Signatures for finite-dimensional representations
of real reductive Lie groups

Daniil Kalinov David A. Vogan, Jr.
Department of Mathematics Department of Mathematics
MIT MIT

Christopher Xu
MIT

September 10, 2018

1 Introduction

Suppose G is a complex connected reductive algebraic group defined over R,
and G(R) the group of real points. Suppose that

(m, V), m: G(R) > GL(V) ~ GL(dim(~), C) (1.1a)

is an irreducible finite-dimensional complex representation of G(R). Of course
Weyl’s dimension formula provides a simple closed formula for dim(x). It often
happens that V' admits a non-zero G(R)-invariant Hermitian form

<7>7r: VxV—-C, <7r(g)v, ’/T(g)w> = <va>' (11b)

In this case Schur’s lemma guarantees that the form is non-degenerate, and
unique up to a nonzero real factor. Sylvester’s law says that the form has a
signature

(p(m),q(m)),  p(w) + q(7) = dim(m), (1.1c)
T G — U(Va<7 >) = U(p(ﬂ'),q(ﬂ')) (lld)
Changing the form by a positive factor does not change p(w) and ¢(w), and

changing it by a negative factor interchanges them. Therefore both the absolute
value of the difference and the unordered pair

Sig(m) =det |p(m) —q(m)l,  X(7) =aer {p(7), q(m)} (1.1e)

are well-defined whenever 7 is finite-dimensional irreducible, and admits a non-
zero invariant form. Because dim(7) is computable, calculating X (7) is equiva-
lent to calculating the non-negative integer Sig(w). That calculation is the main



result of this paper (Theorem 5.12), with a formula nearly as easy to calculate
as Weyl’s dimension formula. Because the general case involves a number of
slightly subtle technicalities, we will in this introduction state only a special
case.

Theorem 1.2. Suppose G = GL(n,R), and
A= (A1, )
is a decreasing sequence of integers. Write
(mc(N), V(X)) = algebraic representation of GL(n,C) of highest weight \.

Write
n = 2m + e, m = [n/2], e=0 orl.

1. The restriction w(\) to GL(n,R) is still irreducible.

2. The representation w(\) of GL(n,R) admits an invariant Hermitian form
if and only if
)\ = (—)\n, —)\nfl, ey —>\1);

equivalently, if there is a decreasing sequence of nonnegative integers

w= (/u‘la'-'num)

so that
A\ = (/1’17~"7Nm7_/1'm7~-~1_/1'1) (6:0)
(,Ula-~-7Mm70a—Mm7~-~,—M1) (6:1)

3. Suppose w(\) admits an invariant Hermitian form. Define o(p) to be the
irreducible representation of Spin(n) of highest weight pn + (1/2,...,1/2).
Then

Sig(m(A)) = dim(o())/2" 1.

The denominator in the last formula is the dimension of an irreducible (half)
spin representation of Spin(n), of highest weight (1/2,...,1/2). That it always
divides the numerator is a classical fact about representations of spin groups.
Of course the division is needed to make the formula give the correct signature
of +1 in case A = 0.

This formulation is a bit misleading. The general result Theorem 5.12 in-
volves for GL(n) a rather different representation of Spin(n), of highest weight

2u+(m—14+¢€/2,m—3+¢€/2,...,¢/2).

The proof of Theorem 1.2 will then follow by a formal manipulation of the Weyl
dimension formula. We carry out the details at the end of Section 5.



Nevertheless we can see in this special case some interesting behavior of the
signature. In what follows we use the notation of the theorem, always assuming
that

7m(A) = finite-dimensional Hermitian irreducible of GL(n,R). (1.3a)

Because SL(n,R) is noncompact and simple, it cannot admit nontrivial finite-
dimensional unitary representations; that is, there can be no nontrivial homo-
morphism from SL(n,R) to U(N). Consequently Sig(w()\)) > 0 whenever \ # 0.
It is not difficult to prove (for example, using the structure of maximal tori in
U(p,q)) a little more: a nontrivial homomorphism from SL(n,R) to U(p, q) can
exist only if |p — q| = n — 1. That is,

Sig(r(A)) =n—1 (A#0).
This estimate is the best possible absolute bound, because
Sig(n(1,0,...,0,—-1)) =n—1
either by Theorem 1.2 or by direct calculation of the invariant Hermitian form
(X,Y) = tr(XY)

on the complexified adjoint representation (on n x n complex matrices of trace
7€ero).

One thing that Theorem 1.2 shows is the “typical” behavior of signatures.
The Weyl dimension formula is a polynomial in A:

deg, (dim(r (X)) = (n* —n) /2 = (Z) =2m? + m(2e —1). (1.3b)
(The number of positive roots for G is (dim G — rank G)/2.) The signature
formula in the theorem is also a polynomial in A, but now of degree

n

deg, (Sig(7(N))) = <(2> - [n/Z]) /2 =m? + m(e— 1) < deg, (dim)/2. (1.3c)

The conclusion is that for “generic” A,
signature grows more slowly than square root of dimension: (1.3d)

the invariant Hermitian form is close to being maximally isotropic. There is a
similar statement for any real reductive G(R), with square root replaced by

(dim K — rank(K))/(dim G — rank(G)).
Here K (R) is a maximal compact subgroup of G(R).
For GL(n,R), the formulas are so simple and explicit that we can calculate

m

dim(m (X)) = Sig(r(A\)* - | |

i=1

20 +n—20+1

n—2i+1 (13¢)



This is a much stronger version of (1.3d). It would be fascinating to find a direct
representation-theoretic interpretation of this formula. (A difficulty is that for
n = 4, the last product (which is always at least 1) need not be an integer.)

Here is how the rest of the paper is organized. Section 2 recalls the highest
weight parametrization of finite-dimensional representations (Proposition 2.6)
and the identification of Hermitian representations (Proposition 2.8). Section
3 concerns the structure of the “restricted Weyl group;” it can be omitted in
the (very common) case rank G = rank K. Section 4 calculates the signature
of an invariant Hermitian form on extremal weight spaces (Corollary 3.9); this
is easy, amounting to a calculation in SL(2,R). Section 5 recalls from [4] and
[3, Theorem 4.2] elementary facts (Proposition 5.9) about the eigenvalues of the
Dirac operator on finite-dimensional representations. A simple linear algebra
result (Lemma 5.11), based on the self-adjointness of the Dirac operator, then
implies that the signature of an invariant Hermitian form is essentially equal
to the signature on the kernel of the Dirac operator (Corollary 5.10). Finally,
we use the result from Section 4 to calculate the signature on the kernel of the
Dirac operator, and deduce our main result Theorem 5.12 calculating signatures
for finite-dimensional representations of arbitrary real reductive groups.

We thank Jeffrey Adams for pointing out to us the interesting behavior of
signatures of forms on finite-dimensional representations. The third author,
who is an MIT undergraduate student, embarked on an exploration of this
behavior using the atlas software from [8] as a summer research project in
2018, under the guidance of the first author, an MIT graduate student. He
discovered experimentally the polynomial dependence on A in Theorem 1.2. The
first author found a way to bound signatures from above, which for GL(n,R)
gave the formula in Theorem 1.2 as an upper bound for Sig(7(A)). (This method
of the first author is a version of Lemma 5.11.) At this point the second author,
who was old enough to remember [4], was able to join the race at Hereford
Street.

2  Weights and Hermitian representations

We continue as in (1.1) with

G complex connected reductive algebraic group
or: G — G antiholomorphic involutive automorphism (2.1a)
G(R) = G°* real form of G.

We will make constant use of a fixed Cartan involution
0: G — G algebraic involutive automorphism; (2.1b)
the characteristic requirement of 0 is that the antiholomorphic automorphism

Oc =det 0 0 OR (2.1c)



is a compact real form of G. Then automatically
K =get G° (2.1d)
is a (possibly disconnected) reductive subgroup of G, preserved by og, and
K(R) = K% = K°¢ (2.1e)

is a maximal compact subgroup of G(R). The Cartan decomposition of the Lie
algebra is the eigenspace decomposition under 6:

5 =q4et —1 eigenspace of 6,
g=*t+s, (2.1f)
g(R) = &(R) + s(R).
What is much deeper and more powerful and is the Cartan decomposition of

the group:
G(R) = K(R) - exp(s(R)); (2.1g)

the map from right to left is a diffeomorphism.
Every og-stable maximal torus H — G has a G(R)-conjugate which is pre-
served by 6. We therefore consider

H c G maximal torus
or(H) = H, 0(H)=H
H(R) =qef H°® real points of H
T=qot HH =HNK
T(R) =det H(R)’ = H(R) n K (R)

= maximal compact subgroup of H(R.

(2.2a)

Notice that T is a reductive abelian algebraic group, and T'(R) its (unique)
compact real form. If we define

a=Hh(R) s, A = exp(a).

then the Cartan decomposition (2.1g) gives a Lie group direct product decom-
position
H(R) =T(R) x A. (2.2b)

The group A is not algebraic: if we define B = H~? then B is an abelian
algebraic group, and

A = Lie group identity component of B(R)

The notation in (2.2b) (particularly for A) is very traditional and rather useful
(for describing continuous characters of H(R), for example). But the non-
algebraic nature of A must always be remembered.



The roots of H in G are complex-valued algebraic (and in particular holo-
morphic) characters of H:

a: H— C* (e € R(G,H)). (2.2¢)

As holomorphic characters, the roots are determined by their restrictions to
H(R), or the differentials of those restrictions:

ar: HR) > C*,  dag: h(R) — C. (2.2d)

We will often write just « for either ag or its differential, relying on the context
to avoid ambiguity. But for the structural results we are now describing, it is
helpful to maintain an explicit distinction. In accordance with tradition, we
will write the group structure on roots as +, even though it corresponds to
multiplication of characters of H.

Because the automorphism 6 is assumed to preserve H, it automatically acts
on the roots. A moment’s thought shows that o also permutes the root spaces,
and therefore acts on the roots by the requirement

[or(a)](h) =act a0z (h)).
These two actions are related by
O(a) = or(—a). (2.2¢)

The root « is called real if dag is real valued (equivalently, if ag is real-
valued). Because of (2.2e),

aisreal < or(a) =a <= 0(a) = —a. (2.2f)
In case « is real, the root subgroup
¢a: SL(2) - G
may be chosen to be defined over R with the standard real form of SL(2):
¢a: SL(2,R) —» G(R) (2.2g)

The root 8 is called imaginary if dfgr is imaginary-valued (equivalently, if
Br takes values in the unit circle). Because of (2.2e),

B is imaginary <= og(f) = -8 < 0(5) = 4. (2.2h)

In case 3 is imaginary, the root subgroup ¢z is defined over R, but with one of
two different real forms of SL(2). In case

¢p: SU(1,1) - G(R), (2.21)
we say that [ is noncompact imaginary. In case

6s: SU(2) — G(R), (2.2)



we say that [ is compact imaginary.

Finally, the root -y is called complez if dvg is neither real nor purely imaginary
valued (equivalently, if yg takes non-real values of absolute value not equal to
1). Because of (2.2¢),

v is complex <= ogr(7) # 7 < 0(7) # 1. (2.2k)
It is equivalent to require that the root subgroup
¢: SL(2) - G

is not defined over R for any real structure on SL(2).
There are (up to conjugation by K(R)) two maximal tori of particular in-
terest to us. First is the mazimally split torus

H,(R) = Ts(R) - As. (2.3a)
This torus is characterized by the three equivalent requirements

dimp A, is as large as possible
dimg T (R) is as small as possible (2.3b)
there are no noncompact imaginary roots of H, in G.

Inside the root system R(G,H;) we can find a set of positive roots RY =
R*(G, Hy) satisfying

the nonimaginary roots in R. are preserved by —. (2.3¢)
There is a unique Weyl group element specified by the requirement
wo,s(RT(G,Hs) = OR" (G, Hy);

it commutes with 6 (as an automorphism of H), and so acts on T(R) and A.
Next, the mazimally compact torus (sometimes called the fundamental torus)

H.(R) =T.(R) - A.. (2.4a)
This torus is characterized by the four equivalent requirements

dimg A, is as small as possible

dimg T,.(R) is as large as possible (2.4D)
T.(R)o is a maximal torus in K(R)g '

there are no real roots of H, in G.

Inside the root system R(G,H.) we can find a set of positive roots R} =
R*(G, H.) satisfying
R is preserved by 6. (2.4c)

C



Our next goal is to recall the parametrization (due to Cartan and Weyl) of
finite-dimensional representations of G(R) by highest weights. In order to do
that, we need two more bits of notation. For each root «, recall that the coroot
a¥ is the restriction to the maximal torus of the root SL(2):

aV:C* > H, av(z) = ¢ (S 291> . (2.5a)
The homomorphism ¢, is unique only up to conjugation by diagonal matrices
in SL(2), but oV is (therefore) absolutely unique. The homomorphism aV is
specified by its differential

1 0
Ho =det d¢a <O _1> ebh. (25b)
If v is real, so that ¢, is defined over R, then we can define
-1 0 v )
Ma =def ¢a ( 0 1) = <_1) = eXp(MTHa) € H(R), (25C)

an element of order (one or) two in the real Cartan subgroup H(R).

A character
v: H(R) — C* continuous

dy(R): h(R) —» C real linear (2.5d)
dy:h—-C complex linear

is called weakly integral if
dy(Hy) € Z (o € R(G,H)). (2.5€)
It is called strongly integral if it is integral, and also
v(ma) = (~1)H) (a e R(G, H) real). (2.5f)

Proposition 2.6. Suppose G is a reductive algebraic group as in (2.1), and H
is a real 6-stable mazimal torus as in (2.2).

1. Every irreducible finite-dimensional representation of G(R) remains irre-
ducible on restriction to the identity component, and so defines an irre-
ducible finite-dimensional complex representation of the complex reductive
Lie algebra g.

2. The H-weights of finite-dimensional representations of G(R) are precisely
the strongly integral characters of H(R) (see (2.5f)).

3. If v is a strongly integral character of H(R), then there is a finite-dimen-
sional representation F(v) of G(R) having extremal weight ~.

4. If H = Hg is mazimally split, then the representation F(v) is uniquely
determined.



Most of this is proven in [6, Section 0.4].
Corollary 2.7. In the setting of Proposition 2.6, define

GR)M = G(R)o - H(R),

the subgroup of G(R) generated by the identity component and the fized maximal
torus. Put

5 (G(R)) = G(R)/G(R)M,

the quotient of the component group by the image of the component group of
H(R). Define

G(R)! = {g € G(R) | Ad(g) € Ad(G(R)o} > Go(R),
m(G(R)) = G(R)/G(R)".

1. Each group G(R)M] contains G(R)E, with equality for the mazimally com-
pact Cartan H = H, of (2.4a).

2. Each group wll is a quotient of 71'8, which is a finite product of copies of
Z7/27.

3. Suppose 7 is a strongly integral character of H(R). Then there is a sim-
ply transitive action of the character group of wi on the set of finite-
dimensional irreducible representations of G(R) having extremal weight
~v. The action is given by tensoring with the irreducible characters of
G(R)/G(R)H].

Proof. For (1), suppose g € G(R)*. Choose (according to the definition of
GR)!) go € G(R)g so that Ad(g) = Ad(go). This means in particular that
9o "9 € Z(G(R)) < H(R), which is the first assertion of (1). The last assertion
we will address in Section 4 after we have discussed restricted roots.

The first assertion in (2) is an immediate consequence of (1). The second
we will prove in Proposition 3.4(6) below.

For (3), Proposition 2.6 guarantees that there is an irreducible finite-dimen-
sional F'(y) of extremal weight 7, and that F(v) remains irreducible for G(R)o.
The rest of (3) is a formal consequence. O

We turn next to the calculation of Hermitian duals.

Proposition 2.8. Suppose again that G is a reductive algebraic group as in
(2.1), and H is a real -stable mazximal torus as in (2.2). We use the decompo-
sition

HR)=T([R) x A
of (2.2b). Write

X*(T) = {continuous characters \g: T(R) — S*}
~ {algebraic characters \: T — C*}
~ X*(H)/(1-0)X*(H)



for the characters of the compact group T(R). We identify characters of the
vector group A = exp(a) with the complex dual space

ad = Hom(a, C),
sending v € af to the character
exp(X) — exp(r(X)) (X e€a)

or equivalently
a— a” (a € A).

1. Characters of H(R) may be indexed by pairs
v=(\v)e X*(T) x ag.
2. The differential of such a character ~y is
dy = (d\,v) € it(R)* x af.
3. The Hermitian dual of v is
A = (\, —D).
4. If v is strongly integral, then the Hermitian dual of a finite-dimensional

representation F(v) (of extremal weight v) is a finite-dimensional repre-
sentation F(y") (of extremal weight v").

5. Supposey" is conjugate by W to v, so that F(y)" also has extremal weight
. If wdl is trivial (see Corollary 2.7) (in particular, if G(R) is connected)
then the (uniquely determined) F(vy) must admit an invariant Hermitian
form. If mf is not trivial, then either all or none of the |wl!| choices for
F(v) admits an invariant Hermitian form.

6. Suppose H is mazimally split as in (2.3), and (Xs, vs) is a strongly integral
R} -dominant weight. Then

F()\saus)h = F(wo,s - )\sa —wWo,s * (Ts))
In particular, there is a nonzero invariant Hermitian form if and only if

Vs = —Wo,s - (75)7 wo,s * )\s = )\s~

7. Suppose H, is mazimally compact as in (2.4), and (A, v.) is a strongly
integral RY -dominant weight. Then

FAe,ve)" = F(\e, — 7).
In particular, there is a nonzero invariant Hermitian form only if

V. 1s purely imaginary.

10



Describing sufficient conditions for the existence of a form using the maxi-
mally compact Cartan H,. is complicated; we will address this in Corollary 4.3.
Sketch of Proof. The identification of algebraic characters of T with continuous
characters of the compact real form T(R) is a feature of any reductive algebraic
group. Parts (1)—(3) are immediate. The Hermitian dual of a direct sum is the
direct sum of the Hermitian duals, so (4) follows. In case H = Hy, the extremal
weight (s, —75) is evidently dominant for the positive system wg s - RT (G, Hy),
and (5) follows.

For (6), the only difficulty is that F(\., ) is not unique: we only know
that F(\.,v.)" is some representation of highest weight ()., —7). This proves
the necessity of the condition in (6) (for existence of an invariant form). The
hypothesis for the last assertion in (6) amounts to

G(R) = GR)oT.(R),

which implies that the representation F'(A.,v.) is unique. O

3 Restricted Weyl group

Our goal is to study invariant Hermitian forms on extremal weight spaces with
respect to a maximally compact Cartan

H, =T,(R) - A,

as in (2.4). In order to do that, we first need to understand how the roots and
Weyl group of H, restrict to T,; that is the subject of this section. Fix a #-stable
system of positive roots

R < R(G,H,).

c

Write
W = W(G, H,) = W(R(G, H,)) c Aut(H.,) (3.1a)

for the Weyl group of H. in G. We are interested in several subgroups of W,
including
WY = centralizer of 6 in W
Wimag = W(Re imag) < we Weyl group of imaginary roots
Wi = Nic(H)/(K A H) = N (T)/T = W*
Wk, = Nk, (To)/To < Wk compact Weyl group

(3.1b)

The reason we do not call Wi the “compact Weyl group” is that it need not
be the Weyl group of a root system.

The first important fact about the maximally compact Cartan is that no
root is trivial on T,o. The reason is that (for any 6-stable real Cartan) the

11



roots vanishing on t are exactly the real roots (see (2.2f)); and on H, there are
no real roots (see (2.4)). We can therefore introduce the restricted roots

Ries(G, Teo) = {@ =alr., | a € R(G, H.)}

0 (3.1c)
c X*(Ty) = X*(H.)/X*(H.)™".
The dual lattice to X*(H.)/X*(H,)™% is
Xu(Teo) = Xu(H.)’ (3.1d)
The restricted coroots are by definition
aY a = fa imaginary
a’ =<a¥ +0aY a complex, a 4+ fa not a root (3.1e)

2(a¥ +6a¥) « complex, a + 6« a root.
Proposition 3.2. The restricted roots and coroots form a root datum

Rres = (X* (TC,O)a Rresa X* (Tc,0)7 R

res)

in the torus T, o. This root datum is not reduced when the third case for coroots
arises. Restriction to T, o defines an isomorphism

Wt o = W(Ries)-
Inside this root datum are several smaller root data.

1. The reduced restricted root datum, written Ryesred, consisting of the re-
stricted roots @ so that 2a is not a restricted root; equivalently, those falling
in cases (1) and (2) of (3.1e). This subsystem is preserved by W, and
has the same Weyl group:

W(Rres,red) = W(Rres) .

2. The complex subsystem, written Ryes cpix, consisting of the restrictions to
T.0 of the complex roots and the corresponding coroots. This subsystem
is preserved by the action of W, and so defines a normal subgroup

Weplx < WY,

3. The imaginary subsystem, written Ryes imag, consisting of the restrictions
to T, o of the imaginary roots and the corresponding coroots. This subsys-
tem is preserved by the action of W9, and so defines a normal subgroup

Wimag < W°.

The imaginary roots have a Z/2Z grading in which the compact imaginary
roots are even and the noncompact imaginary roots are odd (cf. (2.2h)).
This grading is respected by Wepix, but not usually by Wimag-

12



4. The root datum for K, written R . Its roots are the disjoint union of the
complex roots and the compact imaginary roots:

RK = chlx I Rimag,cpt~

Sketch of Proof. That the restricted roots are a root system is classical. The
term “restricted roots” most often refers to restriction to the split part of a
maximally split torus. The fact those restrictions constitute a root system
is proved in [2, Section VIL.2]. Helgason’s arguments can be applied (with
substantial simplifications) to show that R,es is a root datum.

Another classical fact is that t. contains regular elements, so that no element
of W can fix all elements of t.. This proves that restriction to 7} ¢ is an injective
group homomorphism on W, That the image contains W (R,es) follows from

SalT, o o imaginary
sa = 3 (SaSoa)|T,, « complex, a+ @ not a root

Sa+6al|T. o + fa a root.

(Only the second assertion requires thought, and it is very easy.)

That WY is generated by elements of these three kinds is due perhaps to
Knapp; a proof may be found in [7, Proposition 3.12].

For (1), the complex roots are precisely those having a non-trivial restriction
to the —1 eigenspace a of #. That W? preserves these roots is obvious. In
particular, the reflections in complex restricted roots preserve complex roots.
This last fact is the main part of the proof that the complex roots are a root
datum.

Part (2) is exactly parallel, except that this time the condition is trivial
restriction to a. The grading was already explained after (2.2h); that it is
preserved by compact imaginary reflections is clear. We postpone for a moment
the assertion that it is preserved by complex reflections.

Because K| is a reductive algebraic group with maximal torus 7, o, we have
the root datum of Ky in X*(T. o) and X«(T¢0). Evidently this includes the
compact imaginary roots. From each complex root S with root vector Xz we
get a root vector

Xg+0Xget

for B; so the complex roots are automatically roots for Ky. This proves (3).
Because the complex root reflections have representatives in K, they must

preserve the compact/noncompact grading on the imaginary roots. This com-

pletes the proof of (2). O

Recall that we have fixed a 6-stable set of positive roots RT; this defines
automatically a positive root system R, for the restricted roots, and also for
the complex, imaginary, and compact roots. Write I'. for the Dynkin diagram
of R} (a graph with a vertex for each simple o and an edge labelled r from «

to 8 whenever a + 3 is a root). Then 6 defines an automorphism of T'.. The

13



ke o) O
R 0—0—0—0 Ryes ==00
A
Oi‘
chd O—e—O chs,rcd

Table 1: Restricted and reduced roots for SL(5, R)

Dynkin diagram I'yes for the restricted roots has as vertex set the orbits of 6
on I'.. A fixed point on I'. corresponds to an imaginary simple root in I'je;
an orbit consisting of two non-adjacent simple roots o and 6(«) corresponds to
a complex simple root @ in the second case of (3.1e); and an orbit consisting
of two adjacent simple roots « and () corresponds to a non-reduced complex
simple root @ in the third case of (3.1e). (Such a vertex @ is joined to itself in
the restricted Dynkin diagram T'es since 2@ is the (imaginary) root a + 6(«).
See for example the top right diagram in Table 1.)

The reduced restricted roots are the restrictions of roots which involve either
both or neither of a pair («, f«a) of adjacent simple roots. Such roots in R are
themselves a 6-stable subsystem R,.q. The simple roots of R,.q are those of
R, except that each adjacent complex pair («,f«) is replaced by the single
imaginary simple root a + fa.

This process is illustrated for SL(5,R) in Table 1. The Dynkin diagram in
the upper left is for R, showing the action of # reversing the line. The diagram
on the upper right is for the restricted roots, obtained by folding the diagram
on the left in half. The diagram on the lower left eliminates the complex roots
for which 2@ is a root, by replacing the two middle roots by their sum. On
the lower right are the restricted reduced roots: the complex restricted root @
has been replaced by an imaginary (restricted) root « + . In each diagram
imaginary vertices are indicated with a filled circle, and complex vertices with
an empty circle.

We offer one more example, the restricted root system for the split real
form of Eg. In this case the Cartan involution 6 interchanges the long legs
of the Dynkin diagram. There are no adjacent pairs («, f«), so the restricted
root system is already reduced. Its Dynkin diagram is obtained by folding
together the long legs of the Eg diagram, obtaining a diagram of type Fy. Again
imaginary vertices are illustrated with a filled circle, and complex vertices with
an empty circle.

14



R 0—0—e—0—0 Ries

—e
O—O0==0——0

Table 2: Restricted roots for the split real form of Ejg

Returning to general G, define

2pcplx = Z aeX* (TC,O)

(xER:plx
2pimag = Z ﬁ € X*(TC,O)
ﬁERituag
20k = Y. vEX*(T.0)
'yeR;r(

Define the singular imaginary roots by

Rsing = {5 € Rres ‘ <2pcplxv(5v> = 0}7

imag
the singular complex roots by

RSing = {5 € Rres | <2pimag76v> = 0}’

cplx

and the singular noncompact roots by

R — (5 € Ries | 2prc, 6 = 0}.

ncpt

(3.3a)

(3.3b)

(3.3¢)

(3.3d)

Using these root systems, we can begin to understand the restricted Weyl

group W9 = Wie.

Proposition 3.4. We use the notation of Proposition 3.2.

+
res

1. The weight 2pcpix is dominant for R

and reqular for the complex roots.

Therefore the singular imaginary roots form a Levi subsystem in Ry,
consisting entirely of imaginary roots. We get a semidirect product de-

composition .
WO = Wepix @ Wit

imag*

2. The weight 2pimag 5 dominant for Rt

res

and reqular for the imaginary

roots. Therefore the singular complex roots form a Levi subsystem in Ryes,
consisting entirely of complex roots. We get a semidirect product decom-

position _
WO = W8 X Winag.

cplx
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For the last items, we modify our 0-stable choice of positive Toots RT to a new
choice
R:”K making 2px dominant.

3. The weight 2px is dominant for RE and regular for the roots of K.

res
Therefore the singular noncompact roots form a Levi subsystem with re-

spect to RE:K consisting entirely of noncompact imaginary roots

{+B1,..., 15}

This root system is of type AY, so has Weyl group
WEne _ (7,/97)" .

ncpt

For 1< j <, choose a root SL(2)

05,5 SUMD) =GR, o5, (4 (g ) @) = 0065, 0)

0 1
% = s <—1 0)’

a representative in Ng(H.) for the simple reflection sg,, and

as in (2.2h). Define

mj = g, (_01 _01) e T.o(R) c K(R).

For Bc {1,...,1}, define

Hp =) 8 e Xu(H), on=]]0;

i€B jeB
sing . 2
sp = 1_[ 55 € Wiem mp = 1_[ mj = exp(2miHp/2) = 0%.
jeB jeB
Then
-1
0(ocp) =05 =mpop.

4. The Weyl group element sp admits a representative in K if and only if
there is a coweight £p € X (H,.) satisfying

Ip + 0(63) = Hp.
In this case the representative may be taken to be

§B =5 exp(m’fB)UB.
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5. Define

Wsing(K) ={sp e (Z/22)" | Hg € (1 + 0) X4 (H,)} (Bc{l,...,r}).

ncpt
Then there is a semidirect product decomposition

Wk = WKo e WSEI;%(K%
the second factor being an abelian group with every element of order one
or two.

6. Define
K¥ = {ke K |Adg(k) € Adg(Ko)} = KoT.

(cf. Corollary 2.7; K¥(R) = G(R)! n K ). Then
G(R)/G(R)* ~ K(R)/K*(R) ~ K/K* ~ Win&(K).

Sketch of Proof. We recommend examining Table 3 to get a more concrete
picture of the constructions in the proposition.

Part (2) is [7, Proposition 3.12(c)]; part (1) can be proven in exactly the
same way. For (3), the dominance of 2px comes from the choice of positive
roots, and the regularity for K is a general fact about positive root sums in
a root datum. This implies that the singular noncompact roots are roots in a
Levi factor for the restricted root datum, and are all noncompact imaginary. In
particular, the sum of two distinct singular noncompact roots cannot be a root;
for if it were root, the grading would necessarily make it even, and so compact,
and therefore not singular.

The absence of root sums shows that the noncompact singular system con-
sists of orthogonal simple roots, and is therefore of type Aj]. The assertions
before (4) all take place in SU(1,1)", where they are easy computations.

For (4), any representative of sp is of the form

$p = hop, some h = exp(inf) € H.. (3.5a)

Therefore
0§B = Q(h)mBaB,

and Sp belongs to K if and only if

hop = H(h)mBJB, h&(h)’l =mp,

or equivalently
exp(im(£ — 0¢)) = exp(—imHp). (3.5b)

The kernel of exp(27i) on . is X, (H,), so the conclusion is that there must be
an element (g € X, (H,) satisfying

(5—36)/2+HB/2 =/{p.
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sing sing sing sing
R \ Rires \ Repix Rimag | R RS \ Weplx X W, WE % Wimag

cplx imag imag cplx
Aop_1 Chn D, A? An_q Ay W(Dn) X {il} Sn X {il}n
Aan BC, | B, AT | Anr O W(B,) x 1 Sn x {+1}"
Dpi1 | B "Dy | A An | (1% S, {£1} x W(D,)
E@ F4 D4 D4 A2 AQ W(D4) X S3 53 X W(D4)

Table 3: Restricted root systems

Because Hp is in the +1 eigenspace of 6 and ¢ — 0(¢) in the —1 eigenspace, this
equation is equivalent to two equations

Hp = (5 +0(0g), (£—00)/2= (5 —0((5))/2. (3.5¢)

So the existence of $p guarantees the existence of £5 as the Proposition requires.
Conversely, given {p as in the proposition, choosing ¢ = ¢ makes (3.5¢) true,
proving that

§B = exp(iwﬂB)UB (35d)

is a representative for sp in K.
For (5), suppose w € Wg. Clearly w(R};) is another positive root system
for Ry, so there is a unique wy € W(Rg) = Wk, satisfying

w(Rp) =wi(Ry),  w(2pk) = wi(2pK). (3.5¢)

Therefore wy = w; 'w fixes 2px. By Chevalley’s theorem, ws is a product of
reflections fixing 2pg; that is, wo € Wi Now (5) follows.

Part (6) is elementary. O

If 6 acts trivially on the roots in H., then all roots are imaginary, and there is
not much content to Proposition 3.4(1)—(2). If 6 interchanges two simple factors
R;, ~ Ry and Rg ~ Ry of the root system, then all the roots are complex,
and W is the diagonal copy of W(Ry). The remaining and most interesting
(indecomposable) possibility is that 6 acts as a nontrivial automorphism of
order 2 of a simple root system R. There is up to isomorphism exactly one such
automorphism for the simple root systems of types 4,, (n = 2), D,, (n = 4),
and FEg, and none for the other simple systems. Table 3 lists the restricted
root systems in each case, and some of the other root systems described in
Proposition 3.2. In each case the last two columns give two semidirect product
decompositions of Wi..s = W from Proposition 3.4.

One can give a similarly exhaustive enumeration of the results of Proposition
3.4(3-6), but the details are substantially more complicated; so we will content
ourselves with a few examples. If the complex group G is simply connected,
then X, is the coroot lattice, which has as a basis the simple coroots. Because
the roots ; are simple, the equation in Proposition 3.4(4) can have no solution
unless B is empty. That is (still for G simply connected)

WERE () = 1, K =K' = K,T..

ncpt

18



(In fact K must be connected in this case.)

We get interesting departure from this behavior only when X, includes more
than the coroots. Enlarging X, means passing to central quotients of G; the
most interesting case is for the adjoint group. Here are some examples.

Suppose first that G = PSp(2n,R), the projective symplectic group. In this
case

X*={AeZ" | Y N €2Z} R(G,H,) = {2 (te; te;)|i# j}
i (3.6a)
Xy =<Z",(1)2,...,1/2))  RY(G,H.) = {£e;, (+e; + ¢;) | i # j}

The action of # on H, is trivial, so all the roots are imaginary. The compact
ones are

Repe ={(e;i —e;) |i#j}, 2pxk=(n—1,n—-3,...,—n+1)e X*. (3.6b)
We therefore calculate

Rffé;gt ={L(e1 +en) -, (€2 + en—[n21+1)} Y {2€m+1)/2}; (3.6¢)

the last root is present only if n is odd. The corresponding simple coroots are

{(ex +en), (e2+en-1), .-, (ens2] + €n—[m/2141)} Y {€(nt1)2}

again with the last term present only if n is odd. The elements Hp have all
coordinates 1 or 0, symmetrically distributed. Since 6 acts by the identity, B
contributes to Wit if and only if Hp is divisible by two in X,; that is, if and
only if

B=g or B={l,...,r}

The nontrivial Weyl group element is
wg(ty, ... tn) =t 7Y (3.6d)

(reverse order and invert all entries). (More precisely, that is the Weyl group
element in Sp(2n), acting on the maximal torus (C*)™. In our case that torus
is divided by *1.)

Suppose next that G = PSO(2n, 2n), the projective special orthogonal group
(the split form of Dyy,). In this case

X*={AeZ™| Y\ €2Z} R(G,H,)={(+e; tej)|i#j}
i (3.7a)
X =<(Z°",(1/2,...,1/2)) RY(G,H.) = {(*ei te;)|i+# 7}

We will sometimes write a semicolon between the first n and the last n coor-
dinates of X* for clarity. The action of 6 on H, is trivial, so all the roots are
imaginary. The compact ones are

Repy = {(iep + eq), (iener + €n+q) | 1<p+#q<n},

3.7b
2ok =(n—1,n—-2....1,00n—1,n—2,...,1,0) € X*. ( )
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We therefore calculate
Riig;gt = {i(ep — €ntp) [ 1<p<n—1}u{(en £em)}; (3.7¢)

The corresponding simple coroots are the same. The elements Hp have coordi-
nates 1 < p <n —1 equal to 1 or 0, with the same value on coordinate p + n.
The coordinates n and 2n are either (0,0) or (1,+1) or (2,0). Since 6 acts by
the identity, B contributes to Wi;ﬁ(K ) if and only if Hp is divisible by two in
X4; that is, if and only if

Hp, =0, By = &;

Hp, =(1,...,1;-1,...,F1), Bi={(ep —ensp)lp<n—1}u{(e, Fean)}
HB2 = (07"'723()’”'70)7 BQ = {(en - eQn) 3 (en + eQn)}-

The three nontrivial Weyl group elements are

wp, (81, 8nit1, s tn) = (t1,. .. tEhsy, ., st

r¥n ) n

- B (3.7d)

WBy (515 8n3ts oo ytn) = (81,000, 8n1, 80 5ty tuo1, 6, 0).
(More precisely, those are the Weyl group elements in SO(4n), acting on the
maximal torus (C*)?". In our case that torus is divided by +1.) Because
T. = H. is connected, the group K* = KT, is connected. Therefore the group
of connected components of K is

K/Ko = Wih(K) = (2/22)?,

ncpt

the Klein four-group.
We are going to need to understand the cosets of Wy, in W¢. We conclude
this section with that. Define

Wh={weW? | wRf, o R} (3.8a)

res
equivalently, these are the restricted Weyl group elements making only noncom-

pact imaginary roots change sign. The reason these elements are of interest is
that they are natural coset representatives for Wy, in we:

WY =Wg, - WL W~ W, \W?. (3.8b)
Corollary 3.9. In the setting of (3.8),
Whe Wik

More precisely,

1 _ sing +,sing +,sing
W’_{wew' wRSME 5 R },

imag imag imag,cpt

WKO \We = WK;mag,o \Wimag .

The groups on the right in the last formula come from the (mazimal cuspidal
Levi) subgroup
Limag = GAC

corresponding to the imaginary roots of H..

This is immediate from Proposition 3.4(1).
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4 Restricted weights

There are many useful classical facts about the set of weights of a finite-dimen-

sional representation, like the fact that all weights are in the convex hull of the

extremal weights. In this section we first formulate those facts for restricted

weights with respect to a maximally compact Cartan. Then we consider the

behavior of invariant Hermitian forms on the restricted extremal weight spaces.
Fix therefore a #-stable system of positive roots

R = R(G,H.,),
and a strongly integral RF-dominant weight
Ve = (Aes ve)- (4.1a)
Write
F(v.) = (some) finite-dimensional irreducible, highest weight ~.. (4.1b)
as in Proposition 2.6(3). Eventually we will impose also the requirement
v, is purely imaginary; (4.1¢)

the requirement that v, be imaginary is the condition from Proposition 2.8 for
the existence of a G(R)# invariant Hermitian form on F(v,).

Every continuous character of H.(R) restricts to a continuous character of
T.(R), which is in turn the restriction of a unique algebraic character in X*(Ty).
The restricted weights of the finite-dimensional representation F(v.) are the
characters

{¢p € X*(T,) | ¢ = restriction of character ¢ of H.(R) in F(v.).} (4.1d)

It was more convenient to discuss the general theory of restricted roots on the
connected torus T, o, but it is more convenient to discuss restricted weights on
all of T,.. Passage back and forth is facilitated by the fact

X*(T.) = X*(T.p0) is injective on restricted root lattice ZRyes;  (4.1e)

the lattice means the lattice of T.-weights of S(g). Using this fact, we will
freely replace any restricted root @ € X*(T, ) by its unique extension to T, as
a weight of g. Define

20, = Y, a’, (4.1f)

a@eR’

res,red

the sum of the coroots for the positive reduced restricted roots. If ¢ € X*(T.)
is any character, then there is a unique character w¢ (for w € W?) with the
property that w¢ is weakly dominant for Rf_.. We define the restricted height
of ¢ by B B

htres(¢) = <’LU¢, 2p;/es> = <w¢a 2p1i/es> (41g)

21



a nonnegative integer. (The last pairing is independent of the choice of ¢ €
X*(H,) restricting to ¢, because the restricted coroots are #-fixed.) Clearly

htres(@) = htyes(z@)  (z € WY). (4.1h)
Here is the description we want of restricted weights.

Proposition 4.2. Suppose we are in the setting of (4.1) so that in particu-
lar F(~.) is an irreducible finite-dimensional representation of G(R) of highest
weight

Ye = (Aes Ve)-

1. The set of restricted weights (and their multiplicities) is invariant under
the restricted Weyl group W0,

2. An RY

res

only if

-dominant restricted weight ¢ is a restricted weight of F(v.) if and

)\C:$+ Z Ny, (naEN)

aeRf,

In this case

htres((yb) < htres()\c)v
with equality if and only if ¢ = ..
3. Suppose a restricted weight ¢ is a weight of F(v.). Then
A=+ ), nad, (nz €N)
aeR

and

htres((b) < htres()\c)7
with equality if and only if

¢ = w, some we W,
We call {w). | we W} the restricted extremal weights of F(7.).
4. The R};—dominant restricted extremal weights are
Wi,

with W' as in Corollary 3.9. Each such extremal weight is therefore
uniquely of the form

Whe = Ae — >, b

,@ER.Jr sing simple

imag

with notation as in (3.3).
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Part (1) is elementary. Part (2) is exactly parallel to a standard fact about
weights of finite-dimensional representations, and can be proved in the same
way. Then (3) follows from (1) and (2). Part (4) follows from Corollary 3.9.
We omit the details.

Corollary 4.3. Suppose we are in the setting of (4.1), and that (4.1c) also
holds, so that F(v.) admits a G(R)g-invariant Hermitian form

CoP -
We normalize this form to be positive on the A, restricted weight space.

1. The form {-,-)p(y,.) is nondegenerate on each (one-dimensional) restricted
extremal weight space w., and so either positive or negative there. Write

6F('Yc)('u}) = il
for this sign.

2. The sign ep(,)(w) is invariant under left multiplication by W (Ky), and so
is determined by its restriction to the coset representatives W' of Corollary
3.9.

3. Write the simple roots for the Levi subsystem RS2 as the disjoint union

imag
of compact and noncompact imaginary roots:

+,sing __ y7+,sing +,sing
Himag - Himag,cpt | Himag,ncpt

(notation as in Proposition 4.2(4)). For we W1, we have

row) =[] (=1
661—[?2:53,11(:;)':
4. The form {-,-)p(y,) is invariant by K(R) (and therefore by G(R)) if and

only if _
€F(y,) (zw) = 1, all v e W28 (K)

ncpt
(see Proposition 3.4(5)).

Proof. se:extrsig Because all characters of the compact group T.(R) are Her-
mitian, the Hermitian pairing necessarily makes the distinct restricted weight
spaces orthogonal, and so (by nondegeneracy) defines a nondegenerate form on
each restricted weight space. Now (1) is immediate. The form is preserved by
G(R)p o K(R)g, and the Weyl group elements in W (Kj) have representatives
in K(R)o. So (2) follows. Part (3) can be proven by induction on the length of
w. It is obvious if w = 1; so suppose w # 1, and choose a simple reflection sg
so that

U(spw) = L(w) — 1. (4.4a)
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Because w is in the Levi subgroup W8 the root B must be imaginary. Define

imag?
m = {sgw, B"). (4.4b)
Then
WA = SgwWA —mp. (4.4c)

The proposed formula for e(w) therefore satisfies

1 if 8 is compact

e(w) = e(spw) - { (4.4d)

(=1)™ if B is noncompact.

To complete the induction argument, we must show that e actually satisfies
(4.4d). The m + 1-dimensional space

E(w, B) = span of the weight spaces {wA —j3 |0 < j < m} (4.4e)

is an irreducible representation of SL(2), by means of the root SL(2) ¢g (see
(2.2)). If B is compact, E(w, ) a Hermitian representation of SU(2), so the
form is definite, and e(sgw) = e(w), as required by (4.4d).

If § is noncompact, then E(w, §) is an irreducible Hermitian representation
of SU(1,1). For such a representation, calculation in SU(1,1) shows that the
signature of the form alternates in j on the weights wA — j8. Consequently

e(w) = (—1)"e(spw), (4.41)

again as required by (4.4d). This completes the induction, and the proof of (3).
For (4), if the form is K (R)-invariant, then it must be definite on each of the
irreducible representations of K (R) generated by an extremal weight. Because
the elements of erggt(K) have representatives in K (R) (Proposition 3.4(5)),
the invariance property in (4) follows.
We omit the proof of the converse, which we will not use. O

5 Dirac operator and signature calculation

We have so far avoided introducing invariant bilinear forms on g, because the
idea of root data teaches us to do that. But now it is time to talk about Dirac
operators, and there the choice of forms appears to be critical and unavoidable.
We begin by introducing the forms and the corresponding Casimir operators.
(The Casimir operators will play the role of Laplacians, of which the Dirac
operator is a kind of square root.)

We continue to work with our complex connected reductive algebraic group
G which is defined over R, and with a chosen Cartan involution 6 as in (2.1),
so that we have

g(R) = ¢(R) + s(R)

as in (2.1f). Fix a non-degenerate Ad(G)-invariant symmetric bilinear form

B:gxg—C (5.1a)
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We require also that B is preserved by 6, and that
B is real negative definite on £(IR), real positive definite on s(R).  (5.1b)

If G is semisimple, the Killing form meets these requirements; in general they
are easy to achieve. The properties are inherited by many real and 6#-stable
reductive subalgebras. For example, if H = T(R)A is a maximal torus as in
(2.2b), then

B is real negative definite on t(R), real positive definite on s(R). (5.1c)

In particular B is nondegenerate on h, and so dualizes to a Weyl group invariant
symmetric bilinear form B* on h*. Because the roots take imaginary values on
t(R) and real values on a, we get

B* is positive definite on the root lattice. (5.1d)

The decomposition

9=1[9,0] +3(9) = 9ss +3(9) (5.1e)

(the second summand being the center) is orthogonal for B. On each maximal
torus this gives

b = bhss +3(0), bss = b 0 [g, 0] (5.1f)

the first summand is the span of the coroots. Dualizing gives an orthogonal
decomposition

b* = b +3(9)%, (5.1g)

and the first summand is the span of the roots.
If {X;} is any basis of €, there is a unique dual basis {X7} defined by the
requirements
B(X;, X7) = 6. (5.1h)

The Casimir operator for K (with respect to B) is

Qx =D X; X' e U(b). (5.11)

It is independent of the choice of basis, and is fixed by Ad(K); in particular, it
belongs to the center of the enveloping algebra U (£). Consequently Qg acts by
a complex scalar operator

W) € C (5.15)

on any irreducible representation p of €. In the same way, if {Z,} is any basis
of g and {Z7} the dual basis, we get the Casimir operator for G

Qc =), 2,2 € U(g), (5.1k)
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which acts by a complex scalar
m(Qg) e C (5.11)

on any irreducible representation 7 of g.
If 11 is an irreducible representation of K of highest weight £ € X*(T,) with
respect to R}, (see (3.3a)), then

1) = BAE + d(2px) /2, dé + d(2pxc) /2

— B(d(2pK)/2,d(2pK)/2) = 0; (5.1m)

equality holds if and only if d¢ vanishes on all coroots of K. In accordance with
our policy of ignoring the difference between characters and their differentials
when it is harmless, we will usually write this result as

w(Qr) = B(§ + px, € + px) — Blpx, prc)-

In the same way, if (7, F(7.)) is an irreducible representation of G as in
(4.1), then

m(Qa) = B(ye + p,ve + p) — B(p, p)

5.1
:B(/\c+pa)\c+p)*B(pvp)JrB(Vch)' ( n)

We turn now to the Dirac operator. The key to its definition is the (positive
definite) real quadratic space

(s(R),B), Ad: K — O(s(R), B). (5.2a)

The Clifford algebra C(s(R)) is the real associative algebra with 1 generated by
s(R) subject to the relations

X’ +B(X,X)=0 (Xes(R)), (5.2b)
or equivalently
XY +YX+2B(X,Y)=0 (X,Y es(R)). (5.2¢)

By definition C(s(R)) is a quotient of the tensor algebra of s(R), from which it
inherits a filtration indicated by lower subscripts:

C(s(R)),, = span of products of at most m elements of s(R).

We have
grC(s(R)) = As(R). (5.2d)

Here are the basic facts about the spin cover of a compact orthogonal group.

Proposition 5.3. Define

C(s(R))* = invertible elements of the Clifford algebra,
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an open subgroup of the algebra. The conjugation action of this group on the
Clifford algebra is by algebra automorphisms. Regard C(s(R)) as a Lie algebra
under the commutator of the associative algebra structure; this is the Lie algebra
of the group C(s(R))*. Then there is a natural inclusion of Lie algebras

so(s(®)) = A\’ s(R) <> C(s(R))s,
The spin group is by definition the corresponding Lie subgroup of C(s(R))*:
Spin(s(R)) = exp (j(s0(s(R)))) = C(s(R))*.

The spin group action on C(R) by conjugation preserves the filtration, and so
descends to an action on

grC(s(R)) = As(R),

The action on s(R) preserves the quadratic form (because it comes from Clifford
algebra automorphisms), so defines

Spin(s(R)) — SO(s(R)).

The differential of 7 is the inverse of the Lie algebra isomorphism j; so w is a
covering map. As long as dims(R) = 2, we have

kerm = {£1} = C(s(R))*,
so the covering is two to one.
Here is the representation theory of the Clifford algebra.

Proposition 5.4. Write
dims(R) =qer 1 = 2m + €, m = [n/2].

The complezified Clifford algebra has dimension 2" = 2¢ - (2™)2. It is the direct
sum of 2¢ = 1 or 2 copies of a matrix algebra of rank 2™. In particular, the
center of the Clifford algebra has dimension 2¢; it is spanned by 1 and (if n is
odd)

Z =€1""€2m+1,
with {e;} an orthonormal basis of s(R). This central element depends only on
the orientation defined by the chosen orthonormal basis, and satisfies

2= (—1)™ L

The Clifford algebra has 2¢ irreducible representations, called spin represen-
tations, each of dimension 2™. In case n is odd, these two representations are
distinguished by the scalar by which z acts: we write (o[1], Spx]) for an irre-
ducible representation on which z acts by +i™ 1.
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If n is even, the spin representation (o, S) has a Z/27 grading
S=5.®5_,

with each summand of dimension 2™~ 1. The generators X € 5(R) carry S to
S_. The action of the spin group

Spin(s(R)) < C(s(R))*

preserves Sy, and acts irreducibly on each; these are the half-spin representa-
tions o4 of (the double cover of) an even special orthogonal group.

If n is odd, the two spin representations (U[ﬂ, S[i]) are isomorphic as rep-
resentations of the spin group. The action is irreducible; this is the spin repre-
sentation o of (the double cover of) an odd special orthogonal group.

Suppose that the weights for SO(s(R)) acting s(C) are

{£pa, ..., 2w} 11 {0}

the last zero is present only if € = 1. Then the weights of (either) spin repre-

sentation S are
m

(1/2) 35 €y,

=1

with €; = £1. Fach such weight has multiplicity one.

It is possible to enlarge Spin(s(R)) < C(s(R))* to a double cover of the full
orthogonal group O(s(R)). This is interesting for us because

Ad: K — O(s(R))

need not have image inside SO. All of the discussion starting in (5.7) below
can accordingly be extended to some double cover K of K. But this is a bit
complicated, and plays no essential role in this paper; so we omit it.

The real form C(s(R)) of the complexified Clifford algebra corresponds to a
conjugate-linear automorphism

or: C(s(R))c — C(s(R))c, or(X) =X (X €s(R)). (5.5a)
There is also a (complex-linear) algebra antiautomorphism 7 characterized by
T(X)=-X (X € 5(R)). (5.5b)

(The reason for the existence of 7 is that the requirement (5.5b) respects the
defining relations of the Clifford algebra.) If (w, M) is any C(s(R))c-module,
the Hermitian dual vector space M" (consisting of conjugate-linear function-
als on M; see for example [1, Section 8]) becomes a C(s(R))c-module by the
requirement

7 (c) = w(r(or(c))"  (ce C(s(R))c) (5.5¢)
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or equivalently
(m, X -py =(=X -m,puy  (meM,upeM" X esR)). (5.5d)

Here we write (-, -) for the Hermitian pairing between M and its Hermitian dual
M™". Passage to the Hermitian dual obviously fixes the unique simple C(s(R))c-
module S in the even-dimensional case, so S admits an invariant Hermitian form

(s 8% 8 —C. (5.5¢)

In the odd-dimensional case, we find for the central element z described in
Proposition 5.4 that

or(z) = z, 7(z) = (=1)™ 2

Since z acts on Sy by the scalar (£i)™~! it follows that z acts on the Hermitian
dual Si by the scalar

(=)™ E)mT = (£0)™ T
Therefore Sf ~ S, , and S; admits an invariant Hermitian form
<-, '>Si: Si X Si — C. (55f)

Proposition 5.6. In the setting of (5.5), the invariant Hermitian forms {,)s
and {,)s, are all definite. We normalize them henceforth to be positive. The
characteristic invariance property is

(X -5,8)+(s,X-5)=0 (X € 5(R));

that is, the action of Clifford multiplication is by skew-adjoint operators.
These Hermitian forms are also invariant under the action of the spin group

Spin(s(R)).

Suppose
(&, V) is a (g, Ko)-module; (5.7a)

that is, that V is at the same time a complex representation of the Lie algebra
g, and a locally finite continuous representation of the Lie group K, and that

the differential of {|x is equal to the restriction to €y of &|. (5.7b)

Let (0,.S) be a spin representation of the complexified Clifford algebra C(sg)c.
In the odd-dimensional case, we simply choose one of the two representations
Sy or S_. Finally, fix any basis

{X1, -, Xn} cs(R) (5.7¢)
for the —1 eigenspace of the Cartan involution on the real Lie algebra, and let

(X', X"} c5(R), B(X;, X7) = &, (5.7d)
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be the dual basis with respect to the symmetric invariant form B of (5.1). The
Dirac operator for (£, V) is the linear operator on V ® S defined by

D= i £(X;)®0(X7) e End(V ®S). (5.7¢)
j=1
It will be convenient as in the discussion of the Clifford algebra to write
n=2m+e  dimS=2m =202 (5.7f)
The adjoint action defines a group homomorphism
Ad: Ky — SO(s(R)). (5.7g)
Using the covering
1 —> {+1} — Spin(s(R)) > SO(s(R)) — 1, (5.7h)
from Proposition 5.3, we can define a pushout
Ko = {(s,k) € Spin(s(R)) x Ky | Ad(k) = 7(s)}. (5.71)
There is a short exact sequence
1— {+1} — Ky > Ky — 1. (5.7j)
Projection on the first factor defines a homomorphism Avd,
Ad: Ky —> Spin(s(R)). (5.7K)
In this way S becomes a representation of Ko by
og, =00 Ad. (5.71)
The nonzero weights of T, on s are
{+v; |1 <j<r} 1 {0}. (5.7m)

Here the +y; are the complex positive roots and the noncompact imaginary pos-
itive roots; and the multiplicity of the weight zero is dim A.. In light of Propo-
sition 5.4, it follows that the weights of Ky on S are

-
(1/2) 3 &) (5.7n)
j=1
with €; = +1. The multiplicity of such a weight is the number of expressions
for it of this form, times 2[dim Acl/2, (The multiplicity arises because the weights
p; appearing in Proposition 5.4 are the r pairs ++;, together with [dim A./2]
pairs of zeros.)
Of course V is a representation of IN(O by & o w, which we will just call &.
Therefore

(0%, ®ES®V) (5.70)

is a representation of f(o.
Here are the basic facts about Parthasarthy’s Dirac operator.
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Proposition 5.8 (Parthasarathy [5]). In the setting of (5.7), the Dirac oper-
ator D is independent of the choice of basis (of s(R)), and commutes with the
representation o, ® & of Ko. Consequently

kerDc S®QV

s a representation of f(o (as indeed is every eigenspace of D).
The square of the Dirac operator is

D? = “15®&(Q0) + (0, ® ) (k) — [Blpa, pa) — Blpx, pr)] - 1s @ 1y

Suppose next that Qg acts on' V by a complex scalar £(Qg) (as is automatic
if € is irreducible). Then D?* is diagonalized by the decomposition of %, ® &

into irreducible representations of Ko. All of the eigenvalues differ from &(Q¢g)
by real scalars.

Suppose finally that V' admits a nondegenerate invariant Hermitian form
{Ov. Then D is self-adjoint for the Hermitian form

<)>S ®<a>V'

If V has signature (p,q), then S®V has signature (2™p,2™q) (notation as in
Proposition 5.4).

Here is Kostant’s result about the spectrum of the Dirac operator.

Proposition 5.9 ([4]). Suppose that F(.) is an irreducible finite-dimensional
representation of G(R) of highest weight

Ve = (>\Ca Vc)

as in Proposition 4.2, and S is a spin representation of Spin(s(R)) as in Propo-
sition 5.4. Regard S ® F(v.) as a representation of Ky as in Proposition 5.8.

1. Every irreducible representation T of IN(O on S® F(v.) has highest weight
of the form 7
¢ +wpe — px — 2p(B),

for some w € W' (see Corollary 3.9), ¢ a wR; -dominant restricted

weight of F(v.), and B a set of noncompact imaginary roots in wR™.
2. The scalar T(Qk) satisfies
() < e + pas Ae + p6) — {pKs PEO)-
Equality holds if and only if
& =wh. = W'\, wpe — 2p(B) = w'pg

for some w' € W*. In particular, this largest possible eigenvalue of T(Qx)
1s equal to

</\c + paG, Ac + PG’> - <,0K7 pK>.
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The proposition has been formulated in such a way as to outline its proof
in [4] and [3]. The highest weight of any representation of Ky in F(7y.) must
be a Ky-dominant restricted weight of F(v.), and therefore a wR;; -dominant
restricted weight ¢. The highest weight of 7 must therefore be equal to such a
weight, plus a weight of S. A weight of S is of the form wps — px — 2p(B).
This is how (1) is proved. Now the formula in (5.1) for the eigenvalue of Q,
together with Proposition 4.2(2), leads easily to (2).

Corollary 5.10. Suppose we are in the setting of Proposition 5.9.

1. The eigenvalues of D? on S ® F(.) are less than or equal to the positive
number
—We, Ve)-

Equality occurs ezxactly on the representations of I}O of highest weights
w(Ae + pa) — px (weWh),
with W' as in Corollary 3.9.
2. Fach such representation of R’o has multiplicity

olt/21, ¢ = dim A,.

3. The Hermitian form on S® F(v.) is definite on each such representation,
of sign e(w) computed in Corollary 4.3(4).

4. Define
po= Y, dmE@+pg) - px),
weW? e(w)=+1
qo = > dim E(w(Ae + pe) — pr),

weW? e(w)=—1

Then the the signature of the form on the largest eigenspace of D? is
212 (g, o).

Sketch of Proof.  Part (1) is precisely Proposition 5.9, together with Partha-
sarathy’s formula in Proposition 5.8 for D2. For (2), the proof of Proposition
5.9 shows that the multiplicity of such a representation of K, is equal to the
multiplicity of a highest weight space of S of weight pg — px. (That was the
reason for recalling the proof above.) This last weight multiplicity is computed
after (5.7n); it is 2l%2. For (3), this same proof shows that the highest weight
vector of such a representation is equal to a weight vector in F'(y.) of weight
wA, (which by definition has length a positive multiple of e(w)) tensored with a
vector in S (which has positive length). Part (4) just writes (3) explicitly. O
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Lemma 5.11. Suppose that T is a linear operator on a finite-dimensional Her-
mitian vector space V , self-adjoint with respect to a Hermitian form of signature
(P,Q); and suppose that T has purely imaginary eigenvalues.

1. For x # 0, the Hermitian form defines an isomorphism
V;Z > Vg

In particular, the eigenspaces Vi, and V_;, have the same dimension m(x),
and contribute (m(z), m(z)) to the signature.

2. The Hermitian form has a nondegenerate restriction to the kernel
‘6 =:ker12
where it has signature (p1,q1).

8. The signatures on 'V and Vjy satisfy
P—Q=p1—aq.
In particular, the Signature invariant for V is equal to that for Vy:
Sig(V) = [P — Q| = [p1 — a1] = Sig(Vh).
Once stated, this result is immediate; what is true is

P=pi+ Y m@), Q=aq+ ), mx).

x>0 x>0
Here at last is the main theorem.

Theorem 5.12. Suppose in the setting of (4.1) and (4.1c) that F(v.) is a
finite-dimensional representation of G(R) admitting an invariant Hermitian
form (-, -)p(4.); we normalize the form to be positive on the . weight space.
Write 2r for the number of noncompact imaginary and complex restricted roots
of T, in G:

2r =dim G/H, — dim K/T.,.

Then (with notation as in Corollary 5.10)

Sig(F(7e)) = [po — qol/2"-

Proof. The approximate idea is to apply Lemma 5.11 to the Dirac operator D.
This is indeed a self-adjoint linear operator on the finite-dimensional Hermitian
vector space F(v.)®S. Write (p, q) for the signature of the form on F'(v.); then
the form on F(v.) ® S has signature

(P,Q)=2"(p,q)  (m = [dims/2]) (5.13a)
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(see Proposition 5.4). Corollary 5.10 says that the eigenvalues of D? are less
than or equal to —(v, vy, and that the signature of the form on the largest
eigenspace is

21 (po, qo). (5.13b)

Suppose for a moment that
v. = 0. (5.13¢)

Then the Corollary says that the eigenvalues of D? are less than or equal to zero.
From this it follows that the eigenvalues of D (as square roots of non-positive
real numbers) are purely imaginary. Therefore Lemma 5.11 applies, and tells
us that

P—Q =2 (py — qo). (5.13d)
Combining this with (5.13a) gives
2ldime/2l(p — q) = 212 (py — qo). (5.13¢)
Because of (5.7m),
dims = 2r + ¢, (5.13f)

with 7 the number of complex and noncompact imaginary positive restricted
roots, and ¢ the dimension of A.. Therefore

(p—aq) =2"(po — o), (5.13g)

which is precisely the conclusion of the theorem.

So what if v, # 0?7 In this case D? has at least some strictly positive
eigenvalues, meaning that D has some real eigenvalues. The proof of Lemma
5.11 would tell us that we could compute Sig by restricting the form to these
real eigenspaces. The largest of these real eigenvalues we understand, but the
smaller ones are not easily accessible. So the proof strategy appears to fail.

There are at least two ways out. The simplest is to work not with G but
with its commutator subgroup, a semisimple group. We already know that
an integral weight (like (A, 7.)) must take real values on the real span of the
coroots. If GG is semisimple, this real span of the coroots is

it.(R) + a.(R).

Therefore the purely imaginary linear functional v. on a.(R) must be zero, and
we are back in the case (5.13c).
A second (equivalent) method is to use the strongly integral weight

X = (07 _Vc)'

This weight x is the differential of a one-dimensional unitary character C,, of
G(R), so the signature of F'(v.) is the same as the signature of F(v.) ® C,.
This latter representation has highest weight (7., 0), so we are again in the case
(5.13c).
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A third (still equivalent!) method would be to use not the Dirac operator of
(5.7e), but one built from s(R) N [g, g]. The reason we did not do that is that
there is a long history and literature attached to Parthasarathy’s Dirac operator;
we preferred to use it and to make this extra argument at the end. O

Proof of Theorem 1.2. Now G = GL(n,R), and
5(R) = real symmetric matrices. (5.14a)

We will treat the case n = 2m is even; the case of odd n is similar but slightly
simpler, and we leave it to the reader. The maximal compact torus is

T.(R) = SO(2)™, X*(T.) ~7™. (5.14b)
The restricted root system is (see Table 3)
chs = Cm; chlx = Dma Rimag = AT, (514C)

all of the imaginary roots are noncompact. We use the standard positive root

system
R+

res

={e;ter|1l<j<k<m}u {2} (5.14d)
Then we calculate
pe=02m—-1,2m—-3,...,1), pr=(m—-1m-—2,...,0), (5.14e)

W =W(A) = {1,5n}, (5.14f)

with s,, the reflection in the simple root 2e,,.
The theorem concerns a restricted highest weight

Ae = 2pay 5 2m) = (M1 = An)s s (A = Amt1)) - (5.14g)

In the theorem we took all the ;; to be integers, but Proposition 2.6 says that
we can allow all the p; to be half-integers as well.
By definition €(1) = 1; Corollary 4.3 says that

1 AN e
e(sm) = (—1)2m = 7€ (5.14h)
-1 /\j eZ + 1/2.
The two highest weights of Ko on the largest eigenspace of D? are
(201, - 201, +20im) + (m, ..., 2, +1). (5.14i)

These two representations of Spin(2m) differ by the outer automorphism com-
ing from O(2m), so they have the same dimension. The computation of the
signature from Theorem 5.12 is therefore

2 dim B2y +m, ..., 2pm +1)/2™ N €Z

5.14j
0 yeztip O

Sig(m(})) = {
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The dimension in this formula is calculated by the Weyl dimension formula for
D,,; the weight that must be inserted in the formula is the highest weight plus
pK, which is

2u1 +2m —1,...,2u, + 1). (5.14k)

Now the Weyl dimension formula is a homogeneous polynomial of degree m? —m

(the number of positive roots for D,,; so
dim E(k¢ + (k — 1)px) = k™ ~™ dim E(¥)). (5.141)

If we apply this formula with k£ = 2, we get

2-dim FE 172, pm +1/2)/2™ N, € Z
Sig(n(\)) = B+ 172, +1/2)/ 7 € (5.14m)
0 N EZ+1)2.
The first formula here is precisely Theorem 1.2 (in case n is even). O
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