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The Euclidean Algorithm

In order to find the inverse of an element 7 in Z/nZ, we need to find an integer
a satisfying the equation
am+bn = 1. (1)

Here b is some other integer whose value we don’t care about. These notes are
about solving (1). The first question is when a solution exists.

Theorem 1. Suppose m and n are positive integers. Then the equation am+bn =1
has a solution if and only if the greatest common divisor of m and n is 1.

Proof. Suppose that the greatest common divisor of m and n is d. Then the equa-
tion 1 = am + bn implies that d must also be a divisor of 1; so d = 1, as we wished
to show.

Conversely, suppose that the greatest common divisor of m and n is 1. Multi-
plication by 7 defines a mapping u that carries the finite set Z/nZ to itself:

w(Z@) =z - m.

What we want to show is that 1 is in the image of u. Because the set is finite,
it’s enough to show that p is one-to-one; for then the image of p will also have n
elements, and so must be all of Z/nZ. So suppose u(Z) = u(7); that is, that

T-m=7- m.
By the distributive law for multiplication, this means that
(z—7)-m=0,

or equivalently that (z — y)m is divisible by n. Since m and n are assumed to have
no common divisors but 1, it follows that £ — y must be divisible by n; that is, that
T =7y, as we wished to show. [

So suppose the greatest common divisor of m and n is 1; how do we actually find
the solution to (1) that the theorem says has to exist? (The proof of the theorem
doesn’t help.) One approach is trial and error. If a is one solution to (1), then all
the numbers a + zn are also solutions (with b replaced by b — zm). This means
that there must be a solution between 0 and n — 1. We can simply test each of
these values of a to see whether xm leaves a remainder of 1 on division by n. This
is reasonable for small n, but nasty to do by hand even for n around 100. For n
much bigger than 107, it is not possible even by computer. Fortunately there is a
much faster way: the Euclidean algorithm. This algorithm begins with two positive
integers xg > x1 > 0. The first step is to divide x; into z, obtaining a quotient g
and a remainder 3. The remainder is a non-negative integer strictly smaller than
1. If it isn’t zero, we can repeat the process using z; and x5 in place of zo and
1. Recording all our divisions, we get a series of equations

To — goT1 = T2 0<zy < 1)

T — q1T2 =23 (0 < z3 < z2) (2)
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This continues (always with z; getting strictly smaller) until finally some zy 1 is
zero. The last interesting equation is

IN-2 —gN-2TN-1 = TN, (3)

and zy divides zy_;. The Euclidean algorithm says first of all that z, is the
greatest common divisor of g and z;. That’s not very hard to prove, but I'll skip
the argument.

Now we turn to solving (1). We’re therefore fixing positive integers m and n that
have greatest common divisor 1. We apply the Euclidean algorithm, beginning with
zo = n and 1 = m. Since the greatest common divisor is 1, zy must be equal to
1. The last equation therefore writes 1 as a linear combination of z_s and zn_1
with integer coefficients. Similarly, the next to last equation writes zy_; as a
combination of z_3 and x_2 with integer coefficients. Plugging this in for zy_1
in the last equation, we get 1 as a combination of zx_3 and zx_3. Continuing
back up the line, we end up with 1 as a combination of ¢ and z;. The process
is easier to do than to explain; so here’s an example. Suppose we want to find an
inverse for 19 in Z/65Z. Applying the Euclidean algorithm to 65 and 19 gives

65—3-19=28

19-2.-8=3

8—2-3=2
3—-2=1

The last equation writes 1 as a combination of 2 and 3. Use the preceding one to
replace the 2 by a combination of 8 and 3, getting 1 as a combination of 8 and 3:

1=3-2=3-(8-2-3)=-8+(1+2)-3=-8+3-3.
Next, use the second equation above to replace the 3 by a combination of 8 and 19:
1=-8+3-3=-8+3-(19—-2-8)=3-19+(-1-6)-8=3-19—-7-8.
Finally, plug in the first equation above:
1=3-19-7-8=3-19-7(65—3-19) = —-7-65+(3+21)-19=—7-65+24-19.

This equation says that 24 is the inverse of 19 in Z/65Z.

Here are some things to think about. First, just how fast or slow is this algo-
rithm? That is, given positive integers zy > x;, can you estimate the number of
steps N in terms of the size of zo? (The trial-and-error method required z¢ steps,
so we're looking for something better than that.)

Second, this algorithm depends only on a nice notion of division with remainder.
Another place where there is such a notion is the collection k[z] of polynomials
over a commutative field k. More or less everything above can be repeated with
the integers replaced by k[z], n replaced by a polynomial p of degree d > 0, and m
replaced by another polynomial ¢ of degree strictly smaller than d. The ring Z/nZ
is replaced by k[z]/(p), consisting of equivalence classes of polynomials modulo the



relation q; ~ g3 whenever q; — g5 is divisible by p. Just as division with remainder
in Z identifies Z/nZ with {0, 1.... ,n—1}, division with remainder in k[z] identifies

k[z]/(p) ~ {polynomials of degree strictly less than d}.

A result like the Theorem above says that g is invertible in k[z]/(p) if and only if the
greatest common divisor of p and ¢ is 1; and in that case the Euclidean algorithm
computes the inverse.

To see if you’ve understood this second thing to think about, try an example.
Use the field R of real numbers, and the polynomial p = z2 + 1. Show how to
identify R[z]/(p) with the field C of complex numbers. The Euclidean algorithm is
supposed to tell you how to compute the inverse of any non-zero complex number.
Does this computation have anything to do with what you already know about
finding the inverse of a complex number?



