COUNTING THE POINTS IN THE ORTHOGONAL GROUP
OVER ITS MAXIMAL PARABOLIC SUBGROUP

KATHERINE DALIS

Let V' be an n-dimensional quadatic space over a field F, such that ¢ # 2. O(V)
is the orthogonal group of V.

OWV)={r e GL(V) : B(tu,mv) = B(u,v),Yu,v € V}
From Gabe’s lecture, we know |O(V')| breaks down into three cases:
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From Oleg’s lecture, we know that a maximal parabolic subgroup in an orthogonal
group O(V) is the stabilizer of an isotropic subspace S C V' in O(V'). We’ll denote
this subgroup P(S). Let S have a basis {e;}. We also know that there exists a
subspace T', dim S = dim T = k, with a basis {f;} such that
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Let W be the orthogonal complement of S & T
W= (SaT)"*

By Proposition 2.9 of the book, V = (S@®T)®W. Oleg told us that any element
of P(S) has a unique decomposition as an element of GL(m), element of O(W), and
element of N(.S), a normal subgroup of P(S).

N(S) depends upon two arbitrary choices.

1. alinear map C' : W — S, or an arbitrary (n — 2k) x k matrix; ¢*(
k(5

n=2k) maps.

2. alinear map D : S — T, or a skew-symmetric k X k matrix; ¢ maps.
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P(S) = GL(k,F,) x O(W) x N(S)

[P(S)| = |GL(k, Fy)| - [O(W)[ - [N(S)]
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For now assume dimV = 2m even, and witt mdex(V) = m. Then, dimW =
2m — 2k even. witt index(W') = m — k maximal.
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In order to simplify the math n will be rewritten as 2m, dimV =n = 2m.

[P(S)| = [N(S)] - |GL(k,Fy)[ - [O(W))]
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Now, |O(V)/P(S)| = ||?3((g))||- Remember, we assumed dim V = 2m, even.
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(7};)[1 is the ¢ binomial coefficient.

This is the number of points in O(V))/P(S) given dimV is even, and the first
equation for |O(V')| is used. The other cases are solved similarly.



