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This article is based on three lectures ostensibly devoted to “cohomological in-
duction,” a method for constructing unitary representations of reductive Lie groups.
In fact the lectures concerned mostly more elementary cohomological notions, be-
ginning with de Rham cohomology of compact manifolds. When the manifolds are
related to Lie groups, de Rham cohomology is related to Lie algebra cohomology.
In this way questions about de Rham cohomology can sometimes be translated into
questions about cohomological properties of group representations. Cohomological
induction appears at the very end, as a way to construct representations having
these cohomological properties.

I am grateful to the organizers for the opportunity to participate in this confer-
ence. Tony Knapp’s notes are responsible for whatever connection exists between
this article and the original lectures.

1. Cohomology of locally symmetric spaces

Suppose G is a connected real reductive algebraic group, and K C @ is a max-
imal compact subgroup. The homogeneous space G/K is a Riemannian symmetric
space; it is diffeomorphic to R™. Suppose now that I' C G is a torsion-free discrete
subgroup. Then I' acts freely on G/K on the left, so the double coset space

X =T\G/K (1.1)(a)
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is a smooth manifold (in fact a Riemannian locally symmetric space). Since G/K
is simply connected, it is the universal cover of X; so

m(X) ~T. (1.1)(b)

But even more is true. Because G/K is contractible, X is a “K (T, 1),” an Eilenberg-
MacLane space. It may be thought of as a kind of geometric incarnation of the
discrete group I'. According to the original definition of the cohomology of the
group I', we have
HY(I',C) ~ H'(X,C). (1.1)(c)

If G/K is a Hermitian symmetric space, then it is a complex Stein manifold.
The complex structure is inherited by X. If T" is cocompact in G, then X has
in a natural way the structure of a projective algebraic variety; it is a Shimura
variety. (Actually the most interesting Shimura varieties arise from non-cocompact
arithmetic subgroups I', by compactification of X.) A great deal is known about
the cohomology of Shimura varieties; some background may be found in [9]. From
the point of view of the Langlands program, however, the most basic example of
a Riemannian locally symmetric space has G = GL(n,R) and K = O(n). In that
case X is not a complex manifold (unless n = 2); and there seem to be few ideas
about what kind of special extra structure X might carry.

At any rate, we want to study the cohomology of X using the de Rham theorem.
The de Rham complex has differential

d: (complex-valued p-forms on X) — (complex-valued p + 1-forms on X).

Its cohomology groups are HP(X,C). We want to study this complex in group-
theoretic terms. We begin by replacing X by a homogeneous space G/H. The
first case to look at is G itself. A p-form on G is a section of AP(T*G). Because
G is a Lie group, T*G can be trivialized by left-invariant forms. This leads to a
trivialization of p-forms, as follows. Think of the Lie algebra g as consisting of the

left-invariant vector fields on G. If w is a p-form on G and Xi,...,X, € g are
left-invariant vector fields, then
w(X1,...,Xp) € C2(G). (1.2)(a)

This construction provides an identification
(p-forms on G) ~ Homg(APg, C*(@Q)). (1.2)(d)

(We have been a little vague about the coefficients: for complex valued p-forms one
must use complex-valued smooth functions, and for real-valued forms real-valued
smooth functions.)

The next problem is to compute the differential. If w is a p-form on a smooth
manifold M and X, ..., X, are vector fields, then

P
dw(Xo, ..., Xp) =D (-1)'X; - w(Xo, ..., Xy ... , Xp)
=0 . . (1.3)
+ 3 (1) (X, Xj], Xoy o5 Xiyoov, Xjyen 5 Xp).
i<j
(See for example [18], Proposition 2.25(f).) Here in the first sum the vector field X;
acts on the smooth function w(Xp, ... ,3(\1-, ..., X,). This formula is well suited to
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the identification (1.2)(b) of forms on G, because the left-invariant forms are closed
under Lie bracket. The resulting formula for d on Homg (APg, C*°(G)) involves just
two things: the action of g on C*°(G) by differentiation on the right, and the Lie
bracket on g.

Now suppose H C G is a closed subgroup. We want to identify p-forms on G/H
as “special” p-forms on G. There is a submersion m: G — G/H. The corresponding
pullback is an inclusion

7*: (p-forms on G/H) < (p-forms on G). (1.4)

Pullback of forms by smooth maps always commutes with d, so this is an inclusion
of complexes. It is not difficult to identify the image.

PROPOSITION 1.5. In the setting of (1.4), a p-form w € Homg(APg, C*(G))
comes from G/H if and only if
1. w(X,...) =0 whenever X € b, and
2. w € Hompg(APg,C*°(G)). Here H acts on NAPg by the adjoint action, and
on C*(G) by right translation.
Consequently there is an identification

(p-forms on G/H) ~ Hompg(APg/h,C>®(Q)).

IfT is a discrete subgroup of G acting freely and properly discontinuously on G/H
(on the left), then there is an identification

(p-forms on T\G/H) ~ Homg(APg/h, C>*(T'\Q)).

In all cases the formula for d is (1.3): it involves the action of g on C*(G)
or C*(I'\G) by differentiation on the right. The formula for the complex involves
also the right translation action of H on C*°(G) or C*°(I'\G). In order to apply
representation theory to this picture, we will try to decompose C*°(I'\G) into pieces
invariant under these two right actions, and then study the contribution of each
piece separately to H?(I'\G/H, C). Here is a natural formal setting for this study.

DEFINITION 1.6. A pairis a pair (g, H) where g is a finite-dimensional real Lie
algebra and H is a Lie group with h C g. We also assume given an action Ad of H
on g by Lie algebra automorphisms, compatible with the adjoint action of H on .

If G is a Lie group with Lie algebra g and H is a Lie subgroup of G, then (g, H)
is in a natural way a pair. For us the most important example will be the pairs
(g, K) with G a reductive Lie group and K a maximal compact subgroup.

DEFINITION 1.7. Suppose (g, H) is a pair. A (g, H)-module is a complex vec-
tor space V endowed with representations of g and H, subject to the following
conditions.
1. The action of H on V is locally finite. That is, each v € V belongs to a
finite-dimensional H-invariant subspace V7, and the representation of H on
V1 is smooth.

2. The differential of the action of H (which makes sense by 1) is equal to the
restriction to h of the action of g.

3. fXeg,he Handv eV, then h- (X -v) = (Ad(h)X) - (h-v).
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EXAMPLE 1.8. Suppose H is a closed subgroup of a Lie group G. There are
representations of g and H on C*(@G), by differentiation and translation on the
right. These satisfy condition (3) in Definition 1.7, and even a version of (2). (One
needs to impose an appropriate topology on C*°(G) to make sense of the limit
appearing in the definition of derivative.) But condition (1) fails unless H is finite.
We can circumvent the problem in the following way. Write p for the action of G
on C(@G) by right translation:

(p(9)f)(2) = f(zg) (9,2 €G).
Now define

C=(G)u = {f € C*(G) | dim({p(h)f | h € H)) < oo}.

Here (p(h)f) is the space spanned by all right translates of f by elements of H.
The subspace C°°(G) g is preserved by the action of g, and obviously it satisfies (1)
of Definition 1.7. Consequently C*°(G)g is a (g, H)-module. If T" is any subgroup
of G, then the space C°(I'\G) g of functions invariant by I on the left is a (g, H)-
submodule.

EXAMPLE 1.9. Suppose G is a reductive group, K is a maximal compact sub-
group, and (7, ) is a continuous representation on a Hilbert space. Write H° for
the space of smooth vectors of w. This is a dense subspace of #, invariant under
the action of G, and it carries a natural representation of the Lie algebra g. By
analogy with the preceding example, we can define

mk = 1v € H | dim((m(k)v | k € K)) < oo}

the space of K-finite smooth vectors of m. This space is invariant under the action
of g (although not under the action of G), and is therefore a (g, K)-module, called
the Harish-Chandra module of w. Because K is compact, it is easy to check that
H i is dense in H.

The construction in the preceding example makes sense for any compact sub-
group of any Lie group. What makes it particularly interesting when G is reductive
and K is maximal compact are theorems of Harish-Chandra, which say that when
7 is irreducible and unitary, then #2° is algebraically irreducible (as a (g, K)-
module) and determines .

DEFINITION 1.10. Suppose (g, H) is a pair, and V is a (g, H)-module (Defi-
nitions 1.6 and 1.7). The adjoint action Ad of H on g preserves h, and therefore
descends to g/h. We can therefore define

0¥ (g, H; V) = Homp (A*(g/h), V),

the V-valued p-forms for (g, H). We want to define a differential making this a
complex. For w € QP(g, H; V), we define dw by

p
dw(Xo, ..., Xp) =D (=1)'Xi - w(Xo,. ., Xiy... , Xp)
=0

+ 3 (-1 w([Xi, X5, Xoy- 5 Xy, Xy, Xp)

i<j
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whenever X; € g. The action in the first sum is given by the representation of g
on the range of w. It is not difficult to check that dw € QP*!(g, H;V); and that
d? = 0 follows from the Jacobi identity for g. We may therefore define

H? (g, H; V) = (kerd on (g, H; V))/(imd on 9~ (g, H; V),
the relative Lie algebra cohomology of (g, H) with coefficients in V.

PROPOSITION 1.11. Suppose H is a closed subgroup of the Lie group G, and
that T' C G is a discrete group acting freely and properly discontinuously on G/H
(so that T\G/H is a manifold). Define C*(I'\G)g as in Ezample 1.8. Then there
is a natural isomorphism

HP(T\G/H,C) ~ H"(g, H; C=(T\G)n)-

This is a formal consequence of the de Rham theorem, Proposition 1.5, and the
definitions.

To make further progress along the lines suggested at the beginning of these
notes, we need to decompose C®(I'\G) g as a (g, H)-module. The simplest results
are available when G is reductive, K is maximal compact, and I' is cocompact and
torsion free. In that case the unitary representation of G on L?(I'\G) is a Hilbert
space direct sum of irreducible representations having finite multiplicity:

L*(T\G) :@m,ﬂ{w (1.12)(a)

weé

Here m, is a non-negative integer, the multiplicity of 7 in L?(T'\G). (Often it can
be identified as the dimension of some classical space of automorphic functions.)
For example, if (7,C) is the trivial representation of G, then m, is the dimension
of the space of G-invariant functions in L?(I'\G). Obviously the only G-invariant
functions are constant; and since these do belong to L? (since I'\G is assumed to
be compact) we get

m, =1 (7 = trivial representation of G) (1.12)(d)

In order to apply Proposition 1.11 we need to understand not just the decom-
position of L? but the more subtle decomposition of C*°(T'\G). It turns out that
the smooth vectors in each H, map (by (1.12)(a)) to smooth functions on I'\G; so
there are inclusions

P m.HT — C=(T\G). (1.12)(c)
weé
P maHTk — C®(N\G)k- (1.12)(d)
re@

At least in the case of (1.12)(d), one can describe exactly how the sum on the left
must be completed to give an isomorphism. This leads to the following fundamental
result of Matsushima.

THEOREM 1.13 ([11]; see [2], Theorem VII.3.2). Suppose G is a real reduc-
tive algebraic group, K is a maximal compact subgroup, and T' is a torsion-free
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cocompact subgroup. Use the notation of (1.12). The inclusion of (1.12)(d) and the
isomorphism of Proposition 1.11 induce an isomorphism

P m-H (9, K; HZ k) ~ HP(I\G/K, C).
rea

Matsushima’s theorem accomplishes in this setting the goal of disassembling the
cohomology of the space I'\G/K into contributions of irreducible representations.
In the next section we will begin to examine those individual contributions.

2. Cohomology of irreducible
representations: the trivial representation

If we recall Harish-Chandra’s theorem that the space of smooth K-finite vectors
in an irreducible unitary representation of a reductive group G is an algebraically
irreducible (g, K)-module, then Theorem 1.13 suggests

PROBLEM 2.1. Determine the set of irreducible (g, K)-modules V for which
H*(g,K;V) # 0; and compute the cohomology in those cases.

This problem can be completely solved when rank G = rank K, and quite a bit
is known about it in general. There are only finitely many inequivalent V for which
the cohomology is non-zero, and it is not terribly difficult to list the candidates.
(In this connection an old result of David Wigner (see [2], Theorem I1.4.1) says that
the cohomology can be non-zero only if the center of the enveloping algebra acts
in V as in the trivial representation. This already reduces matters to a finite set
of candidates.) Actually computing the cohomology is more difficult, and involves
the full strength of the ideas around the Kazhdan-Lusztig conjectures: D-modules,
the Beilinson-Bernstein localization theory, and perverse sheaves.

Fortunately for us, Problem 2.1 is not quite the right question. The answer
simplifies enormously if we change it to

PROBLEM 2.2. Determine the set of irreducible unitary (g, K)-modules V for
which H*(g, K; V) # 0; and compute the cohomology in those cases.

To see what kind of answer we can expect, we begin with an example. Suppose

G=U(pq), K=U() xU(g)- (2:3)(a)

This means that G is the group of complex-linear transformations of CP™¢ preserv-
ing the Hermitian form

21?4+ lpl® = lzpaa|® — -+ — |zpql® (2.3)(b)

THEOREM 2.4 ([17]). In the setting of (2.3), the set of irreducible unitary
(9, K)-modules V with H*(g,K;V) # 0 is in one-to-one correspondence with all
expressions
pitq#0

p=pi+--+p,
pi=0=¢=1

g=q+ -+
¢ =0=p =1

In that case, there is a dimension shift R (depending on the p; and g;) so that
H*(g, K; V) may be computed in terms of the cohomology of a compact symmetric
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space:
,
H™(g,K; V)~ H™ (H U(pi + )/ (U(pi) x U(ai)), C) :
i=1
Here U(p; + ¢;)/(U(p;) x U(qi)) is the Grassmanian of p;-planes in CPit4:,

The trivial representation V' = C corresponds in this parametrization to the
case r = 1; that is, to the expressions p = p; and ¢ = q¢;. The dimension shift R is
zero, as we will see in Theorem 2.10 below.

We will eventually give a similarly precise and explicit result for any G. For the
rest of this section, we will concentrate on the problem of computing the cohomology

groups of the Grassmann varieties appearing in the theorem. We begin with a closer
look at the complex of Definition 1.10.

DEFINITION 2.5. The pair (g, H) (Definition 1.6) is said to be symmetric if we
are given an involutive automorphism o of g such that o commutes with Ad(H),
and g7 = h. In this case we write ¢ for the —1 eigenspace of o, so that

g=ho&q,  Ad(H)(q) Cq.

The fact that o is a Lie algebra automorphism means that

b:plch,  [halca  [q,9 CH

Two examples will be important for us: the pairs (g, K) with G reductive and
K maximal compact; and the pairs (a,1) with a an abelian Lie algebra.

PROPOSITION 2.6. If (g, H) is a symmetric pair, then
H?(g,H;C) = Q°(g, H; C) = Homp (A\"(g/h), C) = Homg(APqg,C)
(Definition 1.10). That is, the differential in this complez is zero.

PROOF. Suppose that w € Homg(APq,C). We want to show that dw = 0. So
suppose Xg, ..., X, € q. Then

P
dw(Xo,...,Xp) =Y (-1)'Xi - w(Xo,... , X, ..., Xp)
i=0
+ D (1) w([Xi, X5, Xoy o5 Xiy oo, Xy 5 Xp)
i<j
The terms in the first sum are all zero since g acts trivially on C. The last display

in Definition 2.5 show that all the brackets [X;, X;] belong to h; so the terms in the
second sum are zero as well. Q.E.D.

COROLLARY 2.7. Ifg is an abelian Lie algebra, then HP(g; C) = Hom(APg, C).

DEFINITION 2.8. Suppose G is a reductive Lie group and K is a maximal
compact subgroup. Write g = £+ p for the corresponding Cartan decomposition;
thus p is the —1 eigenspace of a Cartan involution. It follows from the bracket
relations in Definition 2.5 that

u=%€¢+1ip C gc
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is a real form of gc. A compact dual for G is a connected compact group U endowed
with a subgroup isomorphic to (and denoted) K, with the property that the Lie
algebra of U is isomorphic to u in a K-equivariant way.

EXAMPLE 2.9. Suppose G = SO(2,1), the group of linear transformations of
R3 preserving the quadratic form z2 4+ y2 — 22, and having determinant one. As
maximal compact subgroup we can take S(O(2) x O(1)) ~ O(2); the isomorphism
sends a matrix 4 € O(2) to

(‘3 de(t’A> € S(0(2) x O(1)).

(Here one of the zeros is a 2 x 1 matrix, and the other is 1x2.) The complexification
of G is the group G¢ of linear transformations of C3 preserving the same quadratic
form and having determinant 1. Inside C® there is another real form V = R? + iR;
the quadratic form on C? restricts to a positive definite real form on V. The
subgroup U of G¢ preserving V is isomorphic to SO(3), and it contains K. It is
easy to see that U is a compact dual for SO(2,1). Notice that the homogeneous

space U/K is RP?. Consequently
C, ifp=0;
0, otherwise.

HP(U/K;C) = {

The method of the preceding example is rather general.

THEOREM 2.10. Suppose G is the group of real points of a reductive algebraic
group with G¢ connected, and K is a mazximal compact subgroup of G. Let U be a
mazimal compact subgroup of G¢ containing K. Then U is a compact dual of G.
There are natural isomorphisms

HP?(g, K;C) ~ Homg (APp, C) ~ iPHomg (AP (ip), C)
~ HP(u,K;C) ~ HP(U/K;C).

Notice that this result shows how to compute the relative Lie algebra cohomology
with coefficients in the trivial representation as the cohomology of a natural compact
compact manifold (in fact a compact symmetric space).

PROOF. Write 6 for the Cartan involution of G fixing K. We can always realize
G as a subgroup of GL(n,R) in such a way that the 6 acts by inverse transpose:
6g = tg~1. Once this is done, G¢ becomes a subgroup of GL(n, C), and the complex
conjugation action defining the real form is just conjugation of matrices. The
complexification of 6 is still inverse transpose, which is a holomorphic automorphism
of order two commuting with complex conjugation. We may therefore define a new
real form o of G¢ by og = g 1. The group U of real points is just GcNU(n), which
is compact; so U must be a compact real form of G. By construction U contains
K, and it is easy to check that the Lie algebra is ¢ + ip. So U is a compact dual
of G. All the isomorphisms in the theorem follow from Proposition 2.6 except for
the very last one. For that, Proposition 1.5 shows that Homg (A?(ip), C) may be
identified with the space of p-forms on U invariant under left translation. Because
U is connected, the action of U by left translation on HP(U/K,C) is trivial. It
follows that every cohomology class is represented by a U-invariant p-form, and the
isomorphism we want follows. Q.E.D.
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A complete description of the cohomology groups of the space U/K in Theorem
2.10 may be found (at least for connected K) in [3], as Theorem V on page 465.
The method of the next example applies to the Hermitian symmetric cases; but
other ideas are required in general.

ExAMPLE 2.11. Suppose G = U(p,q), K = U(p) x U(q), and U = U(p + q).
Write n = p+gq. Then U/K is the Grassmann variety of p-planes in C*. The group
G¢ may be identified with GL(n,C), so g¢ consists of all n x n matrices. We have

tc = gl(p, ©) x gl(g,C), (2.12)(a)
0 A
pc = {(B 0 > | A€ M,y4(C),B € qup((C)} . (2.12)(b)
Consequently
pc ~ Homc (C?,C?) @ Homg (C?,CP) = pe @ pe; (2.12)(c)

the last equality is a definition. The spaces p% are the holomorphic and antiholo-
morphic tangent spaces for the complex structures on G/K and U/K associated
with the Hermitian symmetric structures. We will also use the fact that the stan-
dard invariant bilinear form (X,Y) = tr XY on gl(n, C) restricts to an identification
Pe (pg)*. Consequently

N~ P (M%) @ (Apg) ~ @) Hom (A%pE, A%pg) - (2.12)(d)
a+b=m a+b=m

This bigrading is related to the Hodge structure on the cohomology of U/K and
I'\G/K. Inserting this description in Theorem 2.10, we find

H™(g,K;C) ~ Homg (A™pc,C) ~ P Homg (AE,A%E) . (2.12)(e)
a+b=m

To continue, we need to understand /\“”]JEr as a representation of K = U(p) x U(q);
or, equivalently, as a representation of K¢ = GL(p,C) x GL(g,C).
For that, we consider the parabolic subgroup of GL(n,C)

0= {(‘g g) | A€ GL(p,C), B € My(C),C € GL(q, (C)} L @I12)(f)

Then @ has a Levi decomposition @ = LU, with L = K¢ and Lie(U) = p{.
Because U is abelian, Corollary 2.7 implies

(A*pE)" = H*(150). (2.12)(g)

The last cohomology group is computed by Kostant’s version of the Bott-Borel-Weil
theorem:

THEOREM 2.13 ([7]). Suppose @ = LU is a parabolic subgroup of a complex
reductive Lie group G, and that F is an irreducible finite-dimensional represen-
tation of G. Then H*(w; F) is a sum of inequivalent irreducible representations
of L, parametrized by the quotient of Weyl groups W(G)/W(L). The number of
summands in degree a is the number of elements of W(QG) of length a which are
minimal representatives for their W(L) cosets.

The statement is explained more completely in [7]; a special case is discussed
in section 2 of [14]. In order to apply Kostant’s theorem to our present situation
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(with F = C), we just need to compute the Weyl group elements in question. Here
W(G) = S, the symmetric group of all permutations of {1,... ,n}, and W(L) is
the natural subgroup S, x S,;. A permutation ¢ is minimal in its W (L) coset if and
only if

o(1) <---<o(p), op+1)<---<o(p+q). (2.14)(a)
Suppose that is the case; we want to know the length of 0. For k between 1 and p,
define integers dj between 0 and g by the requirements

dr, =0 if o(k) < o(p+1);
dv=d (0<d<gq) ifo(p+d)<o(k)<o(p+d+1);and  (2.14)(d)
dr =q if o(p+q) < o(k).
Then it is easy to check that
0<di <dy<---<dp<gq, Y dp=10) (2.14)(c)

Conversely, each sequence {dx} satisfying the inequalities in (2.14)(c) corresponds
to a unique permutation o as (2.14)(a). Combining these calculations, Theorem
2.13, and (2.12)(g), we get

COROLLARY 2.15. The exterior algebra /\pE is a direct sum of inequivalent
representations of Kc. The number of representations appearing in degree a is
equal to the number of sequences of integers

0<di<dp<--<dy<q, Y di=a
The total number appearing in all degrees is (2)
Applying the formula in (2.12)(e) now gives

COROLLARY 2.16. Suppose G = U(p,q) and K = U(p) xU(q). Then the coho-
mology H*(g, K; C) is non-zero only in even degrees. More precisely, the dimension
of H?**(g, K;C) is equal to the number of sequences of integers

0<di<dy<---<dy<gq, Y dp=a.

The total dimension of the cohomology (and the Euler characteristic) is equal to
(p)'

The formula of Corollary 2.16 shows that the cohomology occurs in degrees
ranging from 0 to 2pg, and that it has dimension 1 in those extreme degrees. This

is consistent with Theorem 2.10, since U/K is a compact complex manifold of
dimension pgq.

Corollary 2.16 and Theorem 2.10 together compute completely the cohomology
groups appearing in Theorem 2.4.

3. Cohomology of irreducible representations: the discrete series

We saw in Corollary 2.16 that the cohomology of the trivial representation is
quite complicated. It is therefore natural to fear that the cohomology of something
as complicated as a discrete series representation will be completely incomprehen-
sible. This is not the case, and that fact is significant. The point is that discrete
series representations are in many senses among the “atoms” of the representation
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theory of reductive groups. The trivial representation (in the Langlands classifica-
tion, or in the theory of Eisenstein series) appears as a residue from the reduciblity
of a certain principal series representation; it can be properly understood only in
the context of a fairly complete understanding of that reducibility, and of all the
other pieces involved in it. Once this point of view is thoroughly grasped, what is
amazing is that one can give any kind of closed formula for the cohomology of the
trivial representation, and that such formulas were given twenty years before the
invention of intersection cohomology.
For this section, we will assume that G is a connected reductive group having
a compact Cartan subgroup
TCKCG. (3.1)(a)

We follow roughly the notation of [14], section 5. We fix therefore a system of
positive roots &+ for T in g¢, and write

p= % Y a (3.1)(0)

acdt

We will use the trivial weight 0 € A for T'; this has the required property that 0+ p
is dominant and regular for ®+. We define

m(®T) = discrete series representation with character ©,. (3.1)(¢)

This is the representation with Harish-Chandra parameter p. (Wigner’s result
mentioned after Problem 2.1 guarantees that discrete series representations with
other Harish-Chandra parameters cannot have non-vanishing cohomology; this fact
can also be deduced from a calculation like the one given for Theorem 3.2 below.)
We will write

X (®*1) = Harish-Chandra module of 7(®™). (3.1)(d)

Finally, recall from [14], section 3 that ®* is the disjoint union of the compact and
noncompact positive roots:

ot =dF UD;. (3.1)(e)
Define 1
R=|®}| = ;dimG/K. B-1)(f)

THEOREM 3.2. With notation as in (3.1), the cohomology of the discrete series
representation is given by

0 =2 R
wexx@) - { g 770

PROOF. We try to compute the X (®*)-valued p-forms for (g, K) (Definition
1.10). Suppose p is the highest weight of a representation of K occurring in both
APpc and in X (®7). The first requirement means that g must be a sum of p distinct
noncompact roots, so that

p=pi+ B =By =B

Here {f1,...,0-} and {B4,...,0.} are subsets of ®}, and » + s = p. On the
other hand, the Corollary to Theorem 1 of section 5 in [14] says that the second



12 DAVID A. VOGAN, JR.

requirement means y is of the form

B=2pn+ Y ¢,
ye®t

with ¢, a non-negative integer. Consequently

Bt +B—Bi——Bi=2pn+ Y o

yedt

Each positive root has strictly positive inner product with p. Taking the inner
product of both sides with p, we conclude that

r=|®f], s=0, cy=0.

In particular, p =7 + s = |®;|, and p = 2p,,.

It follows first of all that QP = 0 for p # R. For p = R, the only represen-
tation of K common to Afpc and X (®%) is the one of highest weight 2p,,. This
has multiplicity one in X (®*) by [14], and multiplicity one in AFpc by an easy
computation. So dim Q® = 1. Since all the other forms are zero, the differentials
in the complex must be zero; and the theorem follows. Q.E.D.

If G/K is Hermitian symmetric, the “Hodge type” of the cohomology class of
X (®7) is equal to (a,b), where

a=|®} N (roots in pf)|, b=|®;} N (rootsin p¢)|.

4. Introduction to cohomologically induced representations

In this section we will introduce a family of representations “interpolating”
between the trivial representation and the discrete series representations X (®V).
We work with a connected real reductive group G in Harish-Chandra’s class ([4],
section 3). (Allowing G to be disconnected but still in Harish-Chandra’s class com-
plicates the notation slightly, but does not introduce any essential new difficulties.)
We fix a maximal compact subgroup K C G, and write 0 for the corresponding
Cartan involution. Just as in Definition 2.8, the Cartan decomposition is written
g=%¢t+p.

DEFINITION 4.1. A 6-stable parabolic subalgebra of g is a parabolic subalgebra
q C gc such that

1. 6q = q, and

2. qNq = Ic is a Levi subalgebra of g.
Here the bar refers to complex conjugation with respect to the real form g of gc.
Necessarily the Levi subalgebra [¢ is defined over R; the real subalgebra [ is §-stable,
and is in fact the normalizer of q in g. We define the Levi subgroup of q by

L={g€G|Ad(g)(q) C a}.

Notice that we refer to q as a f-stable parabolic subalgebra of g even though it
is actually a subalgebra of gc.
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PROPOSITION 4.2 ([6], Chapter V). Suppose q is a 0-stable parabolic subalgebra
of g with Levi subgroup L. Then

1. L is a connected real reductive group of the same rank as G.

2. L is preserved by 6,and the restriction of 0 to L is a Cartan involution.

3. L contains a mazimal torus T C K.

We will be interested in #-stable parabolics up to conjugation by K. Proposition
4.2 shows that we may therefore study those containing a fixed maximal torus in
K. Here is a construction that gives all of them.

CONSTRUCTION 4.3. Fix a maximal torus 7' C K. Recall that the centralizer
H of T in G is a Cartan subgroup. It has Cartan decomposition H = T'A, with a
the centralizer of 7" in p. Write ®, C it for the set of roots of T" in ¢, so that

fc =tc + Z fca-

ac®,

Similarly, write ®,, C itj for the set of non-zero weights of T on pc, so that

pc =ac + Z pc,s-

BE®n

We write & = .U ®,,, a subset of it with multiplicities. Actually it is convenient
to abuse notation slightly to allow an element of ® to remember whether it came
from ®. or ®,,. A formal way to do this is to regard an element of ® as a character
of the group generated by T and 8; 8 acts by +1 on elements of ®., and by —1 on
elements of &,,.

Now fix a system of positive roots 7 for 7" in ¢c. Fix a weight \ € it} that is
dominant for K; that is, so that

Na)>0  (aed)).

We define the 0-stable parabolic associated to X\ by

q(A) = bc + Z 9cy-
vEP
(A)>0

The corresponding Levi subalgebra is

(Ne=bc+ > dco-
YED
(’\)’7):0

The Levi subgroup L(A) may be described as follows. Extend A to a complex-linear
functional on all of g, by making it zero on each weight space gc, (for v € ).
Then ) takes purely imaginary values on go. The group L()) is just the stabilizer
of X\ in the coadjoint action:

L)) ={g € G| Ad*(9)(A) = A}-
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PROPOSITION 4.4. Every 6-stable parabolic subalgebra of g arises by Construc-
tion 4.3. In particular,
1. there are only finitely many K -conjugacy classes of 0-stable parabolic subal-
gebras; and
2. the Levi subgroups of 0-stable parabolic subalgebras are precisely the isotropy
groups for the coadjoint action of G at elements of ¢*.

This is a fairly easy consequence of Proposition 4.2. The coadjoint orbits pass-
ing through £* are called elliptic; so the homogeneous spaces G/L(\) are precisely
the elliptic coadjoint orbits.

EXAMPLE 4.5. Suppose again that G = U(p, q), K = U(p) xU(q). The Cartan
involution is conjugation by the diagonal matrix whose first p entries are +1 and
whose last ¢ entries are —1. Write n = p+ g, so that G¢ ~ GL(n,C) as in Example
2.11. Suppose we are given an r-tuple of pairs (p;, ¢;) of non-negative integers, so

that
Zpi=p, Z‘h‘:q, pi+qi #0.

(These conditions are slightly weaker than the ones in Theorem 2.4.) We can
rearrange the coordinates in C" so that our Hermitian form has p; plus signs,
followed by ¢; minus signs, followed by ps plus signs, and so on:

2?4 f2p | = gyl = |2py e [+

In this new realization, the Cartan involution is still conjugation by a diagonal
matrix with entries 1. Now let ¢ be the standard parabolic subalgebra of gl(n, C)
with blocks of sizes p1 + ¢q1, p2 + g2,-.. along the diagonal. Then q is a 6-stable
parabolic subalgebra. The corresponding Levi subgroup consists of diagonal blocks;
it is
L = U(plaql) XX U(praq'r)-

It is not difficult to see that these are all the #-stable parabolic subalgebras in g,
up to conjugation by K; and in fact no two of these are conjugate.

Here is the main theorem.

THEOREM 4.6. Suppose G is a connected real reductive Lie group in Harish-
Chandra’s class, and q is a 0-stable parabolic subalgebra of g with Levi subgroup L
(Definition 4.1). Write u for the nil radical of q, and define

R =dimunNpc.

1. Attached to q there is an irreducible unitary representation w(q) of G. Up
to equivalence, w(q) depends only on the K-conjugacy class of q.
2. Write X(q) for the Harish-Chandra module of w(q). Then

H"(g, K; X (q)) =~ H*~*(, LN K; C).
3. Suppose m is an irreducible unitary representation of G with Harish-Chandra

module X, and that H*(g, K; X) # 0. Then there is a 6-stable parabolic
subalgebra q of g so that m ~ w(q).

We will say a little bit about the proof of this theorem in sections 5 and 6. Here
are some remarks. In the setting of Construction 4.3, a f-stable Borel subalgebra
containing t is the same as a choice ®T of a system of positive roots for . When
in addition rank G = rank K, we have already defined a representation (%)
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attached to such a positive system: it is a discrete series representation. In this
case L =T = LN K, so the formula in Theorem 4.6 for the cohomology agrees
with the formula in Theorem 3.2.

If ¢ = gc, then L = G. We take 7(gc) to be the trivial representation of G;
then the formula in Theorem 4.6 for the cohomology is a tautology.

If G = U(p,q), then Theorem 4.6 can be combined with Example 4.5 and
Theorem 2.10 to give something very close to Theorem 2.4. The differences arise
because the list of representations in Theorem 4.6 has a few repetitions. These have
been edited out of the list in Theorem 2.4. (To get inequivalent representations in
Theorem 4.6, one should impose the additional requirement on g that L have no
non-abelian compact simple factors. This is done in Theorem 2.4 by the last two
conditions on the p; and g;.)

The representations 7(q) were first constructed in general (as possibly non-
unitary representations) by Parthasarathy in [12]. It seems very likely that he was
aware of their connection with Lie algebra cohomology. At any rate the calculation
of cohomology in Theorem 4.6 is (as we will see in the next section) not very
difficult. Part 3 of the theorem was proved in [17], using powerful partial results of
Kumaresan from [10]. The last part of the theorem, that 7(q) is actually unitary,
was proved in [16].

5. Cohomologically induced representations:
characterization and cohomology

In this section we will give a characterization of the representations 7(q) in
Theorem 4.6, and use it to compute their cohomology. The main ingredient is a
certain representation of K constructed from the f-stable parabolic q. In order
to describe this representation, it is helpful to have a slight reformulation of Con-
struction 4.3. In the notation of that construction, the bilinear form defines an
isomorphism ity ~ ity. Let H) € ity be the element corresponding to A. Explicitly,
this means

vHy) = A (y €itp) (5.1)(a)
The #-stable parabolic associated to A (Construction 4.3) is then
g =a(Hx) =bc+ D ey (5.1)(b)
y€EP
Y(Hx)20

Similarly, its Levi subgroup is

L(A) = L(Hx) = {g € G | Ad(g)(H») = Ha}. (5.1)(c)
Define .
20unp)= > v € Tcit, (5.1)(d)
7(71‘?3;0

the sum of the roots of 7" in u N p.

PROPOSITION 5.2. In the setting of (5.1), write R = dimuNpc as in Theorem
4.6. The largest eigenvalue of Ad(H)) on Apc is equal to 2p(u N p)(Hy). The
corresponding eigenspace is isomorphic to

ARunpe) ® Ale N pe)-
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The adjoint action of uN¥c is trivial on this space.

PROOF. The triangular decomposition pc = uNpc + lc Npc +UNpc gives rise
to a decomposition of the exterior algebra

Apc = (AMunpe)) ® (Alc Npe)) ® (AN pe))

Any weight of T appearing is a sum of weights from the three factors. According to
(5.1), Ad(H,) has positive eigenvalues on the first factor, zero eigenvalues on the
second, and negative eigenvalues on the third. This proves everything but the last
claim. For that, (5.1) implies also that Ad(uN ¥c) acts to raise the eigenvalues of
Ad(H,). QE.D.

For the next result, we need to fix a set of positive roots of T in I¢ N £¢; this
allows us to speak of highest weights for representations of L N K. Adjoining to
this the set of roots of T in u N €¢ gives a set of positive roots of T in £c, and so
allows us to speak of highest weights for representations of K.

COROLLARY 5.3. Let g, be the highest weight of a representation 6, of LN K
appearing in A(lc N pc).

1. There is a unique representation § of K of highest weight p = pr+2p(uNpc).

2. There is a natural isomorphism

Homg (Vs, APpc) ~ Hompng (Vs,, /\p_R([c Npc)).

3. Suppose v is a non-empty sum of roots in u. Then the representation of K
of highest weight u + v does not occur in Apc.

PROOF. Suppose 7, is any irreducible representation of LN K of highest weight
v, and W is a representation of K. Then the Cartan-Weyl theory tells us that there
is at most one representation (7,V;) of K of highest weight ; and

Homp (V;, W) ~ Hompng (Vs , W*™¢) C Hompng (Vy,, W). (5.4)(a)

If 7 does not exist, then the same formula is true with V. = 0. We apply (5.4)(a)
to 72, = 0z, ® AB(unpc). Evidently the element H)y of Ic N €c acts on 71, by the
scalar 2p(unp)(Hy). Proposition 5.2 therefore allows us to conclude that

Homznx Ve, APpe) = Homrax (Vs , AP~ F(Ic N pe)). (5.4)(b)

Furthermore any LN K-map on the left must automatically take values in the ungc-
invariants. Now (5.4) gives 2. of the corollary. The right side of (5.4)(b) is non-zero
(for some p) by the assumption on d,; so V, cannot be zero, and 1. follows. For 3.,
we apply (5.4) again with 7, equal to the representation of LN K of highest weight
©+ . By (5.1), Hy acts on 71, by the scalar

p(Hx) +y(Hx) > p(Hx) = 2p(u N p)(Ha).

This eigenvalue does not occur in Apc, so (5.4)(a) implies that V. cannot occur in
Apc. Q.E.D.
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COROLLARY 5.5. In the setting of (5.1), there is a unique irreducible represen-
tation §(q) of K of highest weight 2p(uNpc). We have

HOmK(V(;(q), /\ppc) ~ HOmLmK((C, /\p_R([C n pc))

This is just Corollary 5.3 with 47, equal to the trivial representation of L N K.
Here is a characterization of the representations in Theorem 4.6.

THEOREM 5.6 ([17], Proposition 6.1). Suppose q is a 6-stable parabolic subal-
gebra of g, and 8(q) is the representation of K described in Corollary 5.5. Then
there is a unique irreducible unitary representation w(q) of G with the following
properties:

1. The restriction of w(q) to K contains §(q) ezactly once.

2. Every representation of K appearing in w(q) has highest weight 2p(uNpc)+7,

with v a sum of roots of T in u.
3. The Casimir operator (a central element of the universal enveloping algebra)
acts by 0 in 7(q).

Only the uniqueness part of this statement is proved in [17]; the existence
appears in [16]. We will discuss the construction of m(q) in section 6. Assuming
that we have constructed this representation, let us see how to calculate the Lie
algebra cohomology. As in Theorem 4.6, we write X(q) for the Harish-Chandra
module. According to Definition 1.10, this is calculated by a complex

0%(g, K; X(q)) = Homg (A”pc, X (q))- (5.7)(a)

According to Corollary 5.3 and Theorem 5.6, the only representation of K occurring
in both X(q) and Apc is d(q). Corollary 5.5 then gives

0?(g, K; X (9)) ~ Homg (A\Ppc, Vi(q)) = Homznx (A~ F(Ilc Npc), ). (5.7)(b)

Consequently

(g, K;X(q)) ~ ® F(I,LN K;C). (5.7)(c)
We have seen in Proposition 2.6 that the differential in the second complex is zero.
The same is true of the first:

ProposITION 5.8 ([2], Proposition I1.3.1). Suppose that X is the Harish-
Chandra module of a unitary representation of G, and that the Casimir operator
acts by zero on X. Then the differential in QP (g, K; X) is zero; so

HP?(g,K; X) ~ Homg (APpc, X).

In light of Proposition 5.8, the formula (5.7)(c) immediately implies the coho-
mology formula in Theorem 4.6.

6. Cohomologically induced representations: construction

In this section we will say a little about the construction of a unitary repre-
sentation m(q) satisfying the conditions in Theorem 5.6. There are a number of
ways to construct a Harish-Chandra module satisfying conditions (1)—(3) of The-
orem 5.6, beginning with Parthasathy’s method in [12]. The only method known
for constructing a unitary representation is algebraic in nature, and is based on
ideas of Zuckerman. It is the subject of [6]; we will say almost nothing about it.
Instead we will discuss a more analytic construction suggested by Kostant in [8],
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and elaborated by Schmid in [13]. The tools are those of complex analysis, so we
begin with some general remarks about that.

PROPOSITION 6.1. Suppose G is a Lie group and H is a closed subgroup. Write
h C g for their Lie algebras. Then G-invariant complezr structures on the homo-
geneous space G/H are in one-to-one correspondence with complex Lie subalgebras
q C gc, having the following two properties.

1. We have qNq=bhc, and q+q = gc-

2. The complezified adjoint action of H on gc preserves q.

SKETCH OF PROOF. This is well-known and (almost) elementary. Suppose
we are given a ¢ satisfying these two conditions. The first condition (together
with the fact that ¢ is a complex subspace of g¢) means that q defines a complex
structure on the tangent space g/h to G/H at eH. Next, we use the action of G to
move this complex structure to all the other tangent spaces; the second condition
guarantees that this is well-defined. In this way we get a G-invariant almost complex
structure on G/H. The fact that q is a Lie subalgebra means that this almost
complex structure is integrable. By the Newlander-Nirenberg theorem (this is the
not-so-elementary part of the argument) an integrable almost complex structure is
a complex structure. The converse is similar (but entirely elementary). Q.E.D.

Notice that ¢ and H are almost a pair in the sense of Definition 1.6. The only
change is that q is a complex Lie algebra instead of a real one. (We could define
a complez pair accordingly, but we will spare the reader.) In any case it is more
or less clear what a (q, H)-module ought to be, by analogy with Definition 1.7; we
simply require the representation of q to be complex-linear instead of real-linear.

It is well-known that the G-equivariant complex vector bundles on G/H are
parametrized naturally by the finite-dimensional complex representations of H.
Here is the analogous result for holomorphic bundles.

PROPOSITION 6.2. Suppose G is a Lie group and H is a closed subgroup. Sup-
pose that we are given a G-invariant complezx structures on the homogeneous space
G/H corresponding to the complex Lie algebra q C gc (Proposition 6.1). Then the
G-equivariant holomorphic vector bundles on G/H are naturally parametrized by
the finite-dimensional (q, H)-modules (Definition 1.7). This parametrization sends
a vector bundle V to the fiber V = Veg.

We omit the proof. If V is a finite-dimensional (q, H)-module, then the corre-
sponding holomorphic vector bundle on G/H is written V = G xq,z V.

If V is a holomorphic vector bundle on a complex manifold X, then one can
define Dolbeault cohomology groups H%P(X,V). (The definition uses a certain
differential & on (0, p)-forms with values in V. It is formally quite similar to the
de Rham d on ordinary forms.) For p = 0, the Dolbeault cohomology is the space
of all holomorphic sections of V. If X is a Stein manifold, the higher cohomology
groups are all zero. The Dolbeault theorem asserts that H*?(X,)) is isomorphic
to the pth Cech cohomology of X with coefficients in the sheaf O()) of germs of
holomorphic sections of V.

If now V is a G-equivariant holomorphic vector bundle on G/H, then there is
a natural action of G on the Dolbeault complex, and so on the cohomology groups
H%P(G/H,V). In this way we get a representation of G on H"?(G/H,V). The
representations we want to discuss are of this form.
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Suppose now that we are in the setting of Definition 4.1, so that q is a f-stable
parabolic subalgebra of g with Levi subgroup L. By Definition 4.1 and Proposition
6.1, q defines a G-invariant holomorphic structure on G/L. It is not difficult to
see that q N ¢c defines a K-invariant holomorphic structure on K/L N K, and the
natural inclusion

K/LNK - G/L (6.3)(a)
is a holomorphic embedding. We now introduce a holomorphic line bundle on G/ L.
Write u for the nil radical of ¢, so that we have a Levi decomposition

q=lcou (6.3)(b)

This decomposition is invariant under L. Under L N K we have a further decom-
position

u=unNtc & unpe. (6.3)(c)
We write
R =dimunpgc, S=dimuntc. (6.3)(d)
Then one sees easily that
S =dim¢c K/LNK R+ S =dim¢ G/L. (6.3)(e)

EXAMPLE 6.4. This example has G disconnected, and so does not quite meet
our hypotheses; but it is nevertheless attractive. Let G be the general linear group
GL(2n,R), and let X be the Grassmann variety of n-dimensional complex planes
in C2". This is a compact complex manifold of complex dimension n?; indeed it is a
projective algebraic variety. The complex group G¢c = GL(2n,C) acts transitively
on X. The isotropy group at the standard copy of C* C C?" is

Q= {(6‘ g) | 4,C € GL(n,C), B € Mm(C)};

so X ~ G¢/Q.

Now G acts on X, but the action is not transitive. Here is a way to understand
the orbits. Suppose V is an n-plane in C?". Then V (the set of vectors obtained
from V by conjugating coordinate by coordinate) is another n-plane; so VNV = W
is a subspace of C?" defined over R; that is, it is the complexification of a subspace
W of R?", Similarly, V + V = U is the complexification of a subspace U D W of
R2", Write d for the dimension of W; evidently 0 < d < n. The spaces U, V, and
W have the following properties.

WcCcUCR™, dimW=d, dimU =2n—d; (6.4)(a)
We CV C Ug; (6.4)(b)
V/Wc defines a complex structure Ji;/w on U/W. (6.4)(c)

(Explicitly, V/Wc is the +i eigenspace of the complexification of Ji;/w )

Conversely, suppose W C U are subspaces of R??, of dimensions d and 2n — d
respectively; and suppose we are given a complex structure Jy,y on U/W. Then
the complex structure corresponds to a complex subspace V' C (U/W)¢ of dimen-
sion n — d. The preimage V of V' in W¢ is an n-dimensional subspace, and it
gives rise to W and U by the construction above. In this way we find a bijection
between the collection of n-planes in C?", and the collection of triples (W, U, Jy W)
satisfying (6.4)(a)—(c).
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In terms of this description, it is easy to understand the orbits of G = GL(2n,R)
acting on X. The dimension d of W is obviously constant on orbits. Write X4 for
the set of all triples (W, U, Jy,w ) as above with dim W = d. Tt is easy to see that G
is transitive on pairs of subspaces W C U of dimensions d and 2n — d; and that the
isotropy group at (W, U) maps onto GL(W/U). This last group acts transitively on
the complex structures on W/U, so we conclude that G acts transitively on X4. In
particular, there are exactly n+ 1 orbits. Only one of these is open; it is X, which
is just the space of all complex structures on R?". As a base point in X, we may
take some standard complex structure R?" ~ C"; the isotropy group is evidently
GL(n,C), so that

GL(2n,R)/GL(n,C) ~ X, = {complex structures on R*"} C X ~ G¢/Q.

Because the standard complex structure J on R?" is given by a skew-symmetric
_01 (1]>), the group L = GL(n,C) is the
Levi factor of a #-stable parabolic subalgebra. Consequently X is one of the spaces
considered in (6.3). The compact subvariety K/L N K = O(2n)/U(n) is easy to
identify in this case: it consists of all complex structures J on R?” which preserve
the inner product. We compute S = dim¢ K/LN K = (n? —n)/2, R = (n%+n)/2.

matrix (consisting of n diagonal blocks

We turn now to a consideration of Dolbeault cohomology groups on the spaces
G/L. As we indicated before (6.3), the higher cohomology groups vanish in the case
of a Stein manifold. Now a compact complex submanifold of a Stein manifold is
necessarily finite; but G/L has the compact complex submanifold K/L N K, which
has complex dimension S. Schmid and Wolf have shown that G/L comes as close
to being a Stein manifold as this subvariety will allow. Here is a precise statement.

THEOREM 6.5 ([15]). G/L is S + l-complete in the sense of Andreotti and
Grauert.

What this means is that G/L admits an exhaustion function (a non-negative
smooth function ¢ with ¢=1([0, N]) compact for all N) such that the Levi form
of ¢ has at most S non-positive eigenvalues at each point of G/L. The Levi form
is a Hermitian form on the holomorphic tangent bundle constructed from second
partial derivatives of ¢. In holomorphic local coordinates, its matrix is 8%¢/8z;0z;.

CoROLLARY 6.6 ([1], page 250). If S is any coherent sheaf on G/L, then
H?(G/L,S) =0 for p > S. In particular, the Dolbeault cohomology H*?(G/L,V)
with coefficients in a holomorphic vector bundle V vanishes for p > S.

We can now introduce the line bundle on G//L that we will be working with.

DEFINITION 6.7. Suppose q is a 0-stable parabolic subalgebra for G, with Levi
factor L. Use the notation of (6.3). Consider the one-dimensional (g, L)-module

Lopw) = N¥5(gc/q)* = AFFSu o ARFSq /1 (6.7)(a)

The first description exhibits Ly,,) as the fiber at eL of the top exterior power
of the holomorphic cotangent bundle of G/L. The corresponding holomorphic line
bundle

Lopwy = G Xq,L Lap(u) (6.7)(b)
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on G/L is therefore the canonical bundle. As a (q N ¢c, L N K)-module, there is a
factorization

Lapwy = AR(unpc) ® A°(un t); (6.7)(c)
the factors are denoted Lo, (ynpe) and Lajune) respectively. They induce holomor-
phic line bundles

EZp(uﬂp(;) = K Xgnee,LnK L2p(uﬂvc) (6.7)(d)
and similarly £y,(unee) on K/LNK. This last is the canonical bundle for K/LN K.

Finally, we define 7(q) to be the representation of G on the Dolbeault coho-
mology space

H(q) = H*®(G/L, Layw))- (6.7)(e)
Notice that Corollary 6.6 guarantees that this is the highest degree in which the
cohomology can be non-zero.

The definition needs some remarks. First, the representation space is usually

infinite-dimensional. We therefore need a topology on it to make any sensible
statements. The natural topology comes from the Dolbeault complex. The (0,.5)-
forms with values in L5,(,) carry a natural C* topology, and the closed forms
constitute a closed subspace. The exact forms, however, do not obviously constitute
a closed subspace; so the quotient topology on H%® is not obviously Hausdorff.
Wong has shown in [19] that the exact forms actually are closed, so that the
topology is Hausdorff.
_ Theorem 4.6 asks for a unitary representation on a Hilbert space. The space
H(q) is not a Hilbert space unless it is finite-dimensional; so 7(q) cannot be exactly
the representation we are looking for. Wong also shows in [19] that 7(q) is infinites-
imally equivalent to a representation constructed algebraically by Zuckerman; and
this representation was already known from [16] to be unitary. We will have no
more to say about the details of this (successful) approach to proving Theorem
4.6, concentrating instead on ideas of Schmid for analyzing 7(q). These ideas are
taken from his dissertation, which was published in [13]. We choose them because
they are easier to understand, and because they motivate many arguments in the
algebraic theory.

Theorem 5.6 suggests that we ought to find some connection between 7(q) and
the representation §(q) of K (Corollary 5.5). The first step is provided by the
following result.

LEMMA 6.8. In the setting of Definition 6.7, the representation of K on the
Dolbeault cohomology of the line bundle L3,y is the irreducible representation 6(q)
described in Corollary 5.5:

Vi) =~ H"3(K/LN K, Lap))-

PRrOOF. Write W for the cohomology group in the lemma. All such cohomology
groups (with coefficients in irreducible equivariant vector bundles) are computed
by the Bott-Borel-Weil theorem. But in this case we can manage with even less.
Recall that S is the complex dimension of K/LNK, and that the line bundle factors
as Lapunpe) ® Lapunte)- The second factor is the canonical bundle of K/L N K.
The Serre Duality Theorem provides an isomorphism

wW* ~ H(K/LNK, L3 purpe))
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We observed after Proposition 6.2 that the group on the right is the space of
holomorphic sections of the line bundle. According to the Borel-Weil theorem,
W* is therefore the irreducible representation of K of lowest weight —2p(u N p¢).
By Corollary 5.5, W* ~ 5*(q). The lemma follows. Q.E.D.

To go further, we need some additional notation. In the setting of Definition
6.7, let us write OF for the sheaf of germs of holomorphic sections of Lop) on
G/L, and OX for the corresponding sheaf on K/L N K. We may also regard O¥
as a sheaf on G/L supported on K/L N K. According to Definition 6.7, Lemma
6.8, and the remarks after Proposition 6.2, the Cech cohomology groups of these
sheaves in degree S are

H®(G/L,0%) = 7(q) (6.9)(a)

H%(G/L,0%) ~ HS(K/LN K,0%) ~ V(q). (6.9)(b)

So we are looking for a connection between the sheaves O¢ and O¥ on G/L. This

is provided by the restriction map: any holomorphic germ on G/L has a restriction

to K/L N K. The restriction map is surjective (on sheaves of germs), since any

holomorphic germ on K/L N K has an extension to a germ on G/L. Its kernel

is the sheaf V' of germs of holomorphic sections of Laopwy on G /L that vanish on
K/LN K. We therefore have a short exact sequence of sheaves on G/L

05V = 0% 5= 0% =0, (6.9)(c)

These are all coherent sheaves, so the vanishing theorem of Corollary 6.6 applies.
The long exact sequence in sheaf cohomology attached to (6.9)(c) therefore ends in
degree S; in light of (6.9)(a) and (6.9)(b), the last terms are

o= H3(G/L,V") — H(q) = V(q) — 0. (6.9)(d)
As an immediate consequence, we deduce that
0(q) occurs in 7(q). (6.9)(e)

This is a (small) step in the direction of Theorem 5.6. To continue, we need to
understand the representations of K appearing in the cohomology of V!. Schmid’s
method for doing so is to introduce the sheaves

V" = germs of sections of L3, vanishing to nth order on K/LNK (6.9)(f)
on G/L. So for example
V=09 V) =0K
The next result is a generalization of Lemma 6.8.

LEMMA 6.10([13], (4.3)). Suppose we are in the setting of Definition 6.7; use
the notation of (6.9). Then for all n > 0, the quotient sheaf V™ /V™T! is supported
on K/LN K. It may be described as follows. Write N for the holomorphic normal
bundle of K/LN K in G/L, and N* for the dual bundle. Ezplicitly,

N* ~ K Xqnee,10k (9c/(a+ €c))* ~ K Xgnee,Lnkx (UNpe).

Write S™(N*) for the nth symmetric power of N*, and O(W) for the sheaf of
germs of holomorphic sections of a vector bundle W. Then

Vn/Vn+1 ~ O(Sn(./\/*) ® ['2p(u))-
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In particular, every cohomology group of V™ /Y"1 is a finite-dimensional represen-
tation of K.

If 6 is an irreducible representation of K appearing in HS(G/L,V™/V™t1),
then the highest weight of § must be of the form 2p(uNpc) + 7, with v a sum of n
roots of T in uNpc.

The first part of the lemma amounts to a coordinate-free treatment of Taylor
expansions; it can be done with K/L N K C G/L replaced by any closed complex
submanifold of a complex manifold. The second part is a generalization of Lemma
6.8, and can be proved in a similar way. We omit the details.

COROLLARY 6.11. Suppose we are in the setting of Definition 6.7; use the
notation of (6.9). The quotient sheaf OF /V™+! is supported on K/LN K, and has
finite-dimensional cohomology sheaves. Consider the short exact sequence

0— VYt - 0% - 0%/ ymtt 0.

The corresponding long exact sequence in cohomology ends in degree S, and the last
terms are

o= H3(G/L,V"*Y) — H(q) - HS(K/L N K,0% /y™+t) - 0.

Any irreducible representation of K appearing in this last group must have highest
weight 2p(u N pc) + vy, with v a sum of at most n roots of T in uNpc.

This follows from Lemma 6.10 just as we deduced (6.9)(d) above.
Let us see where we stand. For each non-negative integer n, we define a sub-
space of H(q) by

’f—l(q)" = kernel of the map ’;Q(q) — H5(K/LN K, 0% /y"th)

- (6.12)(a)
= image of the map HS(G/L,V"") — H(q)

Because of the first description, 2(q)" is a closed K-invariant subspace of #(q). It
is also clear from the definitions that there are containments

H@)" CH@Q™  (n=m). (6.12)(b)

The Lie algebra g acts on Dolbeault cocycles by first-order differential operators.
It is plausible to think that such operators should decrease order of vanishing along
a subvariety by at most one. This is true, and is proved in [13], Lemma 6.8:

QXA cH@" (X o) (6.12)(c)

Now define _ _
H(q)™ =[)H()™ (6.12)(d)

This is a closed, K-invariant, g-invariant subspace of ﬁ(q) Here is what one can
prove fairly easily using these ideas.

THEOREM 6.13. Suppose we are in the setting of Definition 6.7; use the nota-
tion of (6.12). Then the (g, K)-module of K -finite vectors in H(q)/H(q)>® satisfies
the three conditions in Theorem 5.6. More precisely:

1. The restriction to K contains §(q) ezxactly once.

2. Every representation of K appearing has highest weight 2p(uNpc) + vy, with

v a sum of roots of T in uN pc.
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3. The Casimir operator acts by 0 (even on all of H(q)).

This is all more or less clear from Corollary 6.11 and (6.12), except for the
assertion about the Casimir operator. That is a routine calculation analogous to the
calculation of infinitesimal characters for induced representations (see for example
[5], Proposition 8.22). (The Casimir acts on cohomology classes by differentiation
on the left. Since it is central, we may as well differentiate on the right. But
cohomology classes satisfy some differential equations on the right, and these allow
us to show that the Casimir action is zero.) We omit the details.

In this way we can construct at least a non-unitary representation satisfying
the requirements of Theorem 5.6. We conclude with a few more remarks about
its relationship to 7(q). Suppose first that S = 0, so that H(q) is the space of
holomorphic sections of a line bundle on G/L. The subspace ﬁ(q)" consists of
sections vanishing to order n at the point K/L N K. Since a non-zero holomorphic
function cannot vanish to infinite order at a point, we see that ﬁ(q)oo =0.

In general (when § # 0), #(q)" may be identified with Cech cohomology classes
admitting representatives involving holomorphic functions that vanish to order n
along K/L N K. Tt follows that #(q)* corresponds to Cech cohomology classes
admitting for every n representatives involving holomorphic functions that vanish
to order n along K/LNK. Of course we will have to choose different representatives
for different values of n, but there is no general argument to rule out the existence
of non-zero classes. On the other hand, Schmid’s beautiful analysis of H(q)/H(q)*>°
(roughly outlined in Lemma 6.10, Corollary 6.11, and Theorem 6.13) certainly gives
reason to hope that #(q)>™ = 0. This is true, and is part of the result of Wong
already mentioned:

THEOREM 6.14 ([19]). Suppose we are in the setting of Definition 6.7; use the
notation of (6.12). Then H(q)™ = 0. Consequently H(q) is a smooth Fréchet rep-
resentation of G, whose (g, K)-module satisfies the conditions (1)-(3) of Theorems
5.6 or 6.13.
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