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Root datum examples

I want to write down root data for a few classical groups, in order to see what
the dual group construction is. For these notes k will be any algebraically closed
field.

Suppose that V is a finite-dimensional vector space over k endowed with a non-
degenerate symplectic form ω (so that ω(v, v) = 0 for all v ∈ V ). The symplectic
group

(1)(a) Sp(V ) = {g ∈ GL(V ) | ω(gv, gw) = ω(v, w) (v, w ∈ V )}

is a connected reductive group. To get a maximal torus, choose a maximal collection
of orthogonal hyperbolic planes in V : that is, vectors (u1, v1), (u2, v2) . . . (un, vn)
satisfying

(1)(b) ω(ui, vi) = 1, ω(ui, vj) = 0 (i 6= j)

(1)(c) ω(ui, uj) = ω(vi, vj) = 0.

Necessarily these 2n vectors constitute a basis of V . We can now define T to be
the subgroup of Sp(V ) consisting of diagonal matrices in this basis. Explicitly, T

consists of the linear transformations t(z) defined by

(1)(d) t(z1, . . . , zn)ui = ziui, t(z1, . . . , zn)vi = z−1

i vi (1 ≤ i ≤ n)

Here each zi ∈ k
×

. Because the 2n diagonal entries

z1, . . . zn, z−1

1
, . . . , z−1

n

can all be distinct, it is easy to check that the centralizer of T in GL(V ) consists
exactly of the diagonal matrices. Therefore the centralizer of T in Sp(V ) is T ,
and it follows that T is a maximal torus in Sp(V ). The coordinates we have given
provide a natural identification

(1)(e) X∗(T ) ' Z
n, X∗(T ) ' Z

n.

In the basis {u1, . . . , un, v1, . . . , vn}, the Lie algebra sp(V ) consists of all 2n×2n

matrices of the form

(2)(a)

(

A B

C −At

)

(B, C symmetric).

Here A, B, and C are arbitrary n×n matrices. It is very simple to diagonalize the
conjugation action of T on the space of such matrices, and so to compute the root
system of T in G. Writing {ei} for the standard basis vectors in Z

n, the conclusion
is

(2)(b) ∆(Sp(V ), T ) = {±ei ± ej (i 6= j)} ∪ {±2ei}.
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Similarly, one can write down explicit homomorphisms from SL(2) into Sp(V )
using the chosen basis vectors, and so calculate

(2)(c) ∆∨(Sp(V ), T ) = {±ei ± ej (i 6= j)} ∪ {±ei}.

I will write two examples of this calculation. Consider the root 2ei. The two basis
vectors (ui, vi) span a two-dimensional symplectic space Vi. A symplectic form in
dimension 2 is the same as a top-degree exterior form, so

Sp(Vi) = SL(Vi) ' SL(2)

This SL(2) can be embedded in Sp(V ) by making it act trivially on all the Vj for
j 6= i. The resulting homomorphism

φi: SL(2) → Sp(V )

carries the diagonal subgroup of SL(2) isomorphically onto the ith coordinate of
T . This proves that the coroot corresponding to 2ei is ei.

Next, consider the root ei − ej (with i 6= j). It is a standard fact that the
hyperbolic basis for V that we have chosen provides an embedding

Φ: GL(n) → Sp(V ), Φ(g) =

(

g 0
0 (g−1)t

)

.

Composing Φ with the obvious inclusion of SL(2) in GL(n) by acting on the i and
j coordinates, we get an inclusion

φij : SL(2) → Sp(V ),

which is easily seen to be the root subgroup for ei − ej . The restriction of φij to
the diagonal subgroup of SL(2) corresponds to the cocharacter ei − ej of T , so this
is the coroot for ei − ej.

Next, we consider the orthogonal groups. Out of laziness I will assume that k

is not of characteristic 2. Suppose V is a vector space of dimension 2n + ε over k,
with ε equal to 0 or 1. Assume that V is endowed with a non-degenerate symmetric
bilinear form B. Then

(3)(a) SO(V ) = {g ∈ SL(V ) | B(gv, gw) = B(v, w) (v, w ∈ V )}

is a connected reductive group. To get a maximal torus, we again choose a maximal
collection of orthogonal hyperbolic planes in V : that is, vectors

(u1, v1), (u2, v2) . . . (un, vn)

satisfying

(3)(b) B(ui, vi) = 1, B(ui, vj) = 0 (i 6= j)

(3)(c) B(ui, uj) = B(vi, vj) = 0.
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These vectors are necessarily linearly independent. If ε = 0, they are a basis of V .
If ε = 1, we need one more basis vector w0, which we can choose to be orthogonal
to the rest:

(3)(d) B(w0, ui) = B(w0, vi) = 0 (1 ≤ i ≤ n).

We define T to consist of the diagonal matrices in SO(V ) in this basis. Just as for
Sp(V ), we find that T consists of matrices t(z) defined by

(3)(e) t(z1, . . . , zn)ui = ziui, t(z1, . . . , zn)vi = z−1

i vi (1 ≤ i ≤ n)

with the additional condition t(z)w0 = w0 if ε = 1. Here each zi ∈ k
×

. Because
the 2n + 1 possible diagonal entries

z1, . . . zn, z−1

1
, . . . , z−1

n , 1

can all be distinct, it is easy to check that the centralizer of T in GL(V ) consists
exactly of the diagonal matrices. Therefore the centralizer of T in SO(V ) is T ,
and it follows that T is a maximal torus in SO(V ). The coordinates we have given
provide a natural identification

(3)(f) X∗(T ) ' Z
n, X∗(T ) ' Z

n.

To describe the Lie algebra, it is easiest to treat the even and odd orthog-
onal groups (that is, ε equal to 0 or 1) separately. For ε = 0, in the basis
{u1, . . . , un, v1, . . . , vn}, the Lie algebra so(V ) consists of all 2n × 2n matrices
of the form

(4)(a)

(

A B

C −At

)

(B, C skew symmetric).

Here A, B, and C are arbitrary n × n matrices. It is very simple to diagonalize
the conjugation action of T on the space of such matrices, and so to compute the
root system of T in SO(V ). Writing {ei} for the standard basis vectors in Zn, the
conclusion is

(3)(b) ∆(SO(V ), T ) = {±ei ± ej (i 6= j)}.

For ε = 1, in the basis {u1, . . . , un, v1, . . . , vn w0}, the Lie algebra so(V ) consists
of all 2n + 1 × 2n + 1 matrices of the form

(3)(c)





A B X

C −At Y

−Y t −Xt 0



 (B, C skew symmetric).

Here A, B, and C are arbitrary n × n matrices, and X and Y are n × 1 column
vectors. It is very simple to diagonalize the conjugation action of T on the space
of such matrices, and so to compute the root system of T in SO(V ). Writing {ei}
for the standard basis vectors in Zn, the conclusion is

(3)(d) ∆(SO(V ), T ) = {±ei ± ej (i 6= j)} ∪ {±ei}.
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Exactly as for Sp(V ), one can easily write explicit injections of SL(2) into SO(V )
showing that the coroots for ±ei±ej are ±ei±ej, for ε equal to 0 or 1. In case ε = 1,
the root subgroups for the roots ±ei are a little different. They are constructed
from a two-to-one covering map

SL(2) → SO(W );

here the three-dimensional orthogonal space W is the direct sum of a hyperbolic
plane and a non-degenerate line. Computation in this three-dimensional case shows
that the coroot for the root ±ei is ±2ei. The conclusion is that

(3)(e) ∆∨(SO(V ), T ) = {±ei ± ej (i 6= j)}

if ε = 0, and

(3)(f) ∆∨(SO(V ), T ) = {±ei ± ej (i 6= j)} ∪ {±2ei}

if ε = 1.
Comparing the root systems and coroot systems in (2)(b)–(c), (3)(b), (3)(d)–(f),

we find a very simple description of the Langlands dual groups.

Proposition 4.

(1) Suppose V is a symplectic vector space of dimension 2n over the algebraically

closed field k, and G = Sp(V ). Then the complex Langlands dual group ∨G

is the special orthogonal group SO(2n + 1, C).
(2) Suppose V is an orthogonal vector space of dimension 2n over the alge-

braically closed field k of characteristic not 2, and G = SO(V ). Then the

complex Langlands dual group ∨G is the special orthogonal group SO(2n, C).
(3) Suppose V is an orthogonal vector space of dimension 2n + 1 over the alge-

braically closed field k of characteristic not 2, and G = SO(V ). Then the

complex Langlands dual group ∨G is the symplectic group Sp(2n, C).

In class I described how the dual groups of SL(V ) and PGL(V ) differ from that
of GL(V ) (which is GL(n)). Similar reasoning will calculate the dual groups of
the spin groups and the projective symplectic and orthogonal groups. This is a
worthwhile exercise for the reader (as is filling in the many omitted details above).


