
2. HARMONIC ANALYSIS ON COMPACT GROUPS.

These notes recall some general facts about Fourier analysis on a compact group
K. They will be applied eventually to compact Lie groups, particularly to the
maximal compact subgroups of real reductive Lie groups. But much of the early
material makes no use of the Lie group structure, so I’ll work without it for as long
as possible.

Thanks to Ben Harris (2007) for correcting a number of slips of the keyboard
and the mind.

You may wonder where in real life one might ever encounter a compact group
that is not a Lie group. I know of two important places. First, suppose F is any
field and F is an algebraic closure of F . The Galois group

Γ = F -linear field automorphisms of F

has a natural compact topology. (It is the inverse limit of the Galois groups of
the finite Galois extensions of F , and these are finite groups. The inverse limit
topology makes Γ compact. A basic neighborhood of the identity consists of all
automorphisms of F that are trivial on a specified finite Galois extension of F .)

For a second family of examples, the ring Zp of p-adic integers is compact. Its
additive group is therefore compact, as is the multiplicative group of invertible
elements. More generally, the group GL(n, Zp) (consisting of n × n matrices with
entries in Zp and determinant invertible in Zp) is compact.

In each of these example, the problem of parametrizing the set of irreducible
representations is extremely complicated. For the second examples, part of the
case n = 2 is treated in chapter III of [Silb]. To get some small hint about what’s
going on in the first example, try this. (Please recall that there is no homework;
this is not to hand in!)

Exercise 2.1. Suppose that F is a field of characteristic not two. Write Γ for the
Galois group of F over F . Show that there is a bijection between the non-trivial
one-dimensional representations of Γ taking values in {±1}, and the quadratic ex-
tensions of F . If F is equal to Q, deduce that such representations are in one-to-one
correspondence with non-empty finite subsets of the “places” of Q. (A “place” of
Q is either a prime number or the symbol ∞.)

Class field theory provides a complete parametrization of the one-dimensional
representations of Galois groups of number fields (generalizing this exercise). Two-
dimensional representations are much harder; although I am by no means an expert,
I believe that there is no reasonable parametrization of them available.

We now turn to harmonic analysis. Always we work with a compact group K.
A finite-dimensional representation µ of K consists of a finite-dimensional complex
vector space Vµ, and a continuous group homomorphism

µ: K → Aut Vµ. (2.1)(a)
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2 2. HARMONIC ANALYSIS ON COMPACT GROUPS.

In particular, this means that µ may be regarded as a continuous function on
K with values in the finite-dimensional vector space EndVµ. If µ1 and µ2 are
representations of K, the space of intertwining operators from µ1 to µ2 is

HomK(Vµ1
, Vµ2

) = {T ∈ Hom(Vµ1
, Vµ2

) | µ2(k)T = Tµ1(k), all k ∈ K}. (2.1)(b)

We say that µ1 and µ2 are equivalent if there is an invertible intertwining operators
from µ1 to µ2; this is an equivalence relation on representations of K.

An invariant subspace of µ is a subspace W ⊂ Vµ with the property that

µ(k)W ⊂ W, all k ∈ K.

The subspaces Vµ and 0 are always invariant. We say that µ is irreducible if it has
exactly two invariant subspaces; that is, if Vµ 6= 0, and there are no non-trivial
invariant subspaces. The dual object of K is

K̂ = {equivalence classes of irreducible representations of K}. ((2.1)(c)

Every compact group has a trivial representation on the vector space C, con-
sisting of the trivial homomorphism from K to C×. It is irreducible. (The repre-
sentation of K on the zero vector space is not irreducible, because it has only one
invariant subspace, rather than the required two.)

If K is the circle group
S1 = {eiθ | θ ∈ R},

then all of the irreducible representations are one-dimensional. For every integer n,
we have a representation µn on C defined by

µn(eiθ) = einθ ∈ C× = Aut C. (2.2)(a)

These representations are irreducible and inequivalent, and every irreducible rep-
resentation is equivalent to one of them. Therefore

Ŝ1 = Z. (2.2)(b)

Harmonic analysis for K relates (things like) functions on K with (things like)

functions on K̂. To get such relationships, we need a Fourier transform (denoted by

a hat) carrying functions on K to functions on K̂; and an inverse Fourier transform
(denoted by an inverted hat) going in the other direction. In the case of S1, the
usual Fourier transform carries a (complex-valued continuous) function f on S1 to

the function f̂ on Ŝ1 = Z defined by

f̂(n) =
1

2π

∫ 2π

0

f(eiθ)einθdθ. (2.2)(c)

(This is usually written f̂(−n), but the present normalization will be more conve-
nient for us.) The first thing to notice about this formula is that it is more naturally
written not for the function f , but for the measure fdθ. The second thing to notice
is that it makes sense for much more general measures: certainly for regular Borel
measures, and even for distributions or hyperfunctions on the circle.
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For the inverse Fourier transform, if a is any complex-valued function on Z, we
can try to define

ǎ(eiθ) =
∑

n∈Z

a(n)e−inθ. (2.2)(d)

(Again this differs from standard formulas by a minus sign.) In contrast to the
situation with the Fourier transform, which easily extended to much larger domains,
this definition does not make sense without some restrictive hypothesis on the
function a. The easiest hypothesis is that a has finite support, but of course making
the definition work under weaker hypotheses is a problem of tremendous interest.
On the other hand, if a does have finite support, then its inverse Fourier transform
is much better than continuous: it is smooth, and even analytic.

With this example as motivation, we can formulate some general definitions.
Begin with

C(K) = {complex-valued continuous functions on K}.

This is a Banach space with norm given by the maximum of the absolute value.
It’s convenient to have also the space

M(K) = {complex-valued regular Borel measures on K}.

You can read about such measures in many books about measure theory or func-
tional analysis, and learn how to regard M(K) as a Banach space as well. (See for
example [Rud], 6.18.) We will use the fact that if f ∈ C(K) and δ ∈ M(K), then

〈f, δ〉 =

∫

K

f(k)δ(k) ∈ C

is well-defined (and finite). According to the Riesz Representation Theorem, this
integration identifies M(K) as the dual Banach space to C(K). (So far we need
only the fact that K is a compact topological space.) If V is any finite-dimensional
complex vector space, then

C(K; V ) = {V -valued continuous functions on K} ≃ C(K) ⊗C V.

If F ∈ C(K; V ) and δ ∈ M(K), then we can define

〈F, δ〉 =

∫

K

F (k)δ(k) ∈ V,

for example by choosing a basis of V and integrating each coordinate function.

Definition 2.3. Suppose K is a compact group, µ is a representation of K, and
δ ∈ M(K) is a regular Borel measure on K. The operator-valued Fourier transform
of δ at µ is

δ̂(µ) = 〈µ, δ〉 =

∫

K

µ(k)δ(k) ∈ EndVµ.

This is a reasonable generalization of the classical definition in (2.2)(c). In

particular, the Fourier transform is a kind of function on the dual object K̂. It
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takes values not in the complex numbers, but in a separate algebra EndVµ at each
irreducible representation µ. (You should check that if µ and µ′ are equivalent irre-
ducible representations, then the two algebras EndVµ and EndVµ′ are canonically
isomorphic.)

The dual object for K is playing a role analogous to that of Spec A in com-
mutative algebra. We relate the abstract commutative algebra A to an algebra of
functions on Spec A, by sending a to the function whose value at a prime ideal p

is the image of a in the field of fractions of A/p. We need to use functions taking
different values at different points of Spec A.

In the compact group setting one can form the algebra

Op(K̂) =
∏

µ∈ bK

EndVµ, (2.4)

which is where the operator-valued Fourier transform takes values. (The algebra
structure is defined coordinate by coordinate.) For commutative algebras, the most
important fact about the map from A to functions on Spec A is that it is an algebra
homomorphism. To state the corresponding fact for compact groups, we need an
algebra structure on M(K). That’s provided by convolution of measures. To define
it, we need two general constructions. If δ1 and δ2 are regular Borel measures on
compact sets K1 and K2, then we can form their product δ1 ⊠δ2, which is a regular
Borel measure on K1 × K2. Its characteristic property is that if fi is a continuous
function on Ki, and we define (f1 ⊠ f2)(k1, k2) = f1(k1)f2(k2), then

∫

K1×K2

(f1 ⊠ f2)(δ1 ⊠ δ2) =

(∫

K1

f1δ1

) (∫

K2

f2δ2

)
.

Next, suppose φ: K1 → K2 is a continuous map. Composition with φ defines a
continuous linear map of Banach spaces (pullback of functions)

φ∗: C(K2) → C(K1), φ∗(f2) = f2 ◦ φ.

The transpose of this linear map is a continuous linear map of the dual Banach
spaces (pushforward of measures)

φ∗:M(K1) → M(K2), 〈f2, φ∗δ1〉 = 〈φ∗f2, δ1〉.

A little more explicitly,

∫

K2

f2(k2)(φ∗(δ1)(k2)) =

∫

K1

(f2 ◦ φ(k1))δ1(k1).

Finally, suppose that δ1 and δ2 are regular Borel measures on K. Multiplication
on K is a continuous map

m: K × K → K, m(k1, k2) = k1k2.

The convolution of δ1 with δ2 is the regular Borel measure δ1 ∗ δ2 on K defined by

δ1 ∗ δ2 = m∗(δ1 ⊠ δ2). (2.5)(a)
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A little more explicitly, if f is a continuous function on K,

∫

K

f(k)(δ1 ∗ δ2)(k) =

∫

K

∫

K

f(k1k2)δ1(k1)δ2(k2). (2.5)(b)

It’s easy to pass from here to parallel formulas for (say) ((δ1 ∗ δ2) ∗ δ3). From these
formulas, the associativity of ⊠ on measures, and associativity of multiplication in
K, it follows that the convolution product is an associative algebra structure on
M(K).

The formula (2.5)(b) may look entirely unrelated to other formulas for convolu-
tion you may have seen, like the one for convolving two (appropriately integrable)
functions on the real line:

(h1 ∗ h2)(x) =

∫

R

h1(x − y)h2(y)dy.

To bring them closer, recall that K has a Haar measure dk: this is characterized
up to scalar multiplication as the positive regular Borel measure that is unchanged
by left or right translation by elements of K. Using dk we can map functions to
measures:

C(K) → M(K), h 7→ h · dk. (2.5)(c)

Suppose now that h1 and h2 are continuous functions on K, and δi = hi · dk the
corresponding measures. We compute

∫

K

f(k)(δ1 ∗ δ2)(k) =

∫

K

∫

K

f(k1k2)h1(k1)dk1h2(k2)dk2.

Now change variables in the k1 integration, replacing k1 by x = k1k2. This does
not affect the measure dk1, so we get

∫

K

∫

K

f(x)h1(xk−1
2 )dxh2(k2)dk2.

Use Fubini’s theorem to interchange the order of integration, to get

∫

K

∫

K

f(x)
[
h1(xk−1

2 )h2(k2)dk2

]
dx.

The conclusion is that δ1 ∗ δ2 = h(k)dk, with h the continuous function

h(x) =

∫

K

h1(xy−1)h2(y)dy. (2.5)(d)

That is, the inclusion (2.5)(c) and the convolution product on measures define a
convolution product on continuous functions, by the formula

(h1 ∗ h2)(x) =

∫

K

h1(xy−1)h2(y)dy. (2.5)(e)

This formula is closer to the one for R than (2.5)(b). For our present purposes it
is less convenient and less natural, because of the need to choose a Haar measure.



6 2. HARMONIC ANALYSIS ON COMPACT GROUPS.

Theorem 2.6. Suppose K is a compact group. The operator-valued Fourier trans-
form of Definition 2.3 is an algebra homomorphism from the regular Borel measures

M(K) (with the convolution product of (2.5)) to Op(K̂) (cf. (2.4)). The unit mass

supported at the identity element of K maps to the identity element of Op(K̂).

The proof involves only understanding the definitions, and so I will leave it as a
good exercise.

Before we continue, it is convenient to introduce various actions of K. Each
element k ∈ K defines left and right translation operators on continuous functions:

λ(k): C(K) → C(K), (λ(k)f)(x) = f(k−1x), (2.7)(a)

ρ(k): C(K) → C(K), (ρ(k)f)(x) = f(xk). (2.7)(b)

The distribution of inverses ensures that

λ(k1k2) = λ(k1)λ(k2), ρ(k1k2) = ρ(k1)ρ(k2). (2.7)(c)

In fact λ and ρ are continuous representations of K on C(K), in the sense that
maps like

K × C(K) → C(K), (k, f) 7→ λ(k)f

are continuous.1 Taking inverse transpose defines translation on measures:

λ(k):M(K) → M(K), 〈f, λ(k)δ〉 = 〈λ(k−1)f, δ〉, (2.7)(d)

and similarly for ρ. Again these actions respect multiplication in K, but they are
not continuous representations unless K is finite: small translations of a point mass
do not converge to the point mass in the Banach space topology on M(K). Finally,
if µ1 and µ2 are two representations of K, we can define representations λ and ρ
on Hom(Vµ1

, Vµ2
) by

λ(k)T = µ2(k) ◦ T, ρ(k)T = T ◦ µ1(k
−1). (2.7)(e)

These representations exist in particular on each endomorphism algebra EndVµ, so

we get actions λ and µ of K on Op(K̂). In each of these settings the left and right
actions commute, so we can think of them as a single action (λ, ρ) of the group
K × K.

Proposition 2.8. The operator-valued Fourier transform respects left and right
translation:

λ̂(k)δ = λ(k)δ̂, ρ̂(k)δ = ρ(k)δ̂.

Proof. We must show that if µ is any irreducible representation of K, δ is a measure
on K, and k ∈ K, then

〈µ, λ(k)δ〉 = µ(k)〈µ, δ〉.

1There is a dangerous bend here. If you studied only Banach spaces among topological vector
spaces, then you may think that the only reasonable topology on End(C(K)) is the Banach space
topology coming from the operator norm. With that topology, maps like λ: K → End(C(K)) are
almost never continuous. In order to define continuous representations in terms of continuity of
the map λ, one needs to use instead the strong operator topology on End(C(K)).
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The left side is by definition
∫

K

µ(x)(λ(k)δ)(x) =

∫

K

(λ(k−1)µ)(x)δ(x) =

∫

K

µ(kx)δ(x) = µ(k)

∫

K

µ(x)δ(x).

The last expression here is the right side, as we wished to show. The proof for ρ is
identical. �

The next task is to find a way to go back: from operators on representations
to functions on K. One standard way to extract functions from representations is
using matrix coefficients. Suppose we are given a representation µ of K on a finite-
dimensional Hilbert space Vµ, and v and w are vectors in Vµ. Then the matrix
coefficient

fµ
v,w(k) = 〈µ(k−1)v, w〉 (2.9)(a)

is a continuous function on K. (The inverse on the k is meant to simplify matters
later on; many treatments omit it.) We want another way to think about this
function, avoiding the choice of a Hilbert space structure on Vµ. Write V ∗

µ for the
dual vector space of Vµ. This space carries a representation µ∗ of K, defined by

µ∗(k) = µ(k−1)t. (2.9)(b)

That is, if ξ ∈ V ∗

µ and v ∈ Vµ, and we write (·, ·) for the pairing between Vµ and
V ∗

µ ,

(v, µ∗(k)ξ) = (µ(k−1)v, ξ). (2.9)(c)

Given the Hilbert space structure, the vector w corresponds to a linear functional
ξ ∈ V ∗

µ , by

(v′, ξ) = 〈v′, w〉. (2.9)(d)

(The map from Vµ to V ∗

µ sending w to ξ is a conjugate-linear isomorphism.) We
can therefore think of a matrix coefficient as given by choosing v ∈ Vµ, ξ ∈ V ∗

µ , and
defining

fµ
v,ξ(k) = (µ(k−1)v, ξ). (2.9)(e)

It is very easy to compute the action of left and right translation on this function:

λ(k)fµ
v,ξ = fµ

µ(k)v,ξ
, ρ(k)fµ

v,ξ = fµ

v,µ∗(k)ξ. (2.9)(e)

Now the pair (v, ξ) also defines an endomorphism of Vµ:

Tv,ξ ∈ EndVµ, Tv,ξ(u) = (u, ξ)v. (2.9)(f)

The trace of the endomorphism Tv,ξ is (v, ξ). We can therefore write the matrix
coefficient as

fµ
v,ξ(k) = tr[µ(k−1)Tv,ξ]. (2.9)(g)

This formulation at last suggests a generalization we can use.

Definition 2.10. Suppose K is a compact group, µ is a representation of K, and
T ∈ EndVµ. The inverse Fourier transform of T is the function

fT (k) = tr[µ(k−1)T ] = tr[Tµ(k−1)] ∈ C(K).
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Proposition 2.11. Suppose K is a compact group, and µ is a representation of
K. The range of the inverse Fourier transform

EndVµ → C(K), T 7→ fT

(Definition 2.10) is precisely the linear span of the set of matrix coefficients of µ
(cf. (2.9)). This map respects the left and right actions of K:

λ(k)fT = fλ(k)T , ρ(k)fT = fρ(k)T .

Proof. The first assertion is immediate from the discussion around (2.9). In light
of the definitions (2.7)(a), (2.7)(e), and 2.10, the second assertion says that

fT (k−1x) = fµ(k)T (x),

or
tr

[
µ(x−1k)T

]
= tr

[
µ(x−1)(µ(k)T )

]
.

This is clear from the fact that µ is a homomorphism. The assertion about ρ is
identical. �

In order to state the basic facts about Fourier inversion on K, it is helpful to
introduce some objects that get rid of the analytical problems. (In the case of
the circle, what we are doing is concentrating on trigonometric polynomials.) The
subscript F stands for “finite.” Define

C(K)F = {f ∈ C(K) | λ(K)f spans a finite-dimensional space} (2.12)(a)

M(K)F = {δ ∈ M(K) | λ(K)δ spans a finite-dimensional space} (2.12)(b)

Op(K̂)F = {T ∈ Op(K̂) | λ(K)T spans a finite-dimensional space}
(2.12)(c)

=
∑

µ∈ bK

EndVµ.

(The second equality in the last definition is a fairly easy exercise, using the fact
that the representation of K on EndVµ by λ is a sum of dimVµ copies of µ.) These
objects will all be referred to informally as “K-finite.” The space C(K)F of K-finite
continuous functions is a subalgebra of C(K): the reason is that the space of left
translates of f1f2 is the image under a linear map of the tensor product of the spaces
of left translates of f1 and f2. (The linear map sends f ′

1 ⊗ f ′

2 to f ′

1f
′

2.) For similar
reasons, the space of K-finite distributions is a subalgebra under convolution; this
uses the easy (but not quite obvious) fact that

λ(k)(δ1 ∗ δ2) = (λ(k)δ1) ∗ (λ(k)δ2).

Finally, the second formula for the K-finite part of the operator algebra shows
clearly that it is an algebra. The only slightly dangerous bend is that (for K
infinite) this algebra has no identity element; what ought to be the identity (taking
the identity operator in every EndVµ) is not in the algebraic direct sum. Similarly,
the convolution algebra M(K)F has no identity element if K is infinite, because
the unit mass at the identity generates the infinite-dimensional space of all finite
mass distributions under left translation.

Here is a version of the Peter-Weyl theorem for K.
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Theorem 2.13. Suppose K is a compact group. Fix a Haar measure dx on K,
and write Vol(K) for the measure of K.

(1) Multiplication by dx is a linear isomorphism from C(K)F onto M(K)F

(cf. (2.12)) respecting the representations λ and ρ of K.
(2) The operator-valued Fourier transform (Definition 2.3) is an algebra iso-

morphism from M(K)F onto Op(K̂)F , respecting the representations λ and
ρ of K.

(3) The inverse Fourier transform (Definition 2.10) is a linear isomorphism of

Op(K̂)F onto C(K)F respecting the representations λ and ρ of K.

(4) For each µ ∈ K̂, define

d(µ) =
Vol(K)

dimVµ

.

Then the composition of the three isomorphisms above acts as multiplication
by d(µ) on EndVµ. That is, for any T ∈ EndVµ,

̂[fT (x)dx](µ′) =

{
d(µ)T if µ′ = µ

0 if µ′ 6= µ.

Proof. Part (1) is immediate from the translation invariance of Haar measure. Part
(2) (with “isomorphism onto” replaced by “homomorphism”) is a consequence of
Theorem 2.6 and Proposition 2.8. Part (3) (with “isomorphism onto” replaced by
“map”) is a consequence of Proposition 2.11. Consider part (4). The vector space
EndVµ′ carries the irreducible representation µ′

⊠ (µ′)∗ of K × K, by the actions
λ and ρ. The map

EndVµ → EndVµ′ , T 7→ ̂[fT (x)dx](µ′)

intertwines the actions λ and ρ (by what we have already proved); so by Schur’s
lemma, this map is zero if µ 6= µ′, and equal to some scalar c(µ) if µ = µ′. That is,

̂[fT (x)dx](µ) = c(µ)T.

Explicitly, this means that

∫

K

fT (x)µ(x)dx = c(µ)T,

or ∫

K

[tr µ(x−1)T ]µ(x)dx = c(µ)T (T ∈ EndVµ). (2.14)(a)

To prove (4), it remains to calculate c(µ). Fix a vector w ∈ Vµ and a linear
functional τ ∈ V ∗

µ . Apply the equation (2.14)(a) to the vector w, and then apply
the linear functional τ . We get

∫

K

[tr µ(x−1)T ](µ(x)w, τ) = c(µ)(Tw, τ). (2.14)(b)
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Fix another v ∈ Vµ and ξ ∈ V ∗

µ , and apply this equation to the endomorphism Tv,ξ

defined in (2.9)(f). We get

∫

K

(µ(x−1)v, ξ)(µ(x)w, τ) = c(µ)(w, ξ)(v, τ). (2.14)(c)

This equality is a version of the Schur orthogonality relations ([Knapp], Corollary
1.10; the translation is explained in [KV], (1.22b).) To compute c(µ), choose a basis
v1, · · · , vn of Vµ, and let ξ1, · · · , ξn be the dual basis of V ∗

µ . We apply (2.14)(c)
with v = vj , ξ = ξi, w = vk, and τ = ξj , and sum over j, obtaining

∫

K

∑

j

(µ(x−1)vj , ξi)(µ(x)vk , ξj) = c(µ)(vk, ξi)
∑

j

(vj , ξj) = c(µ)δi,k dimVµ.

Now the number (Tvj, ξi) is nothing but the (i, j) entry of the matrix of T in the
basis (vi). It follows that the integrand on the left is the (i, k) entry of the matrix
of µ(k−1)µ(k) = Id, which is the Kronecker delta δik. Because the integrand is
constant, the equation reads

Vol(K)δi,k = c(µ)δi,k dimVµ.

It follows that c(µ) = Vol(K)/ dimVµ, as we wished to show. This completes the
proof of (4).

Here is the strategy to complete the argument. First, I will prove the surjectivity
of the inverse Fourier transform map in (3). The surjectivity of the Fourier trans-
form (2) follows from (4), and we already know that the map in (1) is surjective.
Once all the maps are known to be surjective, their injectivity follows from (4).

To prove the surjectivity of the inverse Fourier transform, it suffices to fix an
irreducible representation µ of K, and prove surjectivity to the subspace

C(K)µ = {f ∈ C(K) | λ(K)f spans a sum of copies of Vµ.}.

The reason is that complete reducibility of finite-dimensional representations of K
guarantees that

C(K)F =
∑

µ∈ bK

C(K)µ.

Now C(K)µ is a direct sum of copies of Vµ. It suffices to prove that each summand
is in the image of the inverse Fourier transform; so we may fix an intertwining
operator

Φ: Vµ → C(K)µ

from µ to λ, and prove that the image of Φ is contained in the image of the
inverse Fourier transform. Define a linear functional ξ on Vµ by evaluation of the
corresponding functions at the identity of K:

(v, ξ) = Φ(v)(1).

Then the matrix coefficient corresponding to v and ξ is

fµ
v,ξ(x) = (µ(x−1)v, ξ) = Φ(µ(x−1)v)(1) = [λ(x−1)Φ(v)](1) = Φ(v)(x).
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(The third equality is the fact that Φ intertwines µ and λ.) That is, Φ(v) is equal
to the matrix coefficient fµ

v,ξ. This proves that Φ(v) is in the image of the inverse
Fourier transform, as we wished to show. �

Theorem 2.13 has a wide variety of important corollaries and reformulations.
For one, recall that the character of a finite-dimensional representation µ of K is
by definition the continuous function

Θµ(k) = tr µ(k). (2.15)(a)

The trace of the transpose of an operator is equal to the trace of the operator; so
it follows that

Θµ∗(k) = tr µ(k−1). (2.15)(b)

In light of the definition of the inverse Fourier transform in Definition 2.10, this can
be written as

fId(µ) = Θµ∗ . (2.15)(c)

Here Id(µ) is the identity operator on Vµ.

Corollary 2.16. Suppose K is a compact group, dx is a Haar measure on K, and
µ and µ′ are two irreducible representations. Then

dimVµ

VolK

∫

K

Θµ∗(x)µ′(x)dx =

{
Id(µ) if µ′ = µ

0 if µ′ 6= µ.

This is immediate from Theorem 2.13(4) and (2.15). What it says is that the

measure
dim Vµ

Vol K
Θµ∗(x)dx maps by the operator-valued Fourier transform to a pro-

jection on the µ-isotypic part of any representation: the largest subspace isomorphic
to a direct sum of copies of µ.

Here is another perspective on Theorem 2.13. The inverse Fourier transform of
Definition 2.10 is a bounded linear map of Banach spaces

EndVµ → C(K), T 7→ (fT (x) = tr[µ(k−1)T ]).

Such a map has a transpose carrying C(K)∗ to (EndVµ)∗. We already observed
(before Definition 2.3) that the dual of C(K) is M(K). So what is the dual of
EndVµ? The answer is that the pairing

(T, A) = tr TA = trAT (T ∈ EndVµ, A ∈ EndVµ)

identifies (EndVµ)∗ with EndVµ. (The norms on these spaces do not agree, but
since they are finite-dimensional this does not matter much.)

Proposition 2.17. Suppose K is a compact group and µ is a finite-dimensional
representation of K. Under the identifications just described, the transpose of the
inverse Fourier transform at µ is equal to the operator-valued Fourier transform
from M(K) to EndVµ.

Proof. Suppose T ∈ EndVµ and δ ∈ M(K). Then the adjointness statement of the
proposition says

(inverse Fourier transform of T , δ) = (T, Fourier transform of δ).

Explicitly, this says
∫

K

tr[µ(x−1)T ]δ(x) = tr

[(∫

K

µ(x−1)δ(x)

)
T

]
.

We can move first the T and then the trace inside the integral on the right, and
then this equality is immediate. �
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