Exponential and logarithm in p-adic fields

Suppose F is a finite extension of \mathbb{Q}_p, say of degree m. Write

$$\mathcal{O} = \text{ring of integers in } F = \{ x \in F \mid |x|_F \leq 1 \}$$

$$m = \text{maximal ideal in } \mathcal{O} = \{ x \in F \mid |x|_F < 1 \}$$

$$q = |\mathcal{O}/m| = p^f = \text{smallest norm bigger than 1 of an element of } F.$$

The positive integer f is the residue class degree, the degree of the field extension $\mathcal{O}/\mathbb{Z}_p \subset \mathbb{Q}_p/p\mathbb{Z}_p$.

We have $|p|_F = p^{-m}$ since multiplication by p on the m-dimensional \mathbb{Q}_p-vector space F must dilate the Haar measure by p^{-m}. On the other hand, the norm of p must be a (negative) power of q; we write

$$|p|_F = q^{-e},$$

with e a positive integer called the ramification index of F over \mathbb{Q}_p. It follows that $m = ef$. In fact f is the degree of the largest unramified (over \mathbb{Q}_p) subfield E of F.

I stated in class that the elements of $(\mathcal{O}/m)^\times$ lift to \mathcal{O}^\times as $(q - 1)$st roots of unity, and that these are precisely the roots of 1 of order prime to p in F. More specifically,

$$E = \mathbb{Q}_p[(q - 1)\text{st roots of unity}] \subset F$$

Obviously none of these roots of unity (except 1) belongs to $1 + m$.

I want to see when the exponential and logarithm functions are defined, using their standard power series expansions

$$\exp t = \sum_{n=0}^{\infty} t^n/n!, \quad \log(1 + x) = \sum_{n=1}^{\infty} (-1)^{n+1}x^n/n.$$

We have formal power series identities

$$\exp(t + s) = \exp(t) \exp(s), \quad \log[(1 + x)(1 + y)] = \log(1 + x) + \log(1 + y)$$

$$\log(\exp(t)) = t, \quad \exp(\log(1 + x)) = 1 + x;$$

these will be identities in F whenever the series converge.

A series in F converges if and only if its terms tend to zero (because of the ultrametric inequality $|a + b|_F \leq \max\{|a|_F, |b|_F\}$). So we need to estimate the norms of the coefficients.

Lemma 1. For $n \geq 1$,

$$|1/n|_F = q^n(n/p + n/p^2 + \cdots) \leq q^{e(n/p)(1/(1-p^{-1}))} = q^{ne/(p-1)}.$$

Here $[x]$ is the greatest integer less than or equal to x.
Lemma 2. The series \(\exp(t) \) converges for
\[
|t|_F < q^{-e/(p-1)};
\]
equivalently, for \(t \in \mathfrak{m}^N \) whenever \(N > \frac{e}{p-1} \). In this case,
\[
\exp(m^N) = 1 + m^N.
\]

To get the last equality (as opposed to containment), we use the fact that the first non-constant term in the series is larger than all later terms.

The logarithm series converges better.

Lemma 3. For \(n \geq 1 \),
\[
|1/n|_F \leq n^m,
\]
with equality exactly when \(n \) is a power of \(p \). Consequently the series \(\log(1+x) \) converges for \(x \in \mathfrak{m} \).

The reason is that
\[
|x^n/n|_F \leq n^m q^{-n},
\]
and the exponential decay of \(q^{-n} \) is faster than the polynomial growth of \(n^m \).

In order to see exactly where \(\log \) takes values, we need to estimate these terms more precisely.

Lemma 4. Suppose \(N > \frac{e}{p-1} \), and \(x \in \mathfrak{m}^N \). Then the first term in the series for \(\log(1+x) \) is strictly larger than all successive terms. Consequently \(\log \) is a bijection
\[
1 + \mathfrak{m}^N \to \mathfrak{m}^N.
\]

Its inverse is \(\exp \).

Proof. We claim first of all that
\[
(1) \quad |x^n/n|_F < |x^n/p|_F \quad (n > p).
\]

Here is a proof. According to Lemma 3,
\[
|x^n/n|_F \leq n^m q^{-nN},
\]
with equality exactly when \(n \) is a power of \(p \). The function \(n^m q^{-nN} \) increases from \(n = 0 \) to \(n_0 = m/N \log q \), and then decreases. The maximum satisfies
\[
n_0 = m/(N f \log p) = e/N \log p < (p-1)/\log p < p;
\]
this last inequality is equivalent to \(\log p > 1 - 1/p \), which is trivial for \(p \geq 3 \) and easy to check for \(p = 2 \). Now (1) follows.

On the other hand, we have
\[
(2) \quad |x^n/n|_F = |x|^n_F < |x|_F \quad (1 < n < p).
\]

From (1) and (2) we see that the largest term in the log series is either the first or the \(p \)th. But
\[
|x^n/p|_F/|x|_F = |x|^{p-1}_F |p|^{-1}_F = |x|^{p-1}_F q^{-e} \leq q^{-N(p-1)+e}.
\]

The hypothesis on \(N \) is exactly that this last exponent is strictly negative; so the first term is strictly the largest. \(\square \)