
18.781 Final Practice Problems (version of 12/19)

The two exams and the homework problems are your best source for what the
final exam might be like. The problems here are mostly meant to cover material
after Problem Set 10. In the next day or two I will try to add some problems about
computing ideal factorizations explicitly.

1. Suppose that d is a squarefree integer not equal to 1; let k = Q[
√

d] be
the corresponding quadratic field, and let R be the ring of algebraic integers in k.
Suppose that p is an odd prime number. The question is whether (p) is a prime
ideal in R.

a) Suppose that p is an odd divisor of d. Let I be the ideal (p,
√

d) generated

by p and
√

d. Prove that I is prime, and that I2 = (p). Prove that I is principal if
and only if d = ±p.

For the rest of the problem, assume that p does not divide d.

b) Suppose that d is a quadratic residue modulo p. Prove that there are integers
x and y not divisible by p with the property that x2 −dy2 is divisible by p. Deduce
that (p) is not a prime ideal. (Hint: consider the product ideal (x+y

√
d)(x−y

√
d).)

c) Prove that the ideal (p, x+y
√

d) is prime. (Perhaps this question is too hard.)

d) Prove that (p) = (p, x + y
√

d)(p, x − y
√

d).

e) Prove that the ideal (p, x+y
√

d) is principal if and only if there is an element
of R of norm equal to ±p.

f) Suppose (still assuming that p does not divide d) that d is not a quadratic
residue modulo p. Prove that (p) is a prime ideal.

2. Suppose that d is a squarefree integer not congruent to 1 modulo 4; let
k = Q[

√
d] be the corresponding quadratic field, and let R be the ring of algebraic

integers in k. Therefore

R = {m + n
√

d | m, n ∈ Z}.

The problem is to factor the ideal (2) in R.

a) Suppose d is even. Let I be the ideal (2,
√

d) generated by 2 and
√

d. Prove
that I is prime, and that I2 = (2).

b) Suppose d is odd. Define

J = {m + n
√

d | m + n is odd}.

Prove that J is prime, and that J2 = (2).

3. For which primes p (excluding 2 and 3) is 6 a quadratic residue modulo p?

4. Find prime factorizations of the ideals (2), (3), (5), (7), and (11) in the ring

R = Z[
√

6]. Decide which of the factors are principal ideals.

5. Suppose that k is any algebraic number field, and R is the ring of algebraic
integers in k. Assume unique factorization of non-zero ideals in R, and the fact
that for any non-zero ideal I in R there is an ideal J with IJ = (N), N being a
positive integer. Using these facts, prove that every prime ideal in R contains a



2

unique principal ideal (p), with p an ordinary prime number. That is, the primes
of R are the prime divisors of the ordinary primes.

6. Suppose k is an algebraic number field of degree n. It turns out that there are
algebraic integers {α1, . . . , αn} in k with the property that every algebraic integer
in k can be written uniquely as an integer combination of the αi.

a) Suppose that d is a squarefree integer not equal to 1; let k = Q[
√

d] be the
corresponding quadratic field. Explain how to find α1 and α2 in this case.

7. In the setting of problem 6, suppose that I is a non-zero ideal of R. It turns
out that there are elements {β1, . . . , βn} in I with the property that every element
of I can be written uniquely as an integer combination of the βi. By problem 5,
we can write

βj =
∑

i

aijαi

for unique integers aij . Writing A for this matrix of integers, we can define the
norm of the ideal I to be N(I) = | det(A)|, a positive integer. (It turns out that
N(I) is equal to the number of residue classes in R/I.)

a) Suppose that d is a squarefree integer not congruent to 1 modulo 4; let

k = Q[
√

d] be the corresponding quadratic field. Suppose x and y are ordinary

integers, not both zero, and I is the principal ideal (x + y
√

d). Explain how to find
β1 and β2 in this case. Calculate the norm of the ideal I.

8. Suppose that α is a non-zero algebraic integer satisfying the equation

αn + an−1α
n−1 + · · · + a1α + a0,

with ai ∈ Z. Prove that a0/α is an algebraic integer.


