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1 Introduction
{sec:intro}

The article [1] describes an algorithm for computing the unitary dual of a real {ALTV}
reductive algebraic groupG(R). One ingredient in the algorithm is the Kazhdan-
Lusztig polynomials defined and computed in [4]. These polynomials are indexed {LVold}
by pairs (J, J ′) of irreducible representations of G(R).

A second ingredient in the unitarity algorithm is a twisted version of these
polynomials introduced in [5]. The setting involves an outer automorphism δ {LVnew}
of G(R) of order two, and the corresponding extended group δG(R) (contain-
ing G(R) as a subgroup of index two). These twisted polynomials are indexed
by pairs (J̃ , J̃ ′) of extensions to δG(R) of irreducible representations of G(R).
Each δ-fixed irreducible J of G(R) admits exactly two extensions J̃+1 and J̃−1 to
δG(R). Roughly speaking, the twisted polynomials depend only on the under-
lying G(R) representations. Precisely, if J̃±1 are the two extensions of a G(R)
irreducible J , and J̃ ′±1 the two extensions of J ′, then

PJ̃ε,J̃′
φ

= εφPJ̃1,J̃′
1
.

The difficulty is that (despite the misleading notation J̃±1) there is no pre-
ferred extension of J to δG(R). A representation like J can be specified precisely
using (any of various versions of) a Langlands parameter p. The point of the
paper [2] was to introduce extended parameters E ([2, Definition 5.4]). An {twisted}{twisted}
extended parameter consists of a Langlands parameter p and some additional
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data (for which there are up to equivalence exactly two choices). The Lang-
lands parameter specifies an irreducible J(p) for G(R). The equivalence class of
E specifies precisely one extension J̃(E) to δG(R).

Given this precise specification of extended group representations, the al-
gorithm of [5] could be formulated in terms of extended parameters E. This {LVnew}
formulation was also presented in [2], and it is there that (at least one) error {twisted}
arose.

Here is the nature of the error. The algorithms of [5] involve various linear {LVnew}
maps Tκ defined on Z[q]-linear combinations of extended group representations.
These formal linear combinations are subject to the relations

J̃+1 = −J̃−1.

A typical step in the algorithm involves two to four representations Ji and says
something like this: extensions J̃i of Ji may be chosen so that

Tκ(J̃1) = J̃1 + J̃3 + J̃4, Tκ(J̃2) = J̃2 + J̃3 − J̃4 (1.1) {e:LVnew}

(see [5, (7.6i′′)]). If one replaces any J̃i by the other extension of Ji, then the {LVnew}
sign of the coefficent of the J̃i term in each such formula must change.

For each of the cases considered in [5], there is an explanation in [2] of how {LVnew}{twisted}
to choose extended parameters so that the formulas in [5] are true. The error {LVnew}
is that for the case 2i12 described in [2, Lemma 8.1], the choices are incorrect. {twisted}
More precisely, the formulas [2, (44)] must be replaced by {twisted}

Tκ(E0) = E0 + F0 + (−1)〈σ,t〉F ′0

Tκ(E′0) = E′0 + F0 + (−1)〈σ,t〉F ′0

Tκ(F0) = (q2 − 1)(E0 + E′0) + (q2 − 2)F0

Tκ(F ′0) = (−1)〈σ,t〉(q2 − 1)(E0 − E′0) + (q2 − 2)F ′0.

(1.2) {e:erratum}

(What has been added is the factors (−1)〈σ,t〉.) We will sketch a proof of
these corrected formulas in Section 2. For the introduction, we will say a word
about the source of the error. All of the formulas in [5] concern behavior of {LVnew}
sheaves on G (or rather on some version of G defined over a finite field) in
the direction of some very small Levi subgroup L of G: the group L is locally
isomorphic to SL(2), SL(2)×SL(2), or SL(3), in each case times a torus factor.
Standard techniques allow one to prove the formulas working in L rather than
in G; so one is ultimately making statements about the representation theory
of L(R). Standard techniques very often allow one to reduce representation-
theory questions about reductive groups to the case of semisimple groups, since
the center necessarily acts by scalars in an irreducible representation. This
technique was used (correctly) in [5] to prove (1.1). It was used sloppily to {LVnew}
justify [2, Lemma 8.1]. The Lemma is true when G is locally isomorphic to {twisted}
SL(2) × SL(2); but the definitions around extended parameters allow what
happens on the center to affect signs. The result is that one can construct
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extended parameters for a group locally isomorphic to SL(2)× SL(2)×C× for
which [2, Lemma 8.1] fails. {twisted}

One might hope that therefore the result is true for semisimple G, but this
also fails: this bad SL(2)× SL(2)× C× example turns up inside SO(p, q).

Now that we have your attention, we will conclude this introduction with a
much more ordinary error: the first formula

sgn(E,E′) = i〈(
∨δ0−1)λ,t′−t〉+〈τ ′−τ,(δ0−1)`′〉(−1)〈τ,`

′−`〉+〈λ′−λ,t′〉+〈τ,t′−t〉 (1.3) {e:6.5badsgn}

from [2, Proposition 6.5] is incorrect: the plus sign between the two terms in {twisted}
the exponent of i should be a minus. The corrected formula is

sgn(E,E′) = i〈(
∨δ0−1)λ,t′−t〉−〈τ ′−τ,(δ0−1)`′〉(−1)〈τ,`

′−`〉+〈λ′−λ,t′〉+〈τ,t′−t〉. (1.4) {e:6.5goodsgn}

2 Two copies of SL(2)
{sec:twoSL2}

Here is a corrected replacement of [2, Lemma 8.2]. The hypotheses are some- {twisted}
what different (roughly speaking, more general) from those of the original; after
sketching a proof, we will see how this corrected statement leads to (1.2). No-
tation is as in [2]. {twisted}

{lemma:8.1corr}
Lemma 2.1. Suppose κ is of type 2i12f for E = (λ, τ, `, t). Define

`split = `+ [(gα − `α − 1)/2]α∨ + [(gβ − `β − 1)/2]β∨.

Suppose that
F = (λ′, τ ′, `split, t)

is an extended parameter of type 2r21f appearing in Tκ(E). Then the coeffi-
cient with which it appears is the ratio of the z-values for these two extended
parameters (see [2, Definition 5.5]). Explicitly, this is {twisted}

−z(λ′, τ ′, `split, t)/z(λ, τ, `, t) = i〈τ
′,(δ−1)`split〉−〈τ,(δ−1)`〉(−1)〈λ

′−λ,t〉.
{se:twoSL2}

Proof. As mentioned in the introduction, the definition of Tκ involves sheaves on
a form of G defined over a finite field. One can make the computation entirely
in the Levi subgroup of G defined by

κ = (α, β) = (α, ∨δ(α)). (2.2a)

We may therefore assume that G is equal to L. Writing Z for the identity
component of the center of G, this means that

G is a quotient of SL(2)× SL(2)× Z (2.2b)

by a finite central subgroup; the first SL(2) corresponds to α and the second to
β. So there is a natural identification of Lie algebras

g = sl(2)× sl(2)× z. (2.2c)
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We use the standard torus

H =

{[(
x 0
0 x−1

)
,

(
y 0
0 y−1

)
, z

]
| x, y ∈ C×, z ∈ Z

}
=
{

(x, y, z) | x, y ∈ C×, z ∈ Z
}
.

(2.2d)

(Note that H is a quotient of C× × C× × Z, not a direct product.) The Lie
algebra of H is identified in this way as

h ' C× C× z, L 7→ (α(L)/2, β(L)/2, LZ) = (Lα/2, Lβ/2, LZ); (2.2e) {e:hcoord}

here LZ is the projection of L on z. The simple coroots are

Hα =

[(
1 0
0 −1

)
,

(
0 0
0 0

)
, 0

]
= (1, 0, 0)

Hβ =

[(
0 0
0 0

)
,

(
1 0
0 −1

)
, 0

]
= (0, 1, 0).

(2.2f)

The pinning is given by the simple root vectors

Xα =

[(
0 1
0 0

)
,

(
0 0
0 0

)
, 0

]
Xβ =

[(
0 0
0 0

)
,

(
0 1
0 0

)
, 0

]
.

(2.2g) {e:roots}

The Tits group generators are

σα =

[(
0 1
−1 0

)
,

(
1 0
0 1

)
, 1

]
σβ =

[(
1 0
0 1

)
,

(
0 1
−1 0

)
, 1

]
.

(2.2h) {e:tits}

{se:strat}
Here is the strategy of the proof. The terms ` and `split in our extended

parameters define strong involutions ξ and ξsplit, and therefore subgroups

Kξ = Gξ, Kξsplit = Gξ
split

. (2.3a)

These have index two in the corresponding subgroups of the extended group

δ0Kξ = [δ0G]ξ, δ0Kξsplit = [δ0G]ξ
split

. (2.3b) {e:extK}

The hypothesis that F appears in Tκ(E) means in particular that ξsplit is con-
jugate to ξ by a unique coset gKξ.

The extended parameters E and F define

J(E) = irreducible (g, δ0Kξ)-module

I(F ) = standard (g, δ0Kξsplit)-module

I(F )new = standard (g, δ0Kξ)-module;

(2.3c)
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the last is obtained by twisting I(F ) by Ad(g).
So what is the representation-theoretic interpretation of the coefficient of F

in Tκ(E)? The multiplicity matrix m (giving multiplicities of irreducibles J as
composition factors of standard modules I) is essentially defined by

I =
∑

J irreducible

m(J, I)J. (2.3d) {e:multform}

The inverse matrix M writes an irreducible representation J ′ as an integer
combinations of standard representations I ′:

J ′ =
∑

I′ standard

M(I ′, J ′)I ′. (2.3e) {e:charform}

That the matrices m and M are inverses is more or less a definition.
Suppose now that E and F are representation parameters differing by a

single link, which is an ascent from E to F . The entries indexed by (E,F ) are
just one off the diagonal of these upper triangular unipotent matrices; so the
inverse relationship gives

m(J(E), I(±F )new) = −M(I(E), J(±F )new). (2.3f) {e:linkinverse}

The Kazhdan-Lusztig polynomials actually compute dimensions of stalks of
some perverse cohomology sheaves, and the character formulas (2.3e) involve
those dimensions with a (−1)codimension factor. The conclusion is that

M(I(E), J(F )new)−M(I(E), J(−F )new) = (−1)l(F )−l(E)P tw
E,F (1). (2.3g) {e:KLchar}

Here I(−F )new means I(F )new tensored with the nontrivial character of δ0G/G,
the other extension of the standard representation to the extended group.

The (twisted) Kazhdan-Lusztig algorithm in our case says that

P tw
E,F = coeff. of F in Tκ(E). (2.3h) {e:Tkappachar}

Combining the last three equations gives

coeff. of F in Tκ(E) = −(−1)l(F )−l(E)

[m(J(E), I(F )new)−m(J(E), I(−F )new)] .
(2.3i)

In our present case of length difference 2, this is

coeff. of F in Tκ(E) = −m(J(E), I(F )new) +m(J(E), I(−F )new). (2.3j) {e:Tkappamult2}

It turns out that exactly one of the two multiplicities on the right is nonzero,
and that one is 1; so determining the sign of F in Tκ(E) means determining
whether or not J(E) appears in I(F )new. If J(E) does appear, the sign is −1;
if it does not, the sign is +1.

Up to this point, the reduction to SL(2)× SL(2) is unimportant: we could
have said the same words on the larger group G. But our determination of the
multiplicity will use special facts about SL(2). Here they are.
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{lemma:sl2facts}
Lemma 2.4. Suppose we are in the setting (2.2).

1. The discrete series (g, δ0Kξ)-module J(E) is uniquely determined by its
infinitesimal character and (unique) lowest δ0Kξ-type.

2. If we define
δ0K#

ξ =
〈
K0
ξ , (

δ0H)ξ
〉

= (δ0H)ξ,

then this lowest δ0Kξ-type is

Ind
δ0Kξ

δ0K#
ξ

(Λ(E)⊗ ω(α, β))

Here Λ(E) is the character of the extended torus (δ0H)ξ defined by E, and
ω(α, β) means the character by which δ0H acts on the exterior algebra
element Xα ∧Xβ.

3. Write Hnew = Ad(g)(H), with g defined after (2.3b), and Λ(Fnew) for
the corresponding one-dimensional character of (δ0Hnew)ξ. Then

I(Fnew)|δ0Kξ
= Ind

δ0Kξ

(δ0Hnew)ξ
(Λ(Fnew)) .

4. The discrete series representation J(E) is a composition factor of the prin-
cipal series representation I(Fnew) if and only if

Hom(δ0Hnew)ξ∩(δ0H)ξ (Λ(E)⊗ ω(α, β),Λ(Fnew)) 6= 0.

{se:sl2proof}
Proof. Part (1) is a well-known general fact about discrete series representations
for reductive groups; the extension to δ0-fixed discrete series for extended groups
is routine. Part (2) is equally general. (For general G or δ0G the inducing

representation is the lowest K#
ξ - or δ0K#

ξ -type. The highest (δ0H)ξ-weight of
that representation is Λ(E) tensored with the top exterior power of n/n ∩ k.)
Part (3) is a general fact about principal series representations attached to split
maximal tori.

For (4), because the infinitesimal characters of J(E) and I(F new) are both
given by the (unwritten) parameter γ, we just need (by (1)) to determine
whether the lowest δ0Kξ-type of J(E) appears in I(F new). Using (2), this
amounts to deciding the nonvanishing of

Homδ0Kξ
(LKT of J(E), I(F new)) = Homδ0K#

ξ
(Λ(E)⊗ (α+ β), I(F new)) .

(2.5a)

Because δ0K#
ξ meets both cosets of the inducing subgroup in (3), we get

I(F new)|δ0K#
ξ

= Ind
δ0K#

ξ

(δ0Hnew)ξ∩δ0K#
ξ

(Λ(F new)) (2.5b)
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Another application of Frobenius reciprocity says that we are left with deciding
the nonvanishing of

Hom(δ0Hnew)ξ∩(δ0H)ξ (Λ(E)⊗ ω(α, β),Λ(F new)) , (2.5c)

as we wished to show.

There is one dangerous point about the lemma and the notation used. The
roots α and β are well-defined characters of H and therefore of its subgroup
Hξ; and Hξ acts on ω(α, β) by α + β). But it is not so obvious how δ0 acts.
As an automorphism of H, δ0 preserves the pair of roots {α, β}; so one might
think that it should act trivially. But of course δ0 interchanges the root vectors
Xα and Xβ of (2.2g), and therefore acts by −1 on their exterior product:

(ω(α, β))(δ0) = −1. (2.6) {e:minus}

In order to prove Lemma 2.1, we will write down everything explicitly, in
order to compute (δ0Hnew)ξ ∩ (δ0H)ξ and determine whether the two characters
agree there. {se:cptformulas}

Write ξ0,Z and δ0,Z for the restrictions to Z of the (commuting) distinguished
involutions of [2, (11a)]; then {twisted}

ξ0(g1, g2, z) = (g1, g2, ξ0,Z(z)), δ0(g1, g2, z) = (g2, g1, δ0,Z(z)). (2.7a) {e:dist}

(Here (and below) we have imprecisely written (g1, g2, z) to mean on the left (of
each formula in (2.7a)) a choice of preimage in SL(2)×SL(2)×Z of an element
of G, and on the right the image in G. Another way to make the formulas precise
is to note that the automorphisms ξ0 and δ0 lift uniquely to SL(2)×SL(2)×Z.)

We are concerned with multiplying ξ0 and δ0 by torus elements (and, even-
tually, Tits group elements). This involves the map

e : g→ G, e(L) = exp(2πiL). (2.7b) {e:e}

For L ∈ h, in the coordinates of (2.2e), this is

e(L) = (exp(πiLα), exp(πiLβ), e(LZ)). (2.7c)

If L is half-integral (so that 2Lα and 2Lβ are integers) this is

e(L) =

[(
i2Lα 0

0 i−2Lα

)
,

(
i2Lβ 0

0 i−2Lβ

)
, e(LZ)

]
. (2.7d) {e:ecpt}

The strong involution of G attached to our extended parameter E is

ξ = e((g − `)/2)ξ0

=

[(
igα−`α 0

0 i−(gα−`α)

)
,

(
igβ−`β 0

0 i−(gβ−`β)

)
, e((gZ − `Z)/2)

]
ξ0.

(2.7e) {e:xicpt}
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Because gα − `α and gβ − `β are odd (this is the “2i” part of the nature of our
extended parameter) the conclusion is that

ξ acts on each SL(2) factor by conjugation by

(
i 0
0 −i

)
. (2.7f)

In particular, the action on the standard torus C× is trivial; so

Hξ =
(
C×
)
·
(
C×
)
·
(
Zξ0
)
. (2.7g)

(Again this fixed point group is a quotient of the direct product.) The extended
parameter E provides also a representative

δ = e(−t/2)δ0 =

[(
i−tα 0

0 itα

)
,

(
i−tβ 0

0 itβ

)
, e(−tZ/2)

]
δ0 (2.7h) {e:deltacpt}

for the other coset of (δ0H)ξ.
Our next task is to write down Hnew. This is meant to be a pinned torus

in G chosen so that the strong involution ξ(F ), when defined with respect to {se:splitformulas}
the new pinned torus, is equal to ξ. We could write down such a pinned torus
in one fell swoop, but it is perhaps a bit clearer to write down a simple choice
that almost works. This is

Hsplit =

{[(
cosh(a) sinh(a)
sinh(a) cosh(a)

)
,

(
cosh(b) sinh(b)
sinh(b) cosh(b)

)
, z

]
| a, b ∈ C, z ∈ Z

}
.

(2.8a)
The simple coroots are

Hsplit
α =

[(
0 1
1 0

)
,

(
0 0
0 0

)
, 0

]
Hsplit
β =

[(
0 0
0 0

)
,

(
0 1
1 0

)
, 0

]
.

(2.8b)

The pinning is given by the simple root vectors

Xsplit
α =

[
1

2

(
1 −1
1 −1

)
,

(
0 0
0 0

)
, 0

]
Xsplit
β =

[(
0 0
0 0

)
,

1

2

(
1 −1
1 −1

)
, 0

]
.

(2.8c)

The Tits group generators are

σsplit
α =

[(
0 −1
1 0

)
,

(
1 0
0 1

)
, 1

]
σsplit
β =

[(
1 0
0 1

)
,

(
0 −1
1 0

)
, 1

]
.

(2.8d) {e:titssplit}

The torus Hsplit with this pinning is evidently conjugate to H with the
original pinning by an element of G of the form (d, d, 1). This conjugation fixes
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ξ0 (since ξ0 acts trivially on each SL(2) factor) and δ0 (since δ0 interchanges the
two SL(2) factors). The distinguished involutions attached to our new Cartan
and pinning are therefore unchanged:

ξsplit0 = ξ0, δsplit0 = δ0. (2.8e)

The equation analogous to (2.7d) says that for L ∈ h half-integral,

e(L) =

[(
0 i
i 0

)2Lα

,

(
0 i
i 0

)2Lβ

, e(LZ)

]
. (2.8f) {e:esplit}

In order to compute this, it is helpful to notice that for m ∈ Z,

(
0 i
i 0

)m
=



(
(−1)m/2 0

0 (−1)m/2

)
(m even)(

0 im

im 0

)
(m odd.)

(2.8g)

The strong involution attached to the extended parameter F is therefore

ξsplit = e((g − `split)/2)σsplit
α σsplit

β ξ0

=

[(
i 0
0 −i

)
,

(
i 0
0 −i

)
, e((gZ − `Z)/2)

]
ξ0

(2.8h) {e:xisplit}

The extended parameter F provides also a representative

δsplit = e(−t/2)δ0 =

[(
0 i
i 0

)−tα
,

(
0 i
i 0

)−tβ
, e(−tZ/2)

]
δ0 (2.8i) {e:deltasplit}

for the other coset of (δ0H)ξ.
To get into the classical representation-theoretic picture, we need to conju-

gate ξsplit (by an element of Hsplit) to ξ. The elements are written at (2.7e) and
(2.8h). The key to the calculation is

Ad

(
0 i
i 0

)((
i 0
0 −i

))
=

(
−i 0
0 i

)
.

Writing
2a = gα − `α − 1, 2b = gβ − `β − 1 (2.8j)

(so that a and b are integers) we get

Ad

([(
0 i
i 0

)a
,

(
0 i
i 0

)b])
(ξsplit) = ξ. (2.8k)
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Conjugating δsplit in the same way gives

δnew = Ad

([(
0 i
i 0

)a
,

(
0 i
i 0

)b])
(δsplit)

=

[(
0 i 0
i 0

)a−b−tα
,

(
0 i
i 0

)b−a−tβ
, e(−tZ/2)

]
δ0

(2.8l)

Because (1 + θ)t = (δ − 1)` and gα = gβ , one finds that

tα = −tβ = (`β − `α)/2 = a− b;

so the matrix exponents are zero, and we get

δnew = [I, I, e(−tZ/2)] δ0

=

[(
i 0
0 i−1

)tα
,

(
i 0
0 i−1

)−tα
, 1

]
δ.

(2.8m) {e:deltarelation}

We can now complete the proof of Lemma 2.1.
According to (2.3j), the coefficient we want is −1 if J(E) is a composition

factor of I(F new), and +1 otherwise. According to Lemma 2.4(4) this occur-
rence as a composition factor depends on the agreement of two characters of
(δ0Hnew)ξ ∩ (δ0H)ξ. The two maximal tori H and Hnew together generate G,
so their intersection must be the center Z(G). So

(Hnew ∩H)
ξ

= Z(G)ξ.

The two characters certainly agree here (for example because the underlying
discrete series for G(R) is a composition factor of the principal series for G(R)). {se:endproof}

The other coset is represented by the element δnew; so the question we must
finally answer is

do the characters Λ(E)⊗ ω(α, β) and Λ(F new) agree on δnew? (2.9a)

Part of the definition of Λ(F new) is that

Λ(F new)(δnew) = z(F ), (2.9b)

and similarly
Λ(E)(δ) = z(E). (2.9c)

The factor in square brackets in (2.8m) belongs to the identity component of
the -1 eigenspace of δ on Hξ, so the δ-fixed characters λ and ω(α, β) must be
trivial on it:

Λ(E)⊗ ω(α, β)

([(
i 0
0 i−1

)tα
,

(
i 0
0 i−1

)−tα
, 1

])
= 1. (2.9d)

Applying (2.6), we get

Λ(E)⊗ ω(α, β)(δnew) = −z(E). (2.9e)

We get occurrence as a composition factor, and so a coefficient of −1 in Tκ,
if and only if z(F )/z(E) = −1.
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3 One copy of SL(2)
{sec:oneSL2}

The goal here is to look at the 1i cases to see whether the there are problems
with the formulas from [2]. {twisted}

{lemma:1icheck}
Lemma 3.1. Suppose α is of type 1i* for E = (λ, τ, `, t). Define

`split = `+ [(gα − `α − 1)/2]α∨.

Suppose that
F = (λ′, τ ′, `split, t)

is an extended parameter of type 1r* appearing in Tα(E). Then the coefficient
with which it appears is the ratio of the z-values for these two extended param-
eters (see [2, Definition 5.5]). Explicitly, this is {twisted}

z(λ′, τ ′, `split, t)/z(λ, τ, `, t) = i〈τ
′,(δ−1)`split〉−〈τ,(δ−1)`〉(−1)〈λ

′−λ,t〉.

{se:oneSL2}
Proof. As mentioned in the introduction, the definition of Tα involves sheaves
on a form of G defined over a finite field. It is very easy to see from that
definition that one can make the computation entirely in the Levi subgroup of
G defined by

α = ∨δ(α). (3.2a)

We may therefore assume that G is equal to L. Writing Z for the identity
component of the center of G, this means that

G is a quotient of SL(2)× Z (3.2b)

by a finite central subgroup. Accordingly there is a natural identification of Lie
algebras

g = sl(2)× z. (3.2c)

We use the standard torus

H =

{[(
x 0
0 x−1

)
, z

]
| x,∈ C×, z ∈ Z

}
=
{

(x, z) | x ∈ C×, z ∈ Z
}
.

(3.2d)

(Note that H is a quotient of C× × Z, not a direct product.) The Lie algebra
of H is identified in this way as

h ' C× z, L 7→ (α(L)/2, LZ) = (Lα/2, LZ); (3.2e) {e:onehcoord}

here LZ is the projection of L on z. The simple coroot is

Hα =

[(
1 0
0 −1

)
, 0

]
= (1, 0, 0) (3.2f)
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The pinning is given by the simple root vector

Xα =

[(
0 1
0 0

)
, 0

]
(3.2g)

The Tits group generator is

σα =

[(
0 1
−1 0

)
, 1

]
(3.2h) {e:oneSL2tits}

{se:onestrat}
Here is the strategy of the proof. The terms ` and `split in our extended

parameters define strong involutions ξ and ξsplit, and therefore subgroups

Kξ = Gξ, Kξsplit = Gξ
split

. (3.3a)

These have index two in the corresponding subgroups of the extended group

δ0Kξ = [δ0G]ξ, δ0Kξsplit = [δ0G]ξ
split

. (3.3b) {e:extK1}

The hypothesis that F appears in Tα(E) means in particular that ξsplit is con-
jugate to ξ by a unique coset gKξ.

The extended parameters E and F define

J(E) = irreducible (g, δ0Kξ)-module

I(F ) = standard (g, δ0Kξsplit)-module

I(F )new = standard (g, δ0Kξ)-module;

(3.3c)

the last is obtained by twisting I(F ) by Ad(g). The representation-theoretic
interpretation of the results of [5] says that {LVnew}

coeff. of F in Tα(E) = m(J(E), I(F )new)−m(J(E), I(−F )new). (3.3d) {e:Talphamult}

Here I(−F new) means I(F new) tensored with the nontrivial character of δ0G/G,
the other extension of the standard representation to the extended group; and
m(·, ·) denotes multiplicity as a composition factor. It turns out that exactly
one of these multiplicities is nonzero, and that one is 1; so determining the sign
of F in Tα(E) means determining whether or not J(E) appears in I(F )new.

Up to this point, the reduction to SL(2) is unimportant: we could have said
exactly the same words on the original larger group G. But our determination
of the multiplicity will use special facts about SL(2). Here they are.

{lemma:onesl2facts}
Lemma 3.4. Suppose we are in the setting (3.2).

1. The discrete series (g, δ0Kξ)-module J(E) is uniquely determined by its
infinitesimal character and (unique) lowest δ0Kξ-type.

2. If we define
δ0K#

ξ =
〈
K0
ξ , (

δ0H)ξ
〉

= (δ0H)ξ,
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then this lowest δ0Kξ-type is

Ind
δ0Kξ

δ0K#
ξ

(Λ(E)⊗ α)

Here Λ(E) is the character of the extended torus (δ0H)ξ defined by E, and
α means the character by which δ0H acts on Xα.

3. Write Hnew = Ad(g)(H), with g defined after (2.3b), and Λ(Fnew) for
the corresponding one-dimensional character of (δ0Hnew)ξ. Then

I(Fnew)|δ0Kξ
= Ind

δ0Kξ

(δ0Hnew)ξ
(Λ(Fnew)) .

4. The discrete series representation J(E) is a composition factor of the prin-
cipal series representation I(Fnew) if and only if

Hom(δ0Hnew)ξ∩(δ0H)ξ (Λ(E)⊗ α,Λ(Fnew)) 6= 0.

{se:onesl2proof}
Proof. Part (1) is a well-known general fact about discrete series representa-
tions for reductive groups; the extension to δ0-fixed discrete series for extended
groups is routine. Part (2) is equally general; for general G or δ0G the induc-

ing representation is the lowest K#
ξ - or δ0K#

ξ -type. Part (3) is a general fact
about principal series representations attached to split maximal tori; we have
just inserted the value of 2ρ for our G.

For (4), because the infinitesimal characters of J(E) and I(F new) are both
given by the (unwritten) parameter γ, we just need (by (1)) to determine
whether the lowest δ0Kξ-type of J(E) appears in I(F new). Using (2), this
amounts deciding the nonvanishing of

Homδ0Kξ
(LKT of J(E), I(F new)) = Homδ0K#

ξ
(Λ(E)⊗ α, I(F new)) . (3.5a)

Because δ0K#
ξ meets both cosets of the inducing subgroup in (3), we get

I(F new)|δ0K#
ξ

= Ind
δ0K#

ξ

(δ0Hnew)ξ∩δ0K#
ξ

(Λ(F new)) . (3.5b)

Another application of Frobenius reciprocity says that we are left with deciding
the nonvanishing of

Hom(δ0Hnew)ξ∩(δ0H)ξ (Λ(E)⊗ α,Λ(F new)) , (3.5c)

as we wished to show.

In order to prove Lemma 3.1, we will write down everything explicitly, in
order to compute (δ0Hnew)ξ ∩ (δ0H)ξ and determine whether the two characters
agree there. {se:cpt1formulas}
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Write ξ0,Z and δ0,Z for the restrictions to Z of the (commuting) distinguished
involutions of [2, (11a)]; then {twisted}

ξ0(g, z) = (g, ξ0,Z(z)), δ0(g, z) = (g, δ0,Z(z)). (3.6a) {e:dist1}

(Here (and below) we have imprecisely written (g, z) to mean on the left (of
each formula in (3.6a)) a choice of preimage in SL(2) × Z of an element of G,
and on the right the image in G. Another way to make the formulas precise is
to note that the automorphisms ξ0 and δ0 lift uniquely to SL(2)× Z.)

We are concerned with multiplying ξ0 and δ0 by torus elements (and, even-
tually, Tits group elements). This involves the map

e(L) = exp(2πiL) : g→ G. (3.6b) {e:e1}

For L ∈ h, in the coordinates of (3.2e), this is

e(L) = (exp(πiLα), e(LZ)). (3.6c)

If L is half-integral (so that 2Lα is an integer) this is

e(L) =

[(
i2Lα 0

0 i−2Lα

)
, e(LZ)

]
. (3.6d) {e:eonecpt}

The strong involution of G attached to our extended parameter E is

ξ = e((g − `)/2)ξ0

=

[(
igα−`α 0

0 i−(gα−`α)

)
, e((gZ − `Z)/2)

]
ξ0.

(3.6e) {e:xionecpt}

Because gα − `α is odd (this is the “i” part of the nature of our extended
parameter) the conclusion is that

ξ acts on the SL(2) factor by conjugation by

(
i 0
0 −i

)
. (3.6f)

In particular, the action on the standard torus C× is trivial; so

Hξ = C× × Zξ0 . (3.6g)

The extended parameter E provides also a representative

δ = e(−t/2)δ0 =

[(
i−tα 0

0 itα

)
, e(−tZ/2)

]
δ0 (3.6h)

for the other coset of (δ0H)ξ. The defining equation (1 + θ)t = (δ − 1)` tells us
that tα = 0, so

δ = e(−t/2)δ0 = [I, e(−tZ/2)] δ0. (3.6i) {e:deltaonecpt}

Now it is clear (because we are just going to be conjugating by SL(2)) that this
element δ is also the representative defined by F for Hsplit and for Hnew:
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δnew = [I, e(−tZ/2)] δ0 = δ. (3.6j) {e:deltaonerelation}

We can now complete the proof of Lemma 3.1. According to (3.3d), the
coefficient we want is +1 if J(E) is a composition factor of I(F new), and −1
otherwise. According to Lemma 3.4(4) this occurrence as a composition factor
depends on the agreement of two characters of (δ0Hnew)ξ ∩ (δ0H)ξ. The two
maximal tori H and Hnew together generate G, so their intersection must be
the center Z(G). So

(Hnew ∩H)
ξ

= Z(G)ξ.

The two characters certainly agree here (for example because the underlying
discrete series for G(R) is a composition factor of the principal series for G(R)).

The other coset is represented by the element δnew; so the question we must
finally answer is whether or not the two characters Λ(E) +α and Λ(F new)agree
on δnew = δ. Because the character α is trivial on δ, the character Λ(E) + α
takes the value z(E) on δnew. In the same way the character Λ(F new) takes
the value z(F ) on δnew. We get occurrence as a composition factor, and so a
coefficient of 1 in Tα, if and only if z(F )/z(E) = 1.
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