads to the following two definitions.
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Definition 0.7e. Suppose V is a vector space over k. The free algebra
generated by V is the direct sum

F(V ) = V ⊕ (V ⊗ V )⊕ ([V ⊗ V ]⊗ V )⊕ (V ⊗ [V ⊗ V ])⊕ · · ·

The summands are various iterated tensor products of V ; there is one iter-
ated tensor product with n terms for each way of writing the n-fold tensor
product as an iteration of 2-fold tensor products (that is, the n−1st Catalan
nunber).

The definition of multiplication ∗ on F(V ) is that a p-fold iterated tensor
product times a q-fold iterated tensor product is given by the corresponding
p+ q-fold iterated product. That is, for example,

? : V × [V ⊗ V ]⊗ V → V ⊗ [[V ⊗ V ]⊗ V ]

is the natural map of (0.5a). In words, F(V ) is spanned by all possible
iterated tensor products of elements of V :

v1, v2 ⊗ v3, [v4 ⊗ v5]⊗ v6, v7 ⊗ [v8 ⊗ v9],

and so on.

If we impose the associative law, we get a much smaller and more com-
prehensible algebra.

Definition 0.7f. Suppose V is a vector space over k. For k ≥ 1, the kth
tensor power of V is the k-fold tensor power

T k(V ) = V ⊗ · · · ⊗ V (k factors).

We define T 0(V ) = k. The free associative algebra generated by V , more
often called the tensor algebra of V , is

T (V ) =

∞⊕
k=0

T k(V ).

The algebra structure, usually written ⊗, is given by the identifications
(0.6c) of iterated tensor products with n-fold tensor products:

⊗ : T p(V )× T q(V )→ T p+q(V );

I’ll leave to you the little modifications needed for p or q equal to zero.
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The tensor algebra is actually the free associative algebra with (multi-
plicative) identity. To get a free associative algebra without identity, we
should take just

⊕∞
k=1 T

k(V ); but we’ll have no occasion to do that.
The definition of the Weyl algebra in the second problem set is

A(V ) = T (V )/(ideal generated by v ⊗ w − w ⊗ v − ω(v, w)); (0.8)

here v and w are elements of V , so v ⊗ w − w ⊗ v ∈ T 2(V ), and ω(v, w) is
an element of k = T 0(V ).

6


