18.758 Supplementary Notes
April 15, 2005

Root datum examples

I want to write down root data for a few classical groups, in order to see what
the dual group construction is. For these notes k will be any algebraically closed
field.

Suppose that V is a finite-dimensional vector space over k endowed with a non-
degenerate symplectic form w (so that w(v,v) = 0 for all v € V). The symplectic

group
(D(a) Sp(V) ={g € GL(V) | w(gv, gw) = w(v,w) (v,w e V)}

is a connected reductive group. To get a maximal torus, choose a maximal collection
of orthogonal hyperbolic planes in V: that is, vectors (u1,v1), (u2,v2) ... (tUn, V)
satisfying

(1)(b) wui,vi) =1,  w(u,v) =0 (i #])

(1)(c) w(ui, uj) = w(vi,v;) = 0.

Necessarily these 2n vectors constitute a basis of V. We can now define T to be
the subgroup of Sp(V') consisting of diagonal matrices in this basis. Explicitly, T
consists of the linear transformations ¢(z) defined by

(1)(d) t(z1, ., 20)U = 2iu;, (21, 2n)V; = 27, (1<i<mn)
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Here each z; € %”. Because the 2n diagonal entries

zl,...zn,zfl,... ,z;l
can all be distinct, it is easy to check that the centralizer of T in GL(V') consists
exactly of the diagonal matrices. Therefore the centralizer of T in Sp(V) is T,
and it follows that 7" is a maximal torus in Sp(V'). The coordinates we have given
provide a natural identification

()(e) X*(T)~27Z", X (T)~=2".

In the basis {u1, ... ,un,v1,... ,v,}, the Lie algebra sp(V') consists of all 2n x 2n
matrices of the form
(2)(a) (g —it) (B, C symmetric).

Here A, B, and C are arbitrary n X n matrices. It is very simple to diagonalize the
conjugation action of T on the space of such matrices, and so to compute the root
system of T in G. Writing {e;} for the standard basis vectors in Z", the conclusion
is

(2)(b) A(Sp(V),T) ={*ei te; (i#j)}U{x2e}.



Similarly, one can write down explicit homomorphisms from SL(2) into Sp(V)
using the chosen basis vectors, and so calculate

(2)(c) AY(Sp(V),T) = {£eite; (i#j)}U{Eei}.

I will write two examples of this calculation. Consider the root 2e;. The two basis
vectors (u;,v;) span a two-dimensional symplectic space V;. A symplectic form in
dimension 2 is the same as a top-degree exterior form, so

Sp(Vi) = SL(V;) =~ SL(2)

This SL(2) can be embedded in Sp(V') by making it act trivially on all the V; for
j # i. The resulting homomorphism

¢i: SL(2) — Sp(V)

carries the diagonal subgroup of SL(2) isomorphically onto the ith coordinate of
T. This proves that the coroot corresponding to 2e; is e;.

Next, consider the root e; — e; (with ¢ # j). It is a standard fact that the
hyperbolic basis for V' that we have chosen provides an embedding

®: GL(n) — Sp(V), @(g)_<g (991)t>.

Composing ® with the obvious inclusion of SL(2) in GL(n) by acting on the i and
j coordinates, we get an inclusion

(bij: SL(Q) — Sp(V),

which is easily seen to be the root subgroup for e; — e;. The restriction of ¢;; to
the diagonal subgroup of SL(2) corresponds to the cocharacter e; —e; of T', so this
is the coroot for e; — e;.

Next, we consider the orthogonal groups. Out of laziness I will assume that &
is not of characteristic 2. Suppose V is a vector space of dimension 2n + € over k,
with € equal to 0 or 1. Assume that V' is endowed with a non-degenerate symmetric
bilinear form B. Then

(3)(a) SO(V) ={g e SL(V) | B(gv,gw) = B(v,w) (v,w € V)}

is a connected reductive group. To get a maximal torus, we again choose a maximal
collection of orthogonal hyperbolic planes in V: that is, vectors

(u1,v1), (uz,v2) . .. (U, V)

satisfying
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These vectors are necessarily linearly independent. If e = 0, they are a basis of V.
If e = 1, we need one more basis vector wg, which we can choose to be orthogonal
to the rest:

(3)(d) B(wop, u;) = Blwg,v;) =0 (1 <i<n).

We define T to consist of the diagonal matrices in SO(V) in this basis. Just as for
Sp(V'), we find that T consists of matrices ¢(z) defined by
(3)(e) t(21, .0 20U = 2, t(21,. e 2n)vs = 27 (1<i<n)
with the additional condition ¢(z)wy = wy if € = 1. Here each z; € % . Because
the 2n + 1 possible diagonal entries

21,...zn,zl_1,... ,z;l,l
can all be distinct, it is easy to check that the centralizer of T in GL(V') consists
exactly of the diagonal matrices. Therefore the centralizer of T in SO(V) is T,

and it follows that T is a maximal torus in SO(V'). The coordinates we have given
provide a natural identification

(3)(f) X*(T)~7",  X.(T)~Z"

To describe the Lie algebra, it is easiest to treat the even and odd orthog-
onal groups (that is, ¢ equal to 0 or 1) separately. For ¢ = 0, in the basis
{ui,... ,Upn,v1,...,0,}, the Lie algebra so(V) consists of all 2n x 2n matrices
of the form
(4)(a) A Bt (B, C skew symmetric).

c -A
Here A, B, and C are arbitrary n x n matrices. It is very simple to diagonalize
the conjugation action of T on the space of such matrices, and so to compute the

root system of T in SO(V'). Writing {e;} for the standard basis vectors in Z™, the
conclusion is

(3)(b) A(SO(V),T) = {eite; (i# )}

For e = 1, in the basis {u1,... ,upn, v1,... ,0, wo}, the Lie algebra so(V') consists
of all 2n 4+ 1 x 2n + 1 matrices of the form

A B X
(3)(c) cC -A"Y (B, C skew symmetric).
-Yt Xt 0

Here A, B, and C are arbitrary n x n matrices, and X and Y are n x 1 column
vectors. It is very simple to diagonalize the conjugation action of T on the space
of such matrices, and so to compute the root system of 7' in SO(V'). Writing {e;}
for the standard basis vectors in Z", the conclusion is

(3)(d) A(SOV),T) ={xei+e; (i#j)}U{*e}.



Exactly as for Sp(V'), one can easily write explicit injections of SL(2) into SO(V)
showing that the coroots for +e;+e; are £e;£e;, for e equalto O or 1. In case e = 1,
the root subgroups for the roots +e; are a little different. They are constructed
from a two-to-one covering map

SL(2) = SO(W);
here the three-dimensional orthogonal space W is the direct sum of a hyperbolic

plane and a non-degenerate line. Computation in this three-dimensional case shows
that the coroot for the root +e; is +£2¢;. The conclusion is that

(3)(e) AY(SO(V),T) = {xeite; (i#])}

if e =0, and

(3)(f) AY(SO(V),T) = {*e; te; (i#j)}U{+2e}
ife=1.

Comparing the root systems and coroot systems in (2)(b)—(c), (3)(b), (3)(d)—(f),
we find a very simple description of the Langlands dual groups.

Proposition 4.

(1) SupposeV is a symplectic vector space of dimension 2n over the algebraically
closed field k, and G = Sp(V'). Then the complex Langlands dual group VG
is the special orthogonal group SO(2n +1,C).

(2) Suppose V' is an orthogonal vector space of dimension 2n over the alge-
braically closed field k of characteristic not 2, and G = SO(V'). Then the
complex Langlands dual group VG is the special orthogonal group SO(2n,C).

(3) Suppose V is an orthogonal vector space of dimension 2n+ 1 over the alge-
braically closed field k of characteristic not 2, and G = SO(V'). Then the
complex Langlands dual group VG is the symplectic group Sp(2n,C).

In class I described how the dual groups of SL(V) and PGL(V) differ from that
of GL(V) (which is GL(n)). Similar reasoning will calculate the dual groups of
the spin groups and the projective symplectic and orthogonal groups. This is a
worthwhile exercise for the reader (as is filling in the many omitted details above).



