
3. GEOMETRY OF FLAG MANIFOLDS

AND REPRESENTATION THEORY.

These notes are intended to be a substitute for the cancelled class on March 19.
The title is more appropriate for a multi-volume book series than for a few pages,
but (as they say in the shooting-into-the-air business (see

http://www.theonion.com/archive/archive 39.html

issue 06)) it’s important to aim high.
A possible subtitle for the book series would be, “Why representation theorists

and algebraic geometers don’t understand each other.” One of the fundamental
meta-facts about general algebraic varieties is that they have very few subvarieties.
Faltings’ work in the direction of Fermat’s last theorem says that for n ≥ 3, the
projective algebraic curve xn + yn + zn = 0 has only a finite number of rational
points. Representation theory people tend to be interested mostly in a very small
family of very peculiar algebraic varieties, which are overflowing with subvarieties.
This difference in perspective shows up at the very beginning, with projective space.
For algebraic geometers, projective space is just some large boring workshop in
which one can fashion beautiful little pieces of art. For representation theorists,
projective space is (more or less) the only algebraic variety you need.

Here is the plan. I’ll sketch the easiest facts about flag manifolds; then I’ll ex-
plain how to interpret them as facts about homogeneous spaces for GL(n) (modulo
parabolic subgroups). In this form they make sense for arbitrary reductive groups
(modulo parabolic subgroups), and I’ll state the corresponding facts there. Finally
I’ll try to relate this geometry to the reducibility of principal series representations.

Much of this material makes sense over arbitrary base fields (instead of the real
numbers), and I’ll try to keep that possibility in view. The representation theory at
the end needs some topology on the groups, but still makes sense over any locally
compact field.

So suppose F is any field and V is an n-dimensional vector space over F . The
projective space of V is

P(V ) = one-dimensional subspaces of V (3.1)

≃ {V − {0}}/F×.

A more algebro-geometric statement would be that these are the F -rational points
of the algebraic variety consisting of one-dimensional F -subspaces of the vector
space V (F ) = V ⊗F F . The fact that any line defined over F actually has non-
zero points in V —that is, non-trivial points defined over F—is either almost trivial
(from the point of view of linear algebra), or deeply surprising (from the point of
view of algebraic geometry).

The variety P(V ) carries some interesting vector bundles. (A vector bundle
means at least an F -vector space attached to each point of P(V ). Since I have
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not introduced any topology, we can’t speak about “continuous dependence” of the
vector space on the point. In this generality the best way to impose such continuity
is using algebraic geometry; but since I have already adopted a scornfully negative
tone toward algebraic geometry, I will not pursue it. You can read about algebraic
vector bundles in Hartshorne.) First there is the tautological line bundle L, whose
fiber Lx at a point x ∈ P(V ) is x, regarded as a one-dimensional subspace of V .
Next, there is the trivial n-dimensional vector bundle V , whose fiber at every point
x is equal to V . (The total space of V is therefore P(V ) × V .) We can combine
one interesting example and one trivial one to get another interesting example, the
(n − 1)-dimensional quotient vector bundle Q, whose fiber Qx at x is V/Lx. Using
these building blocks, one can construct more vector bundles using the vector space
functors of linear algebra: dual space, tensor powers, exterior powers, and so on.

It is worth pausing a moment to consider the question of finding sections of these
vector bundles. (Recall that a section of a vector bundle V → X is a map from X
to V whose value at x belongs to the vector space Vx.) A section of the tautological
line bundle L on P(V ) assigns to each line in V a particular element of that line.
If V is one-dimensional (so that P(V ) consists of a single point), then a section of
L is just an element of V . If the dimension of V is greater than one, then the only
“nice” way (precisely, the only algebraic way) to pick a point in every line is to pick
zero in every line. That is, the only (algebraic) section of L is zero.

An (algebraic) section of V is an (algebraic) map from the (connected projective)
variety P(V ) to the (affine) variety V . Such a map must be constant: the only
(algebraic) sections of V are the constant sections, sending each line x to the same
vector v ∈ V .

A section of Q assigns to each point x a class in the quotient space V/Lx. If V
has dimension one, the quotient bundle is zero, and obviously the only section is
zero. If V has dimension greater than one, then (not so obviously) the algebraic
sections of Q are all given by fixing v ∈ V , and assigning to x the class

ξv(x) = v + Lx ∈ Qx.

In this case the section ξv vanishes precisely on the set of lines containing v. This
zero set is all of P(V ) if v = 0, and it is the single point Fv ∈ P(V ) if v 6= 0.

I said that P(V ) was the only algebraic variety we would need. This was a
pedagogically useful half-truth. The next order of business is to introduce partial
flag varieties (a necessary generalization of projective space) and then to see in
what sense they are built out of projective spaces. A flag size for n is a subset π
of {0, 1, 2, . . . , n − 1, n} that contains both 0 and n. We write it as

π = {p0, . . . , pm}, 0 = p0 < p1 < · · · < pm−1 < pm = n. (3.2)(a)

A flag of size π in V is a collection x of subspaces of V ,

0 = W0(x) ⊂ W1(x) ⊂ · · · ⊂ Wm−1(x) ⊂ Wm(x) = V, (3.2)(b)

subject to the conditions
dimWi(x) = pi. (3.2)(c)

We are now in a position to define the variety of partial flags in V of size π as

Fπ(V ) = flags of size π in V

= {collections x = {Wi(x)} of subspaces of V with dimWi(x) = pi,

0 = W0(x) ⊂ W1(x) ⊂ · · · ⊂ Wm−1(x) ⊂ Wm(x) = V }.
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Just as for projective space, we could make a more algebro-geometric formulation:
that these are the F -rational points of the algebraic variety consisting of flags of
size π in the F -vector space V (F ).

Some of these partial flag varieties are very familiar. If π = {0, n}, then the
unique flag of size π is 0 ⊂ V ; so F{0,n}(V ) consists of a single point. If π = {0, 1, n}
(and n is at least 1, so that π is a well-defined flag size for n) then Fπ(V ) = P(V ).
More generally, if k is any integer between 0 and n, and π = {0, k, n} then Fπ(V ) =
Grk(V ), the Grassmann variety of k-dimensional subspaces of V .

Each partial flag variety comes equipped with many natural vector bundles. Still
writing π as in (3.2)(a), we will be interested particularly in the bundles E(π)i (for
i = 1, . . . , m) defined by

E(π)i,x = Wi(x)/Wi−1(x) (3.3)

for x ∈ Fπ(V ) and with notation as in (3.2)(b). This is a vector bundle of dimension
pi − pi−1.

Here is a collection of elementary facts about partial flag varieties.

Theorem 3.4. Suppose that V is an n-dimensional vector space over F , and π ⊂ ρ
are two flag sizes for n (cf. (3.2)). Write

π = {p0, p1, . . . , pm}, 0 = p0 < p1 < · · · < pm−1 < pm = n.

The larger flag size ρ = {r0, . . . , rM} is obtained by interspersing additional terms
among the p’s. List the terms added between pi−1 and pi as

pi−1 = pi−1 + ai
0 < pi−1 + ai

1 < pi−1 + ai
2 < · · · < pi−1 + ai

M(i) = pi.

Then
{rj | 0 ≤ j ≤ M} = {pi−1 + ai

k | 1 ≤ i ≤ m, 0 ≤ k ≤ M(i)}.

(1) The appearance of the pi among the rj may be written explicitly as

p0 = r0, p1 = rM(1), p2 = rM(1)+M(2), . . . , pm = rM(1)+···+M(m) = n.

Furthermore
αi = {ai

0, . . . , ai
M(i)}

is a flag size for pi − pi−1.
(2) There is a natural map (actually a morphism of algebraic varieties)

φρ
π: Fρ(V ) → Fπ(V ),

sending the point y = {Wj(y)} to

x = φρ
π(y), Wi(x) = WM(1)+M(2)+···+M(i)(y).

(3) The fiber of φρ
π over the point x ∈ Fπ(V ) may be identified with a product

of partial flag varieties. Explicitly,

(φρ
π)−1(x) ≃ Fα1(W1(x)/W0(x)) × · · · × Fαm(Wm(x)/Wm−1(x)).
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(4) Let E(π)i be the vector bundle over Fπ(V ) defined in (3.3), and let

F = (φρ
π)∗E(π)i

be its pullback to Fρ(V ). Then F has a filtration by subbundles

0 = F0 ⊂ F1 ⊂ · · · ⊂ FM(i) = F ,

with the property that

F j/F j−1 ≃ E(ρ)M(1)+···+M(i−1)+j .

Sketch of proof. Part (1) is just a matter of sorting out the notation. The map in
part (2) is well-defined because of (1). Part (3) follows from the identification of
subspaces of Wi(x) containing Wi−1(x) with subspaces of Wi(x)/Wi−1(x). In part
(4), the fiber of F at y is by definition the fiber of E(π)i at x = φρ

π(y). This fiber is

Wi(x)/Wi−1(x) = WP

i

k=1
M(k)(y)/WP

i−1

k=1
M(k)(y).

This fiber is filtered by the various Wj(y), with j running from
∑i−1

k=1 M(k) to∑i
k=1 M(k). The statement follows. �

Suppose V → X is an n-dimensional vector bundle over a space X , and π is
a flag size for n. We can make a new space Fπ(V) → X : the fiber over a point
x ∈ X is Fπ(Vx), the collection of all flags of size π in the vector space Vx. If we
are working in the category of smooth manifolds, then Fπ(V) is a smooth manifold,
and the map to X is a proper submersion. In the category of algebraic varieties,
the map from Fπ(V) to X is again smooth and proper, so that the new variety
is smooth whenever X is. In either of these settings we can describe the tangent
space to Fπ(V) at a point ξ that maps to x ∈ X : there is a short exact sequence of
vector spaces

0 → Tξ(Fπ(Vx)) → Tξ(Fπ(V)) → Tx(X) → 0. (3.5)

Here the first term is a tangent space to a flag variety, and the last is a tangent
space to the base space X .

The simplest case of this construction has π = {0, k, n}; then Fπ(V) is the bundle
of k-dimensional subspaces of V . When k = 1 we get P(V), the bundle of lines in
the vector bundle V . In differential geometry it is perhaps more common to work
with the bundle of spheres in a vector bundle with a metric, but the idea is exactly
the same.

Theorem 3.4 exhibits the flag variety Fρ(V ) (corresponding to the larger flag size
ρ) as a flag bundle over Fπ(V ). (More precisely, the construction in the theorem
involves several different vector bundles.) If we obtain ρ from π by adding a single
dimension pi−1 + k between pi−1 and pi, then Fρ(V ) is the Grassmanian bundle of
k-dimensional subspaces of the vector bundle E(π)i:

Fρ(V ) = F{0,k,pi−pi−1}(E(π)i). (3.6)

By iterating this construction (adding numbers to a flag size one by one), we find
that any partial flag variety is a bundle of Grassmannian varieties over a bundle of
Grassmannian varieties over . . . .

So what? One consequence is that information about Grassmannian varieties can
often be inflated into information about general flag varieties. Here is an example.
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Theorem 3.7. Suppose that V is an n-dimensional vector space over F , and ρ is
a flag size for n (cf. (3.2)). Write

ρ = {r0, r1, . . . , rM}, 0 = r0 < r1 < · · · < rM−1 < rM = n.

(1) The dimension of Fρ(V ) (as an algebraic variety, or as a smooth manifold
if F = R) is equal to

∑

1≤i<j≤M

(rj − rj−1)(ri − ri−1) =

M∑

j=1

(rj − rj−1)rj−1 =

M∑

i=1

(n − ri)(ri − ri−1).

(2) The tangent bundle TFρ(V ) has a filtration with subquotients

Hom(E(ρ)i, E(ρ)j), 0 < i < j ≤ m.

Here E(ρ)i is the vector bundle defined in (3.3).

Sketch of proof. The tangent bundle may be interpreted in the sense of smooth
manifolds if F = R; for other fields one should use a definition from algebraic
geometry. The calculation of dimensions in (1) is immediate from the statement
about tangent bundles in (2), so we concentrate on that. The proof will proceed
by induction on M . If M = 1, then ρ = {0, n}, and the flag variety is reduced to
a single point. The tangent bundle is zero, which has a trivial filtration with no
subquotients, as is asserted in (2). So we may assume that M ≥ 2. In this case we
can find a flag size π for n by removing exactly one element of ρ (other than 0 or
n). We are then in the setting of Theorem 3.4, with m = M − 1; so we fix a point
y of Fρ(V ) mapping to x. The various flag sizes αi defined in Theorem 3.4 are all
the trivial ones {0, pi − pi−1}, with a single exception

αi0 = {0, k, pi0 − pi0−1}. (3.8)(a)

The flag varieties Fαi(Wi(x)/Wi−1(x)) are therefore all just single points, except
for

Fαi0 (Wi0(x)/Wi0−1(x)) = k-dimensional subspaces of Wi0 (x)/Wi0−1(x) (3.8)(b)

As a consequence of part (3) of Theorem 3.4, and of (3.5), we get a short exact
sequence

0 → Ty(Fαi0 (Wi0 (x)/Wi0−1(x))) → Ty(Fρ(V )) → Tx(Fπ(V )) → 0. (3.8)(c)

By inductive hypothesis, the last tangent space TxFπ has a filtration with sub-
quotients equal to the various

Hom(E(π)i,x, E(π)j,x), 1 ≤ i < j ≤ M − 1. (3.8)(d)

Because of the relationship between π and ρ, and the definition (3.3), we find

E(π)i,x = E(ρ)i,y 1 ≤ i < i0; (3.9)(a)
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there is a short exact sequence

0 → E(ρ)i0,y → E(π)i0,x → E(ρ)i0+1,y → 0; (3.9)(b)

and
E(π)i,x = E(ρ)i+1,y i0 < i < M. (3.9)(c)

Consequently

Hom(E(π)i,x, E(π)j,x) = Hom(E(ρ)i,y , E(ρ)j,y), 1 ≤ i < j < i0; (3.9)(d)

Hom(E(π)i,x, E(π)j,x) = Hom(E(ρ)i,y , E(ρ)j+1,y), 1 ≤ i < i0 < j < M ;
(3.9)(e)

and

Hom(E(π)i,x, E(π)j,x) = Hom(E(ρ)i+1,y , E(ρ)j+1,y), i0 < i < j < M. (3.9)(f)

Similarly, there are short exact sequences

0 →Hom(E(ρ)i,y , E(ρ)i0,y) → Hom(E(π)i,x, E(π)i0,x) →
(3.9)(g)

Hom(E(ρ)i,y , E(ρ)i0+1,y) → 0, 1 ≤ i < i0,

and

0 →Hom(E(ρ)i0+1,y, E(ρ)j+1,y) → Hom(E(π)i0,x, E(π)j,x) →
(3.9)(h)

Hom(E(ρ)i0,y, E(ρ)j+1,y) → 0, i0 < j < M.

Combining the various identifications in (3.9) with (3.8)(d), we find that the
tangent space TxFπ(V ) has a filtration with subquotients equal to all of the various

Hom(E(ρ)i,y , E(ρ)j,y), 1 < i < j ≤ M

except for i = i0 and j = i0 + 1. In light of (3.8)(c), we will therefore be done as
soon as we prove

Lemma 3.10. Suppose V is an n-dimensional vector space, and W is a subspace
of dimension k. Write α = {0, k, n} for the flag size corresponding to the Grass-
mannian of k-dimensional subspaces. Identify W with a point y of Fα(V ). Then
the tangent space at y to the Grassmannian is

Ty(Fα(V )) = Hom(W, V/W ) = Hom(E(α)1,y , E(α)2,y).

This is the case M = 2 of Theorem 3.7.

Proof of Lemma 3.10. We use the group G = GL(V ) of invertible linear transfor-
mations on V . We can take F = R and think of G as a Lie group, or work over an
arbitrary field and think of G as an algebraic group. In either case G is an open
subset of the vector space EndV of all linear transformations of V . Consequently
the Lie algebra g of G, which as a vector space is the tangent space at the identity
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to G, may be identified naturally with EndV . The Lie bracket is commutator of
linear transformations. If G acts transitively on a manifold (or algebraic variety) X ,
then the isotropy group H = Gx of a point x ∈ X is a Lie (or algebraic) subgroup
of G. Under a separability assumption (automatic if F has characteristic zero, and
true for the Grassmann varieties in general; I won’t discuss it, but you could look
at [Borel], Proposition II.6.7) there is a natural identification of tangent spaces

Tx(X) ≃ TeH(G/H) ≃ g/h. (3.11)(a)

The action of GL(V ) on k-dimensional subspaces of V is transitive, so (writing
H for the stabilizer of the subspace W ) we get Fα(V ) ≃ G/H . Clearly

H = {g ∈ GL(V ) | g(W ) ⊂ W} = {g ∈ G | image of g(W ) in V/W is zero}.
(3.11)(b)

This condition is easy to differentiate, and we find that the Lie algebra of H is

h = {T ∈ EndV | T (W ) ⊂ W} = {T ∈ EndV | image of T (W ) in V/W is zero}.
(3.11)(c)

Dividing all endomorphisms by this subspace, we find

g/h ≃ Hom(W, V/W ). (3.11)(d)

�

Since we had already succeeded in reducing Theorem 3.7 to the case of Grass-
mann varieties, this completes the proof of Theorem 3.7. �
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