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What’s the topic?
Compact Lie groups K studied by Weyl, Cartan.

1. Irreducible representations φ(λ)! λ ∈ T̂ /W .
2. T max torus; T̂ ⊂ t∗ lattice in complex vector space.
3. Reps all finite-dimensional, all unitary.
4. dim φ(λ) = polynomial in λ, degree = 1

2 dim K /T .
Noncompact grps G(R) studied by Harish-Chandra.

1. Irreducible representations π(ξ)! ξ ∈ Ĥ(R)/WH(R).
2. H(R) Cartan subgroup; Ĥ(R) = Λ × a∗ ⊂ h∗;
3. lattice times complex vector space;

rk Λ + dimC a = dimR H(R).
4. Most π(ξ) infinite-dimensional, many non-unitary.

But Weyl’s finite-diml {φG(R)(λ)} ⊂ {π(ξ)}.
Almost all φG(R)(λ) are non-unitary.
Question today: How non-unitary are they?
Joint work with MIT undergraduate Christopher Xu,
MIT grad student Daniil Kalinov.
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Where does that problem come from?

Classifying reps is algebraic: use algebraic geometry, etc.

Interesting reps are unitary reps, a subset of all repns.

Identify subset in two steps:

1. Is there invariant Hermitian form? (algebraic)
2. Is the form positive? (analytic)

Cartan: ∃ invt form on most φG(R)(λ), not positive.

General π(ξ): Analysis is hard; replace (2) by

2.′ What is signature of form? (algebraic)

Have algorithm (Adams/van Leeuwen/Trapa/V) 
signature of invt Herm form on any π(ξ).

Suggests question: what’s signature of form on φG(R)(λ)?

V n-diml with Herm form signature (p,q) Sig(V ) = |p − q|.
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Solution in an example
G(C) = GLn(C), subgps K = Un, G(R) = GLn(R).

λ = (λ1, . . . , λn) decreasing integers φ(λ) = GLm(C) irr.

dim φ(λ) =
∏

i<j
(λi−λj+i−j)

i−j , poly of degree (n
2).

Restrictions φK (λ), φG(R)(λ) both irreducible.

φK (λ) always has invt Hermitian form, always positive
definite: Sig(φK (λ)) = dim φ(λ).

φG(R)(λ) has invt form ⇐⇒ λj + λn−j+1 = 0.

If form exists, σ(λ) =def Spin(n) repn (λ1 + 1/2, . . . , λ[n/2] + 1/2).

Sig(φG(R)(λ)) =
dimσ(λ)

dimσ(0)

= poly of deg

(n/2)(n/2 − 1) n even
(n/2 − 1/2)2 n odd

.
dim φ = Sig(φ)2 ·

[n/2]∏
i=1

2λi + n − 2i + 1
n − 2i + 1︸                      ︷︷                      ︸

this term is ≥ 1

Sig small: very indef.
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How was the problem solved?

Jeff Adams used (his!) atlas software interesting
signatures of forms on fin diml reps.

MIT undergraduate Chris Xu used atlas to compute
many signatures for GLn(R).

Calculations XU CONJECTURE:

Sig(GLn(R) rep ) = cn · dim(Spinn rep ).

Xu conjecture grad student Daniil Kalinov proved

Sig(GLn(R) rep ) ≤ cn · dim(Spinn rep ).

Kalinov + Huang-Pandzic1 Dirac pf of Xu conjecture.

1DV contribution: I’m old enough to remember this work
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Structure of GLn

Lie(GLn(R)) =def gln(R) = all real n × n matrices.
Lie(On(R)) =def on(R)) = n × n skew-symm matrices.
pn(R) = real n × n symmetric matrices matrices,
gln(R) = on(R) ⊕ pn(R) Cartan decomposition.

Lie(GLn(C)) =def gln(C) = complex n × n matrices.
Lie(Un) =def un = n × n skew-hermitian matrices.
hn = n × n hermitian matrices matrices,
gln(C) = un ⊕ hn = un ⊕ iun Cartan decomposition.

Two cases related: gln(R)⊗RC, un = on(R)⊕ ipn(R).
GLn(R) and Un are two real forms of GLn(C).



Signatures of
invariant Hermitian

forms
on

finite-dimensional
representations

David Vogan

Introduction

Classical
background

Old proofs

Computing
signature

Compact forms of noncompact groups

gln(R) = on(R) ⊕ pn(R), gln(C) = un ⊕ hn = un ⊕ iun

un = on(R) ⊕ ipn(R).

V = n-dimensional real vector space.

G(R) ⊂ GL(V ) connected semisimple Lie group.

Theorem (Cartan): can choose basis so that
G(R) ⊂ GLn(R) preserved by θ(g) = tg−1.

K (R) =def G(R) ∩On(R) maximal compact subgroup.

s(R) =def g(R) ∩ p(R), g(R) = k(R) ⊕ s(R)

G(C) ⊂ GLn(C)! g(R) ⊗R C cplx semisimple algebraic.

U(R) =def G(C) ∩ Un, Lie(U(R)) = k(R) ⊕ is(R).

Noncpt G(R), cpt U(R) are two real forms of same G(C).
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1st reason fin diml reps mostly not unitary

Write g(R) =
∑

j g(R)j , direct sum of simple.
Irr fin diml φ of g(R) is φ '

⊗
j φj accordingly.

φ Hermitian ⇐⇒ each φj Hermitian;
Sig(φ) =

∏
j Sig(φj).

If G(R)j noncompact,

φj , triv =⇒ φj faithful =⇒ φj(G(R)) noncompact
=⇒ φj nonunitary.

φ unitary ⇐⇒ φ trivial on each noncpt simple factor.
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2nd reason fin diml reps mostly not unitary

g(R) = g(R)θ ⊕ g(R)−θ = k(R) ⊕ s(R)

Theorem (Cartan). If τ : G(R)→ G1(R)
homomorphism of semisimple Lie groups, then
G1(R) has Cartan involution θ1 so θ1(τ(g)) = τ(θ(g)).

Corollary. If φ finite-dimensional rep of G(R), then
dφ(s(R)) diagonalizable, real eigenvalues.

Corollary. If φ fin-diml unitary of G(R), then

dφ(s(R)) = 0, dφ([s(R), s(R)]) = 0,

so φ factors to largest compact quotient of G(R).
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3rd reason fin diml reps mostly not unitary

G(R) = K (R) · A · N(R) Iwasawa decomposition.

a(R) =def max subalg of s(R), M =def ZK (R)(A),

Pmin(R) =def M · A · N(R) min parabolic of G(R),

TM =def max “torus” in M,

Hs(R) =def TMA max split Cartan in G(R).

∆+
s =def pos roots in ∆(g, hs) consistent with Pmin

= ∆(n, hs) ∪∆+(m, tM) = Iwasawa pos system.

X ∗(A) =def res to A of alg chars of Hs: R-valued chars.

λ ∈ X ∗(Hs) hwt of unitary φG(R)(λ) =⇒ λ|A = trivial.

Very difficult for a ∆+
S -dominant wt to vanish on A:

g(R) simple noncpt =⇒ only dom wt triv on A is 0.
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Linear algebra and Hermitian forms

V N-dimensional complex vector space

Sesquilinear form on V is pairing

〈, 〉 : V × V → C, 〈u1 + z · u2, v〉 = 〈u1, v〉+ z · 〈u2, v〉,
〈u, v1 + z · v2〉 = 〈u, v1〉+ z · 〈u, v2〉.

Hermitian form on V is sesq 〈, 〉 with 〈u, v〉 = 〈v ,u〉.

Herm dual = V h

=def {f : V → C, f (v1 + z · v2) = f (v1) + z · f (v2)}.

Sesquilinear form on V ! linear map T : V → V h,

〈u, v〉T = (Tu)(v).

Herm transpose: A : V →W  Ah : W h → V h, Ah(f )(v) =def f (Av).

A : V → V is Hermitian for sesquilinear 〈, 〉T ⇐⇒ TA = AhT h.
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Everything you know is wrong

Lin alg: Hermitian ops diagonalizable, real eigvals.

Wrong: depends on positive definite.

Proposition. V cplx 〈, 〉 nondeg Herm, signature = (P,Q),
A ∈ End(V ) hermitian operator.

1. Write Vλ = generalized eigenspace for A (λ ∈ C),
m(λ) = dim Vλ. Then 〈Vλ,Vµ〉 = 0 unless λ − µ = 0.

2. 〈, 〉 identifies V h
κ ' Vκ.

3. κ , κ not real =⇒ 〈, 〉 has signature (mκ,mκ) on Vκ + Vκ.

4. ρ = ρ real =⇒ 〈, 〉|Vρ = nondeg, signature (p(ρ),q(ρ)).

5. P −Q = (
∑
ρ real(p(ρ) − q(ρ)).

Conclusion: sig computed on real eigspaces of A.

B = −Bh =⇒ sig computed on imag eigspaces of B.
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Computing repn signature with weights

Sig computed on real eigspaces of A = Ah.

Sig computed on imag eigspaces of B = −Bh.

In Hermitian rep of g(R), Lie algebra acts by
skew-hermitian operators.

Recall Iwasawa Cartan Hs(R) = TMA; a(R) acts by
skew-Herm ops with real eigvals in fin diml rep.

Theorem. Suppose (φ,E) fin-diml Hermitian rep of G(R),
signature (P,Q). Define E0 = EA zero weight space, and
(P0,Q0) signature of form on E0. Then P −Q = P0 −Q0.

G(R) = SL(2,R) or SL(3,R): form is definite on zero
weight space, so |P −Q| = dim(zero weight space).

G(R) = SL(4,R), E = irr of hwt (2,1,−1,−2);
dim E = 175, signature = (90,85), dim E0 = 7, signature
on E0 = (6,1): indefinite.

Conclusion: isn’t easy to calculate sig using weights.
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