Signatures of invariant Hermitian forms on finite-dimensional representations

David Vogan

Department of Mathematics Massachusetts Institute of Technology

Lie Theory Day
National University of Singapore
22 March 2019

Signatures of invariant Hermitian forms on finite-dimensional

representations

David Vogan

introduction

Diassicai background

na proois

Outline

Introduction

Classical background

Classical proofs of nonunitarity

Signatures of Hermitian forms

Slides at http://www-math.mit.edu/~dav/paper.html

Signatures of invariant Hermitian forms on finite-dimensional representations

David Vogan

Introduction

lassical ackground

Old proofs

What's the topic?

Compact Lie groups K studied by Weyl, Cartan.

- 1. Irreducible representations $\phi(\lambda) \longleftrightarrow \lambda \in \widehat{T}/W$.
- 2. T max torus; $\widehat{T} \subset \mathfrak{t}^*$ lattice in complex vector space.
- 3. Reps all finite-dimensional, all unitary.
- 4. $\dim \phi(\lambda) = \text{polynomial in } \lambda$, $\text{degree} = \frac{1}{2} \dim K/T$.

Noncompact grps $G(\mathbb{R})$ studied by Harish-Chandra.

- 1. Irreducible representations $\pi(\xi) \longleftrightarrow \xi \in \widehat{H}(\mathbb{R})/W_{H(\mathbb{R})}$.
- 2. $H(\mathbb{R})$ Cartan subgroup; $\widehat{H}(\mathbb{R}) = \Lambda \times \mathfrak{a}^* \subset \mathfrak{h}^*$;
- 3. lattice times complex vector space; $\operatorname{rk} \Lambda + \dim_{\mathbb{C}} \mathfrak{a} = \dim_{\mathbb{R}} H(\mathbb{R}).$
- 4. Most $\pi(\xi)$ infinite-dimensional, many non-unitary.

But Weyl's finite-diml $\{\phi_{G(\mathbb{R})}(\lambda)\}\subset \{\pi(\xi)\}.$

Almost all $\phi_{G(\mathbb{R})}(\lambda)$ are non-unitary.

Question today: How non-unitary are they?

Joint work with MIT undergraduate Christopher Xu, MIT grad student Daniil Kalinov.

Signatures of invariant Hermitian forms

finite-dimensional representations

David Vogan

Introduction

backgroun

ola proois

Where does that problem come from?

Classifying reps is algebraic: use algebraic geometry, etc.

Interesting reps are unitary reps, a subset of all repns.

Identify subset in two steps:

- 1. Is there invariant Hermitian form? (algebraic)
- 2. Is the form positive? (analytic)

Cartan: \exists invt form on most $\phi_{G(\mathbb{R})}(\lambda)$, not positive.

General $\pi(\xi)$: Analysis is hard; replace (2) by

2.' What is signature of form? (algebraic)

Have algorithm (Adams/van Leeuwen/Trapa/V) \leadsto signature of invt Herm form on any $\pi(\xi)$.

Suggests question: what's signature of form on $\phi_{G(\mathbb{R})}(\lambda)$?

V n-diml with Herm form signature $(p, q) \rightsquigarrow \operatorname{Sig}(V) = |p - q|$.

Signatures of invariant Hermitian forms on finite-dimensional

representations

David Vogan

Introduction

background

na proois

Solution in an example

$$G(\mathbb{C}) = GL_n(\mathbb{C})$$
, subgps $K = U_n$, $G(\mathbb{R}) = GL_n(\mathbb{R})$.

$$\lambda = (\lambda_1, \dots, \lambda_n)$$
 decreasing integers $\rightsquigarrow \phi(\lambda) = GL_m(\mathbb{C})$ irr.

$$\dim \phi(\lambda) = \prod_{i < j} \frac{(\lambda_i - \lambda_j + i - j)}{i - j}$$
, poly of degree $\binom{n}{2}$.

Restrictions $\phi_K(\lambda)$, $\phi_{G(\mathbb{R})}(\lambda)$ both irreducible.

 $\phi_K(\lambda)$ always has invt Hermitian form, always positive definite: $\operatorname{Sig}(\phi_K(\lambda)) = \dim \phi(\lambda)$.

this term is > 1

$$\phi_{G(\mathbb{R})}(\lambda)$$
 has invt form $\iff \lambda_j + \lambda_{n-j+1} = 0$.

If form exists, $\sigma(\lambda) =_{def} Spin(n)$ repn $(\lambda_1 + 1/2, ..., \lambda_{\lfloor n/2 \rfloor} + 1/2)$.

$$\operatorname{Sig}(\phi_{G(\mathbb{R})}(\lambda)) = \frac{\dim \sigma(\lambda)}{\dim \sigma(0)}$$

= poly of deg
$$\begin{cases} (n/2)(n/2-1) & n \text{ even} \\ (n/2-1/2)^2 & n \text{ odd} \end{cases}$$

$$\dim \phi = \operatorname{Sig}(\phi)^2 \cdot \underbrace{\prod_{i=1}^{[n/2]} \frac{2\lambda_i + n - 2i + 1}{n - 2i + 1}}_{\text{min}}$$

Sig small: very indef.

Signatures of invariant Hermitian forms

on finite-dimensional representations

David Vogan

Introduction

background

Old proofs

How was the problem solved?

Jeff Adams used (his!) atlas software → interesting signatures of forms on fin diml reps.

MIT undergraduate Chris Xu used atlas to compute many signatures for $GL_n(\mathbb{R})$.

Calculations \(\times \text{XU CONJECTURE} :

$$\operatorname{Sig}(GL_n(\mathbb{R})\operatorname{rep}) = c_n \cdot \dim(\operatorname{Spin}_n\operatorname{rep}).$$

Xu conjecture → grad student Daniil Kalinov proved

$$\operatorname{Sig}(GL_n(\mathbb{R}) \operatorname{rep}) \leq c_n \cdot \dim(\operatorname{Spin}_n \operatorname{rep}).$$

Kalinov + Huang-Pandzic¹ Dirac → pf of Xu conjecture.

Signatures of invariant Hermitian forms on finite-dimensional

representations

David Vogan

Introduction

Ciassicai background

old proofs

¹DV contribution: I'm old enough to remember this work

Structure of GL_n

Lie($GL_n(\mathbb{R})$) = def $\mathfrak{gl}_n(\mathbb{R})$ = all real $n \times n$ matrices. Lie($O_n(\mathbb{R})$) = def $\mathfrak{o}_n(\mathbb{R})$) = $n \times n$ skew-symm matrices. $\mathfrak{p}_n(\mathbb{R})$ = real $n \times n$ symmetric matrices matrices, $\mathfrak{gl}_n(\mathbb{R})$ = $\mathfrak{o}_n(\mathbb{R}) \oplus \mathfrak{p}_n(\mathbb{R})$ Cartan decomposition.

Two cases related: $\mathfrak{gl}_n(\mathbb{R}) \otimes_{\mathbb{R}} \mathbb{C}$, $\mathfrak{u}_n = \mathfrak{o}_n(\mathbb{R}) \oplus i\mathfrak{p}_n(\mathbb{R})$. $GL_n(\mathbb{R})$ and U_n are two real forms of $GL_n(\mathbb{C})$.

Signatures of invariant Hermitian forms

finite-dimensional representations

David Vogan

ntroduction

Classical background

Old proofs

Compact forms of noncompact groups

$$\mathfrak{gl}_n(\mathbb{R}) = \mathfrak{o}_n(\mathbb{R}) \oplus \mathfrak{p}_n(\mathbb{R}), \quad \mathfrak{gl}_n(\mathbb{C}) = \mathfrak{u}_n \oplus \mathfrak{h}_n = \mathfrak{u}_n \oplus i\mathfrak{u}_n$$

$$\mathfrak{u}_n = \mathfrak{o}_n(\mathbb{R}) \oplus i\mathfrak{p}_n(\mathbb{R}).$$

V = n-dimensional real vector space.

 $G(\mathbb{R}) \subset GL(V)$ connected semisimple Lie group.

Theorem (Cartan): can choose basis so that $G(\mathbb{R}) \subset GL_n(\mathbb{R})$ preserved by $\theta(q) = {}^tq^{-1}$.

 $K(\mathbb{R}) =_{\mathsf{def}} G(\mathbb{R}) \cap O_n(\mathbb{R})$ maximal compact subgroup.

$$\mathfrak{s}(\mathbb{R}) =_{\mathsf{def}} \mathfrak{g}(\mathbb{R}) \cap \mathfrak{p}(\mathbb{R}), \quad \mathfrak{g}(\mathbb{R}) = \mathfrak{k}(\mathbb{R}) \oplus \mathfrak{s}(\mathbb{R})$$

 $G(\mathbb{C}) \subset GL_n(\mathbb{C}) \iff g(\mathbb{R}) \otimes_{\mathbb{R}} \mathbb{C}$ cplx semisimple algebraic.

$$U(\mathbb{R}) =_{\mathsf{def}} G(\mathbb{C}) \cap U_n, \qquad \mathsf{Lie}(U(\mathbb{R})) = \mathfrak{k}(\mathbb{R}) \oplus i\mathfrak{s}(\mathbb{R}).$$

Noncpt $G(\mathbb{R})$, cpt $U(\mathbb{R})$ are two real forms of same $G(\mathbb{C})$.

Signatures of invariant Hermitian forms

finite-dimensional representations

David Vogan

Introduction

Classical background

Dia proofs

1st reason fin diml reps mostly not unitary

```
Write \mathfrak{g}(\mathbb{R}) = \sum_{j} \mathfrak{g}(\mathbb{R})_{j}, direct sum of simple.

Irr fin diml \phi of \mathfrak{g}(\mathbb{R}) is \phi \simeq \bigotimes_{j} \phi_{j} accordingly.

\phi Hermitian \iff each \phi_{j} Hermitian;

\mathrm{Sig}(\phi) = \prod_{j} \mathrm{Sig}(\phi_{j}).

If G(\mathbb{R})_{j} noncompact,

\phi_{j} \neq \mathrm{triv} \implies \phi_{j} faithful \implies \phi_{j}(G(\mathbb{R})) noncompact \implies \phi_{j} nonunitary.
```

 ϕ unitary $\iff \phi$ trivial on each noncpt simple factor.

Signatures of invariant Hermitian forms

finite-dimensional representations

David Vogan

Introduction

Diassical background

Old proofs

2nd reason fin diml reps mostly not unitary

$$\mathfrak{g}(\mathbb{R}) = \mathfrak{g}(\mathbb{R})^{\theta} \oplus \mathfrak{g}(\mathbb{R})^{-\theta} = \mathfrak{k}(\mathbb{R}) \oplus \mathfrak{s}(\mathbb{R})$$

Theorem (Cartan). If $\tau \colon G(\mathbb{R}) \to G_1(\mathbb{R})$ homomorphism of semisimple Lie groups, then $G_1(\mathbb{R})$ has Cartan involution θ_1 so $\theta_1(\tau(g)) = \tau(\theta(g))$.

Corollary. If ϕ finite-dimensional rep of $G(\mathbb{R})$, then $d\phi(\mathfrak{s}(\mathbb{R}))$ diagonalizable, real eigenvalues.

Corollary. If ϕ fin-diml unitary of $G(\mathbb{R})$, then

$$d\phi(\mathfrak{s}(\mathbb{R}))=0, \qquad d\phi([\mathfrak{s}(\mathbb{R}),\mathfrak{s}(\mathbb{R})])=0,$$

so ϕ factors to largest compact quotient of $G(\mathbb{R})$.

Signatures of invariant Hermitian forms on

finite-dimensional representations

David Vogan

Introduction

background

Old proofs

3rd reason fin diml reps mostly not unitary

 $G(\mathbb{R})=K(\mathbb{R})\cdot A\cdot N(\mathbb{R})$ Iwasawa decomposition. $\mathfrak{a}(\mathbb{R})=_{\mathsf{def}}$ max subalg of $\mathfrak{s}(\mathbb{R})$, $M=_{\mathsf{def}}Z_{K(\mathbb{R})}(A)$, $P_{\mathsf{min}}(\mathbb{R})=_{\mathsf{def}}M\cdot A\cdot N(\mathbb{R})$ min parabolic of $G(\mathbb{R})$, $T_M=_{\mathsf{def}}$ max "torus" in M, $H_{\mathsf{s}}(\mathbb{R})=_{\mathsf{def}}T_MA$ max split Cartan in $G(\mathbb{R})$.

$$\begin{split} \Delta_{s}^{+} =_{\mathsf{def}} \mathsf{pos} \ \mathsf{roots} \ \mathsf{in} \ \Delta(\mathfrak{g}, \mathfrak{h}_{s}) \ \mathsf{consistent} \ \mathsf{with} \ P_{\mathsf{min}} \\ = \Delta(\mathfrak{n}, \mathfrak{h}_{s}) \cup \Delta^{+}(\mathfrak{m}, \mathfrak{t}_{M}) = \underset{\mathsf{Iwasawa}}{\mathsf{Iwasawa}} \ \mathsf{pos} \ \mathsf{system}. \end{split}$$

 $X^*(A) =_{\mathsf{def}}$ res to A of alg chars of H_s : \mathbb{R} -valued chars. $\lambda \in X^*(H_s)$ hwt of unitary $\phi_{G(\mathbb{R})}(\lambda) \implies \lambda|_A = \text{trivial}$. Very difficult for a Δ_S^+ -dominant wt to vanish on A: $g(\mathbb{R})$ simple noncpt \implies only dom wt triv on A is 0.

Signatures of invariant Hermitian forms

finite-dimensional representations

David Vogan

introduction

iassical ackground

Old proofs

Linear algebra and Hermitian forms

V N-dimensional complex vector space

Sesquilinear form on *V* is pairing

$$\langle, \rangle \colon V \times V \to \mathbb{C}, \ \langle u_1 + z \cdot u_2, v \rangle = \langle u_1, v \rangle + z \cdot \langle u_2, v \rangle,$$

$$\langle u, v_1 + z \cdot v_2 \rangle = \langle u, v_1 \rangle + \overline{z} \cdot \langle u, v_2 \rangle.$$

Hermitian form on V is sesq \langle , \rangle with $\langle u, v \rangle = \overline{\langle v, u \rangle}$.

Herm dual
$$= V^h$$

 $=_{def} \{f \colon V \to \mathbb{C}, \ f(v_1 + z \cdot v_2) = f(v_1) + \overline{z} \cdot f(v_2) \}.$

Sesquilinear form on $V \leftrightarrow$ linear map $T: V \rightarrow V^h$,

$$\langle u,v\rangle_T=(Tu)(v).$$

Herm transpose: A: $V \to W \rightsquigarrow A^h$: $W^h \to V^h$, $A^h(f)(v) =_{\mathsf{def}} f(Av)$.

A: $V \to V$ is Hermitian for sesquilinear $\langle , \rangle_T \iff TA = A^hT^h$.

Signatures of invariant Hermitian forms

finite-dimensional representations

David Vogan

Introduction

packground

old proofs

Everything you know is wrong

Lin alg: Hermitian ops diagonalizable, real eigvals.

Wrong: depends on positive definite.

Proposition. $V \text{ cplx } \langle, \rangle \text{ nondeg Herm, signature} = (P, Q),$ $A \in \text{End}(V) \text{ hermitian operator.}$

- 1. Write $V_{\lambda} =$ generalized eigenspace for $A \ (\lambda \in \mathbb{C})$, $m(\lambda) = \dim V_{\lambda}$. Then $\langle V_{\lambda}, V_{\mu} \rangle = 0$ unless $\lambda \overline{\mu} = 0$.
- 2. \langle , \rangle identifies $V_{\kappa}^{h} \simeq V_{\overline{\kappa}}$.
- 3. $\kappa \neq \overline{\kappa}$ not real $\implies \langle,\rangle$ has signature (m_{κ}, m_{κ}) on $V_{\kappa} + V_{\overline{\kappa}}$.
- 4. $\rho = \overline{\rho} \text{ real} \implies \langle, \rangle|_{V_{\rho}} = \text{nondeg, signature } (p(\rho), q(\rho)).$
- 5. $P-Q=(\sum_{\rho \text{ real}}(p(\rho)-q(\rho)).$

Conclusion: sig computed on real eigspaces of A.

 $B = -B^h \implies \text{sig computed on imag eigspaces of } B$.

Signatures of invariant Hermitian forms

finite-dimensional representations

David Vogan

Introduction

Classical backgroun

old proofs

Sig computed on imag eigspaces of $B = -B^h$.

In Hermitian rep of g(R), Lie algebra acts by skew-hermitian operators.

Recall Iwasawa Cartan $H_s(\mathbb{R}) = T_M A$; $\mathfrak{a}(\mathbb{R})$ acts by skew-Herm ops with real eigvals in fin diml rep.

Theorem. Suppose (ϕ, E) fin-diml Hermitian rep of $G(\mathbb{R})$, signature (P, Q). Define $E_0 = E^A$ zero weight space, and (P_0, Q_0) signature of form on E_0 . Then $P - Q = P_0 - Q_0$.

 $G(\mathbb{R}) = SL(2,\mathbb{R})$ or $SL(3,\mathbb{R})$: form is definite on zero weight space, so $|P - Q| = \dim(\text{zero weight space})$.

 $G(\mathbb{R}) = SL(4,\mathbb{R}), E = \text{irr of hwt } (2,1,-1,-2);$ dim E = 175, signature = (90,85), dim $E_0 = 7$, signature on $E_0 = (6,1)$: indefinite.

Conclusion: isn't easy to calculate sig using weights.

Signatures of invariant Hermitian forms

finite-dimensional representations

David Vogan

Introduction

Classical background

old proofs