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Orbits and counting formulas

The point of looking at group actions is to understand better the sets on which
the groups act, or the groups themselves. For us in this seminar, the most funda-
mental kind of understanding is counting. These notes describe a basic counting
formula for group actions. As usual, we need a definition or two to start.

Definition 1. Suppose that the group G acts on the set X , and that x ∈ X . The
orbit of x consists of all points that can be reached from x using the group action:

G · x = {g · x | g ∈ G}.

The action of G on X is called transitive if X consists of exactly one orbit.

If we think of G as a symmetry group of X , then sometimes it’s useful to think
of the orbit as consisting of all the points that are indistinguishable from X up to
symmetry. For example, suppose X is an equilateral triangle with vertices A, B,
and C, and G is the six-element group of symmetries we looked at in the seminar.
The orbit of A consists of the three vertices:

G · A = {A, B, C}.

The vertices are indistinguishable up to symmetry. Suppose P is the point one-
third of the way along the edge from A to B. You should convince yourself that
the orbit of P consists of six points (and figure out what those six points are).

Example 1. Suppose that X = R
2, and G is the group of invertible 2×2 matrices

as in Example 3 from the Groups notes. If T =

(

a b
c d

)

, then

gT · (0, 0) = (0, 0), gT · (1, 0) = (a, c).

The first formula shows that the orbit of (0, 0) is just the single point (0, 0). The
second shows that the orbit of (1, 0) consists of all vectors that can appear as the
first column of an invertible matrix. It’s a fact from linear algebra that any non-
zero vector can be the first column of an invertible matrix. (Do you remember how
to prove that?) Therefore

G · (1, 0) = R
2 \ {(0, 0)}.

Definition 2. Suppose that the group G acts on the set X , and that x ∈ X . The
isotropy group at x is the subgroup of G consisting of the elements that do not
move x:

Gx = {g ∈ G | g · x = x}.

(Why is this a subgroup?)

The isotropy group GA of the vertex A in the triangle symmetry group consists
of all symmetries fixing the vertex A: in the notation of the Tables handout,

GA = {id, reflA}.
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Example 2. In the setting of Example 1, G(0,0) = G, and

G(1,0) =

{

gT | T =

(

1 b
0 d

)

, d 6= 0

}

.

Here is what you might regard as the main theorem for this seminar.

Theorem 1. Suppose that the finite group G acts on the set X, and that x ∈ X.

Then the cardinality of G is the product of the cardinality of the orbit of x and the

cardinality of the isotropy group at x. Writing |S| for the cardinality of a finite set

S, this is

|G| = |G · x| |Gx|.

Proof. The idea of the proof is to define a map α going from the group G to the
orbit G · x. (The letter α stands for “action.”) I will show that for every point
y ∈ G · x, the preimage α−1(y) (a subset of G) has exactly |Gx| points. That is, α
makes a correspondence between elements of G and points of G · x, in which every
point of G · x corresponds to |Gx| group elements. The conclusion of the theorem
follows.

Here are the details. The map α is

α: G → G · x, α(g) = g · x.

So fix a point y ∈ G · x; we want to understand the preimage of y. What it means
to say that y is in the orbit of x is that there is some element g0 ∈ G such that
g0 · x = y. Therefore α(g0) = y, so g0 is an element of α−1(y). We want to
understand all the other elements in α−1(y). So suppose g1 is another; that is, that

α(g1) = g1 · x = y = g0 · x.

Applying g−1
0 to both sides of the equation g1 · x = g0 · x, we get on the right

g−1
0 · (g0 · x) = (g−1

0 · g0) · x (property (1) of a group action)

= 1 · x (property of inverses in a group)

= x (property (2) of a group action)

On the left side, a shorter calculation gives (g−1
0 g1) · x. From the equality of the

two sides, we deduce that (g−1
0 g1) · x = x, which by Definition 2 amounts to

g−1
0 g1 = h ∈ Gx.

Multiplying this equation by g0 on the left gives

g1 = g0h (h ∈ Gx).

All of these arguments are reversible, and it follows that any element of the form
g0h (with h ∈ Gx) belongs to α−1(y).

Here is what we have proved. If g0 is any element such that g0 · x = y, then

α−1(y) = {g0h | h ∈ Gx}.

We have therefore listed all the elements of α−1(y) by using all the elements of Gx.
It’s easy to see that each element of α−1(y) is listed exactly once: if g0h1 = g0h2,
then multiplying both sides by g−1

0 on the left shows that h1 = h2. Therefore

|α−1(y)| = |Gx|,

as we wished to show. �

This proof has a lot of mileage in it; the rest of the material in these notes is
just mathematical decoration of it. Here is a definition to get started.
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Definition 3. Suppose G is a group and H is a subgroup. A left coset of H in G
is a subset of G of the form

aH = {g ∈ G | g = ah, some h ∈ H}.

More specifically, the set aH is called the left coset of H . The homogeneous space

G/H is by definition the set of all left cosets of H in G:

G/H = {aH | a ∈ G}.

The natural action of G on G/H is defined by

g · (aH) = (ga) · H = {y ∈ G | y = gx, some x ∈ aH}.

The second formula in this definition shows that g · aH really depends only on the
coset aH , and not on the particular element a chosen to represent it. You should
check that this is really an action of G on the set G/H .

Theorem 2. Suppose that the group G acts on the set X, and that H is a subgroup

of G.

(1) Two cosets aH and bH have non-empty intersection if and only if they are

the same. This happens if and only if b−1a ∈ H.

(2) The action of G on G/H is transitive. The isotropy group of the action at

the identity coset x = 1 · H is equal to H.

(3) Suppose that x ∈ X, and that the isotropy group Gx is equal to H. Then

there is a one-to-one correspondence

β: G/H → G · x, β(aH) = a · x

between the set of cosets of H in G, and the orbit of x in X. This one-to-one

correspondence respects the actions of G:

g · β(aH) = β(g · aH).

The proof is essentially the same as the proof of Theorem 1: you should make
sure that you understand how to fill in the details.

This theorem says that transitive actions of G are essentially the same as sub-
groups of G.


