Unitary representations of reductive groups 1–5

David Vogan

University of Massachusetts Boston July 16–20, 2012

David Vogan

1. Why representations?

Fourier series Finite-diml representations Abstract harmonic analysis Quadratic forms

2. Automorphic forms

Defining automorphic forms Automorphic cohomology

3. Orbit method

Commuting algebras Differential operator algebras Hamiltonian *G*-spaces

4. Classical limit

Associated varieties Deformation quantization Howe's wavefront set

5. (\mathfrak{g}, K) -modules

Outline

1. Examples and applications of representation theory Fourier series

Finite-diml representations Gelfand's abstract harmonic analysis Quadratic forms and reps of GL(n)

- 2. Examples from automorphic forms Defining automorphic forms Automorphic cohomology
- 3. Kirillov-Kostant orbit method

Commuting algebras Differential operator algebras: how orbit method works Hamiltonian *G*-spaces: how Kostant does the orbit method

4. Classical limit: from group representations to symplectic geometry Associated varieties

Deformation quantization Howe's wavefront set

5. Harish-Chandra's (g, K)-modules

Case of $SL(2, \mathbb{R})$ Definition of (\mathfrak{g}, K) -modules Harish-Chandra algebraization theorems

David Vogan

1. Why representations?

Fourier series Finite-diml representations Abstract harmonic analysis Quadratic forms

2. Automorphic forms

Defining automorphic forms Automorphic cohomology

3. Orbit method

Commuting algebras Differential operator algebras Hamiltonian *G*-spaces

4. Classical limit

Associated varieties Deformation quantization Howe's wavefront set

5. (\mathfrak{g}, K) -modules

How does symmetry inform mathematics (I)?

Example. $\int_{-\pi}^{\pi} \sin^5(t) dt = ?$ Zero! Principle: group *G* acts on vector space *V*; decompose *V* using *G*; study each piece. Here $G = \{1, -1\}$ acts on V = functions on \mathbb{R} ; pieces are even and odd functions.

David Vogan

1. Why representations?

Fourier series Finite-diml representations Abstract harmonic analysis Quadratic forms

2. Automorphic forms

Defining automorphic forms Automorphic cohomology

3. Orbit method

Commuting algebras Differential operator algebras Hamiltonian *G*-spaces

4. Classical limit

Associated varieties Deformation quantization Howe's wavefront set

5. (g, K)-modules

How does symmetry inform mathematics (II)?

Example. Temp distn $T(t, \theta)$ on hot ring governed by $\partial T/\partial t = c^2 \partial^2 T/\partial \theta^2$, $T(0, \theta) = T_0(\theta)$.

Too hard for (algebraist) to solve; so look at special initial conditions with rotational (almost) symmetry:

 $T(0,\theta) = a_0/2 + a_m \cos(m\theta).$

Diff eqn is symmetric, so hope soln is symmetric:

 $T(t,\theta) \stackrel{?}{=} a_0(t)/2 + a_m(t)\cos(m\theta).$

Leads to ORDINARY differential equations

 $da_0/dt = 0$, $da_m/dt = -c^2m^2a_m$. These are well-suited to an algebraist:

 $T(t,\theta) = a_0/2 + a_m e^{-c^2 \cdot m^2 t} \cos(m\theta).$

Generalize: Fourier series expansion of initial temp...

Principle: group *G* acts on vector space *V*; decompose *V*; study pieces separately. Here G = rotations of ring acts on V = functions on ring; decomposition is by frequency.

David Vogan

. Why

epresentations?

Fourier series

Finite-diml representations Abstract harmonic analysis Quadratic forms

2. Automorphic forms

Defining automorphic forms Automorphic cohomology

3. Orbit method

Commuting algebras Differential operator algebras Hamiltonian *G*-spaces

4. Classical limit

Associated varieties Deformation quantization Howe's wavefront set

5. (\mathfrak{g}, K) -modules

Case of $SL(2, \mathbb{R})$ Definition of $(\mathfrak{g}, \mathcal{K})$ -modules Harish-Chandra algebraization theorems

What's so good about sin and cos?

What's " $\cos(m\theta)$ is almost rotationally symmetric" mean?

If $f(\theta)$ any function on the circle $(f(\theta + 2\pi) = f(\theta))$, define rotation of *f* by ϕ to be new function $[\rho(\phi)f](\theta) = f(\theta - \phi)$. Rotationally symm. =_{def} unchgd by rotation =_{def} constant.

 $c_m(\theta) =_{def} \cos(m\theta), \qquad s_m(\theta) =_{def} \sin(m\theta).$

 $[\rho(\phi)c_m](\theta) = c_m(\theta - \phi) = \cos(m\theta - m\phi)$ = $\cos(m\theta)\cos(m\phi) + \sin(m\theta)\sin(m\phi).$ = $[\cos(m\phi)c_m + \sin(m\phi)s_m](\theta).$

Rotation of c_m is a linear combination of c_m and s_m : "almost rotationally symmetric."

Similar calculation for sin shows that

$$\rho(\phi) \begin{pmatrix} c_m \\ s_m \end{pmatrix} = \begin{pmatrix} \cos(m\phi) & \sin(m\phi) \\ -\sin(m\phi) & \cos(m\phi) \end{pmatrix} \begin{pmatrix} c_m \\ s_m \end{pmatrix}$$

HARD transcendental rotation ~> EASY linear algebra!

David Vogan

1. Why representations?

Fourier series

Finite-diml representations Abstract harmonic analysis Quadratic forms

2. Automorphic orms

Defining automorphic forms Automorphic cohomology

3. Orbit method

Commuting algebras Differential operator algebras Hamiltonian *G*-spaces

4. Classical limit

Associated varieties Deformation quantization Howe's wavefront set

5. (g, K)-modules

In which we meet the hero of our story...

$$\rho(\phi) \begin{pmatrix} c_m \\ s_m \end{pmatrix} = \begin{pmatrix} \cos(m\phi) & \sin(m\phi) \\ -\sin(m\phi) & \cos(m\phi) \end{pmatrix} \begin{pmatrix} c_m \\ s_m \end{pmatrix}$$

Definition

A *representation* of a group G on a vector space V is a group homomorphism

$$\rho \colon G \to GL(V).$$

Equiv: action of *G* on *V* by linear transformations. Equiv (if $V = \mathbb{C}^n$): each $g \in G \rightsquigarrow n \times n$ matrix $\rho(g)$,

$$\rho(gh) = \rho(g)\rho(h), \qquad \rho(e) = I_n.$$

HARD questions about G, (nonlinear) actions \rightsquigarrow EASY linear algebra!

David Vogan

. Why

representations

Fourier series Finite-diml representations

Abstract harmonic analysis Quadratic forms

2. Automorphic forms

Defining automorphic forms Automorphic cohomology

3. Orbit method

Commuting algebras Differential operator algebras Hamiltonian *G*-spaces

4. Classical limit

Associated varieties Deformation quantization Howe's wavefront set

5. (g, K)-modules

How does symmetry inform math (III)?

First two examples involved easy abelian *G*; usually understood without groups.

Fourier series provide a nice basis $\{\cos(m\theta), \sin(m\theta)\}$ for functions on the circle S^1 . What analogues are possible on the sphere S^2 ?

G = O(3) = group of 3×3 real orthogonal matrices, the distance-preserving linear transformations of \mathbb{R}^3 .

V = functions on S^2 .

Seek small subspaces of *V* preserved by *O*(3). Example. $V_0 = \langle 1 \rangle = \text{constant functions}; 1\text{-diml.}$ Example. $V_1 = \langle x, y, z \rangle = \text{linear functions}; 3\text{-diml.}$ Example. $V_2 = \langle x^2, xy, \dots, z^2 \rangle = \text{quad fns}; 6\text{-diml.}$ Problem: $x^2 + y^2 + z^2 = 1$ on S^2 : so $V_2 \supset V_0$. Example. $V_m = \langle x^m, \dots, z^m \rangle = \text{deg } m \text{ polys};$ $\binom{m+2}{2}$ -diml.

David Vogan

. Why

representations

Fourier series

Finite-diml representations Abstract harmonic analysis Quadratic forms

2. Automorphic forms

Defining automorphic forms Automorphic cohomology

3. Orbit method

Commuting algebras Differential operator algebras Hamiltonian G-spaces

4. Classical limit

Associated varieties Deformation quantization Howe's wavefront set

5. (\mathfrak{g}, K) -modules

Polynomials and the group O(3)

Want to understand restriction of these functions to

$$S^2 = \{(x, y, z) \mid r^2 = 1\}$$
 $(r^2 = x^2 + y^2 + z^2).$

Algebraic geometry point of view (*Q* for *quotient*):

nice fns on $S^2 =_{\mathsf{def}} Q(S^2) = S(\mathbb{R}^3)/\langle r^2 - 1 \rangle.$

To study polynomials with finite-dimensional linear algebra, use the increasing filtration $S^{\leq m}(\mathbb{R}^3)$; get

$$egin{aligned} Q^{\leq m}(S^2) &= S^{\leq m}(\mathbb{R}^3)/(r^2-1)S^{\leq m-2}(\mathbb{R}^3),\ S^{\leq m}(\mathbb{R}^3)/S^{\leq m-1}(\mathbb{R}^3) &\simeq V_m, \end{aligned}$$

 $Q^{\leq m}(S^2)/Q^{\leq m-1}(S^2) \simeq V_m/(r^2)V_{m-2}.$

O(3) has rep on $V_m/r^2 V_{m-2}$, dim = $\binom{m+2}{2} - \binom{m}{2} = 2m+1$; sum over *m* gives all (polynomial) fns on S^2 .

David Vogan

Why representations?

Fourier series

Finite-diml representations Abstract harmonic analysis Quadratic forms

2. Automorphic forms

Defining automorphic forms Automorphic cohomology

3. Orbit method

Commuting algebras Differential operator algebras Hamiltonian *G*-spaces

4. Classical limit

Associated varieties Deformation quantization Howe's wavefront set

5. (g, K)-modules

Polynomials and the group O(3) (reprise)

Want to understand restriction of these functions to S^2 .

Analysis point of view $\Delta = \partial^2/\partial x^2 + \partial^2/\partial y^2 + \partial^2/\partial z^2$.

nice fns on S^2 = initial conditions for diff eq ΔF = 0.

$$V_{m-2} \stackrel{\overset{\cdot,r^2}{\longleftarrow}}{\longleftarrow} V_m; \qquad H_m =_{\mathsf{def}} \mathsf{ker}(\Delta|_{V_m}).$$

Proposition

 H_m is a complement for $r^2 V_{m-2}$ in V_m . Consequently

 $V_m/r^2 V_{m-2} \simeq H_m, \qquad (O(3) \text{ rep of } \dim = 2m+1).$ $V_m = H_m \oplus r^2 H_{m-2} \oplus r^4 H_{m-4} + \cdots.$ functions on $S^2 \simeq H_0 \oplus H_1 \oplus H_2 \oplus \cdots$

David Vogan

. Why

Fourier series

Finite-diml representations Abstract harmonic analysis Quadratic forms

2. Automorphic forms

Defining automorphic forms Automorphic cohomology

3. Orbit method

Commuting algebras Differential operator algebras Hamiltonian *G*-spaces

4. Classical limit

Associated varieties Deformation quantization Howe's wavefront set

5. (g, K)-modules

Fourier series on S²

Abstract representation theory: group O(3) has two irr repns of each odd dim 2m + 1, namely

 H_m = harmonic polys of deg $m \simeq V_m/r^2 V_{m-2}$, and $H_m \otimes \epsilon$; here

$$\begin{split} \epsilon\colon \mathcal{O}(3)\to \{\pm 1\}\subset GL(1), \quad \mathrm{sgn}(g)=_{\mathsf{def}} \mathrm{sgn}(\mathsf{det}(g)).\\ \text{Schur's lemma: any invariant Hermitian pairing}\\ \langle,\rangle\colon E\times F\to \mathbb{C} \end{split}$$

between distinct irreducible representations of a compact group G must be zero. Consequence:

subspaces $H_m \subset L^2(S^2)$ are orthogonal. Stone-Weierstrass: span(H_m) *dense* in $L^2(S^2)$. Proposition

 $L^2(S^2)$ is Hilbert space sum of the 2m + 1-diml subspaces H_m of harmonic polys of degree m.

 $f \in L^2(S^2) \to f_m \in H_m, \qquad f = \sum_{m=0}^{\infty} f_m.$ Fourier coeff f_m in 2m + 1-diml O(3) rep.

David Vogan

. Why

representations

Finite-diml representations Abstract harmonic analysis

2. Automorphic forms

Defining automorphic forms Automorphic cohomology

3. Orbit method

Commuting algebras Differential operator algebras Hamiltonian *G*-spaces

4. Classical limit

Associated varieties Deformation quantization Howe's wavefront set

5. (\mathfrak{g}, K) -modules

Gelfand's abstract harmonic analysis

Topological grp G acts on X, have questions about X.

Step 1. Attach to X Hilbert space \mathcal{H} (e.g. $L^2(X)$). Questions about $X \rightsquigarrow$ questions about \mathcal{H} .

Step 2. Find finest *G*-eqvt decomp $\mathcal{H} = \bigoplus_{\alpha} \mathcal{H}_{\alpha}$. Questions about $\mathcal{H} \rightsquigarrow$ questions about each \mathcal{H}_{α} .

Each \mathcal{H}_{α} is irreducible unitary representation of *G*: indecomposable action of *G* on a Hilbert space.

Step 3. Understand \hat{G}_u = all irreducible unitary representations of *G*: unitary dual problem.

Step 4. Answers about irr reps \rightarrow answers about X.

Topic for these lectures: **Step 3** for Lie group *G*. Mackey theory (normal subgps) \rightarrow case *G* reductive.

David Vogan

Why

Fourier series Finite-diml representations Abstract harmonic analysis Quadratic forms

2. Automorphic forms

Defining automorphic forms Automorphic cohomology

Orbit method

Commuting algebras Differential operator algebras Hamiltonian G-spaces

4. Classical limit

Associated varieties Deformation quantization Howe's wavefront set

5. (\mathfrak{g}, K) -modules

Making everything noncompact

Examples so far have compact spaces, groups...

D = pos def quad forms in n vars

 $= n \times n$ real symm matrices, eigenvalues > 0

 $= GL(n,\mathbb{R})/O(n).$

(invertible $n \times n$ real matrices modulo subgroup of orthogonal matrices.

 $GL(n, \mathbb{R})$ acts on *D* by change of variables. In matrix realization, $g \cdot A = gA^tg$. Action is transitive; isotropy group at I_n is O(n).

 $C(D) = \text{cont fns on } D, \quad [\lambda(g)f](x) = f(g^{-1} \cdot x) \quad (g \in GL(n, \mathbb{R}));$ inf-diml rep of $G \iff$ action of G on D.

Seek (minimal = irreducible) $GL(n, \mathbb{R})$ -invt subspaces inside C(D), use them to "decompose" $L^2(D)$.

 (V, ρ) any rep of $G = GL(n, \mathbb{R})$; write K = O(n).

 $T \in \operatorname{Hom}_{G}(V, C(D)) \simeq \operatorname{Hom}_{K}(V, \mathbb{C}) = K \text{-fixed lin fnls on } V \ni \tau,$ $[T(v)](gK) = \tau(\rho(g^{-1}v)).$

David Vogan

1. Why representations?

Fourier series Finite-diml representations Abstract harmonic analysis

Quadratic forms

2. Automorphic forms

Defining automorphic forms Automorphic cohomology

3. Orbit method

Commuting algebras Differential operator algebras Hamiltonian *G*-spaces

4. Classical limit

Associated varieties Deformation quantization Howe's wavefront set

5. (\mathfrak{g}, K) -modules

Study *D* by representation theory $G = GL(n, \mathbb{R}), \quad K = O(n)$

D = positive definite quadratic forms,

 $\operatorname{Hom}_{G}(V, C(D)) \simeq K$ -fixed linear functionals on V. So seek to construct (irreducible) reps of G having nonzero K-fixed linear functionals.

Idea from Borel-Weil theorem for compact groups:

irr repns 🛶 secs of line bdles on flag mflds.

Complete flag in *m*-diml *E* is chain of subspaces $\mathcal{F} = \{0 = F_0 \subset F_1 \subset \cdots \subset F_m = E\}, \quad \dim F_i = i.$ Define $X(\mathbb{R}) = \text{complete flags in } \mathbb{R}^n$. Group *G* acts transitively on flags. Base point of $X(\mathbb{R})$ is std flag

 $\mathcal{F}^{\mathbf{0}} = \{\mathbb{R}^{\mathbf{0}} \subset \mathbb{R}^{\mathbf{1}} \subset \cdots \subset \mathbb{R}^{n}\}, \mathbf{G}^{\mathcal{F}^{\mathbf{0}}} = \mathbf{B},$

B group of upper triangular matrices. Hence $X(\mathbb{R}) \simeq G/B$.

Get rep of *G* on $V = C(X(\mathbb{R}))$ (functions on flags); has *K*-fixed lin fnl τ = integration over $X(\mathbb{R})$. Get embedding $T: V \hookrightarrow C(D), \quad [Tv](gK) = \int_{x \in X(\mathbb{R})} v(g \cdot x) \, dx.$

David Vogan

1. Why representations?

Fourier series Finite-diml representations Abstract harmonic analysis

Quadratic forms

2. Automorphic forms

Defining automorphic forms Automorphic cohomology

3. Orbit method

Commuting algebras Differential operator algebras Hamiltonian *G*-spaces

4. Classical limit

Associated varieties Deformation quantization Howe's wavefront set

5. (\mathfrak{g}, K) -modules

Study D by rep theory (continued)

 $G = GL(n, \mathbb{R}), \quad K = O(n), \quad B = \text{upper } \Delta$

 $D = \text{pos def quad forms} \simeq G/K$,

 $X(\mathbb{R}) =$ complete flags in $\mathbb{R}^n \simeq G/B$ Found embedding

 $T: C(X(\mathbb{R})) \hookrightarrow C(D), \quad [Tv](gK) = \int_{x \in X(\mathbb{R})} v(g \cdot x) \, dx.$ To generalize, use *G*-eqvt real line bdle \mathcal{L}_i on $X(\mathbb{R})$, $1 \le i \le n$; fiber at \mathcal{F} is F_i/F_{i-1} .

$$\mathbb{R}^{ imes}
i t \rightsquigarrow |t|^{
u} \operatorname{sgn}(t)^{\epsilon} \in \mathbb{C}^{ imes} \text{ (any } \nu \in \mathbb{C}, \, \epsilon \in \mathbb{Z}/2\mathbb{Z});$$

Similarly get *G*-eqvt cplx line bdle $\mathcal{L}^{\nu,\epsilon} = \mathcal{L}_1^{\nu_1,\epsilon_1} \otimes \cdots \otimes \mathcal{L}_n^{\nu_n,\epsilon_n}$.

 $V^{\nu,\epsilon} = C(X(\mathbb{R}), \mathcal{L}^{\nu,\epsilon}) =$ continuous sections of $\mathcal{L}^{\nu,\epsilon}$

family of reps $\rho^{\nu,\epsilon}$ of *G*: index *n* cplx numbers, *n* "parities."

This is what "all" reps of "all" *G* look like; study more!

Case all $\epsilon_i = 0$: can make sense of

$$T^{\nu} \colon V^{\nu,0} \to C(D), \quad [T^{\nu}v](gK) = \int_{x \in X(\mathbb{R})} v(g \cdot x) \, dx.$$

David Vogan

1. Why representations?

Fourier series Finite-diml representations Abstract harmonic analysis

Quadratic forms

2. Automorphic forms

Defining automorphic forms Automorphic cohomology

3. Orbit method

Commuting algebras Differential operator algebras Hamiltonian *G*-spaces

4. Classical limit

Associated varieties Deformation quantization Howe's wavefront set

5. (\mathfrak{g}, K) -modules

Study D directly

 $G = GL(n, \mathbb{R}), \quad K = O(n)$

D =positive definite quadratic forms.

Seek (minimal = irreducible) $GL(n, \mathbb{R})$ -invt subspaces inside C(D), use them to "decompose" $L^2(D)$.

If G acts on functions, how do you find invt subspaces?

Look at this in third lecture. For now, two ideas...

Can scale pos def quad forms (mult by nonzero pos real):

$$\begin{split} \mathcal{C}(D) \supset \mathcal{C}^{\lambda_1}(D) &= \text{fns homog of degree } \lambda_1 \in \mathbb{C}. \\ &= \{ f \in \mathcal{C}(D) \mid f(tx) = t_1^{\lambda} f(x) \quad (t \in \mathbb{R}^+, x \in D) \} \\ &= \{ f \in \mathcal{C}(D) \mid \Delta_1 f = \lambda_1 f \}, \end{split}$$

 $\Delta_1 = \text{Euler degree operator} = \sum_j x_j \partial / \partial x_j.$

D has *G*-invt Riemannian structure and therefore Laplace operator Δ_2 commuting with *G*.

 $C(D) \supset C^{\lambda_2}(D) = \lambda_2 \text{-eigenspace of } \Delta_2$ = { $f \in C(D) \mid \Delta_2 f = \lambda_2 f \quad (\lambda_2 \in \mathbb{C})$ }.

David Vogan

1. Why representations?

Fourier series Finite-diml representations Abstract harmonic analysis

Quadratic forms

2. Automorphic forms

Defining automorphic forms Automorphic cohomology

3. Orbit method

Commuting algebras Differential operator algebras Hamiltonian *G*-spaces

4. Classical limit

Associated varieties Deformation quantization Howe's wavefront set

5. (\mathfrak{g}, K) -modules

Study D directly (continued)

 $G = GL(n, \mathbb{R}), \quad K = O(n)$

D = positive definite quadratic forms.

Seek (minimal = irreducible) $GL(n, \mathbb{R})$ -invt subspaces.

So far: found eigenspaces of two *G*-invt diff ops (Euler degree op Δ_1 , Laplace op Δ_2

Theorem (Harish-Chandra, Helgason) Algebra \mathcal{D}^{G} of *G*-invt diff ops on *D* is a (comm) poly ring, gens $\{\Delta_1, \Delta_2, \dots, \Delta_n\}, \deg(\Delta_j) = j.$

Get nice *G*-invt spaces of (analytic) functions $C(D) \supset C^{\lambda}(D) = \text{joint eigenspace of all } \Delta_j$

$$= \{ f \in C(D) \mid \Delta_j f = \lambda_j f \quad (1 \le j \le n) \}.$$

Relation to rep-theoretic approach: had

$$T^{\nu} \colon V^{\nu,0} \to C(D), \quad [T^{\nu}v](gK) = \int_{x \in X(\mathbb{R})} v(g \cdot x) \, dx$$

Here V^{ν} = secs of bundle on flag variety $X(\mathbb{R})$; each V^{ν} maps to one eigenspace $\lambda(\nu)$.

David Vogan

1. Why representations?

Fourier series Finite-diml representations Abstract harmonic analysis

Quadratic forms

2. Automorphic forms

Defining automorphic forms Automorphic cohomology

3. Orbit method

Commuting algebras Differential operator algebras Hamiltonian *G*-spaces

4. Classical limit

Associated varieties Deformation quantization Howe's wavefront set

5. (\mathfrak{g}, K) -modules

What's so great about automorphic forms?

Arithmetic questions (about ratl solns of poly eqns) hard: lack tools from analysis and geometry).

Cure: embed arithmetic questions in real ones...

Arithmetic: cardinality of $\{(p, q) \in \mathbb{Z}^2 \mid p^2 + q^2 \leq N\}$?

Geom: area of $\{(p,q) \in \mathbb{R}^2 \mid p^2 + q^2 \leq N\}$? Ans: $N\pi$.

Conclusion: answer to arithmetic question is " $N\pi$ + small error." Error $O(N^{131/416+\epsilon})$ (Huxley 2003); conjecturally $N^{1/4+\epsilon}$.

Similarly: counting solns of arithmetic eqns mod $p^n \iff$ analytic/geometric problems over \mathbb{Q}_p .

Model example: relationship among \mathbb{Z} , \mathbb{R} , circle.

Algebraic/counting problems live on \mathbb{Z} ; analysis lives on \mathbb{R} ; geometry lives on circle \mathbb{R}/\mathbb{Z} .

Automorphic forms provide parallel interaction among arithmetic, analysis, geometry.

David Vogan

1. Why representations?

Fourier series Finite-diml representations Abstract harmonic analysis Quadratic forms

2. Automorphic forms

Defining automorphic forms Automorphic cohomology

3. Orbit method

Commuting algebras Differential operator algebras Hamiltonian *G*-spaces

4. Classical limit

Associated varieties Deformation quantization Howe's wavefront set

5. (\mathfrak{g}, K) -modules

What's so great about automorphic forms

Theorem

Write $\mathbb{A} = \mathbb{R} \times \prod_{\rho}' \mathbb{Q}_{\rho}$ (restricted product). Then \mathbb{A} is locally compact topological ring containing \mathbb{Q} as a discrete subring, and \mathbb{A}/\mathbb{Q} is compact.

Corollary

- 1. $GL(n, \mathbb{A}) = GL(n, \mathbb{R}) \times \prod_{p}' GL(n, \mathbb{Q}_p)$ is loc cpt grp.
- 2. $GL(n, \mathbb{Q})$ is a discrete subgroup.
- 3. Quotient space $GL(n, \mathbb{A})/GL(n, \mathbb{Q})$ is nearly compact.

Conclusion: the space $GL(n, \mathbb{Q}) \setminus GL(n, \mathbb{A})$ is a convenient place to relate arithmetic and analytic questions.

 $\mathcal{A}(n)$ = automorphic forms on GL(n) = functions on $GL(n, \mathbb{Q}) \setminus GL(n, \mathbb{A})$ (+ technical growth conds).

Vector space $\mathcal{A}(n)$ is a representation of $GL(n, \mathbb{A})$.

Irr constituents of $\mathcal{A}(n)$ are *automorphic representations*; carry information about arithmetic.

David Vogan

L. Why representations

Fourier series Finite-diml representations Abstract harmonic analysis Quadratic forms

2. Automorphic forms

Defining automorphic forms

Automorphic cohomology

3. Orbit method

Commuting algebras Differential operator algebras Hamiltonian G-spaces

4. Classical limit

Associated varieties Deformation quantization Howe's wavefront set

5. (\mathfrak{g}, K) -modules

What's that mean really???

 $\mathcal{K} = O(n) \times \prod_{\rho} GL(n, \mathbb{Z}_{\rho})$ is compact subgroup of $GL(n, \mathbb{A}) = GL(n, \mathbb{R}) \times \prod'_{\rho} GL(n, \mathbb{Q}_{\rho}).$

Since representation theory for compact groups is nice, can look only at "almost K-invt" automorphic forms.

 $\mathcal{A}(n)^{\kappa} = \text{ fns on } GL(n,\mathbb{Q}) \setminus GL(n,\mathbb{A})/K.$

Easy:

 $\begin{aligned} GL(n,\mathbb{Q})\backslash GL(n,\mathbb{A})/K \supset GL(n,\mathbb{Z})\backslash GL(n,\mathbb{R}/O(n) \\ &= GL(n,\mathbb{Z})\backslash D \\ &= GL(n,\mathbb{Z})\backslash \text{pos def forms} \\ &= \{(\text{rk } n \text{ lattice, } \mathbb{R}\text{-val pos def form})\}/\sim \end{aligned}$

Conclusion: automorphic form on $GL(n) \approx$ fn on isom classes of [rank *n* lattice w pos def \mathbb{R} -valued form].

More general automorphic forms:

 $GL(n, \mathbb{Z}_p) \rightsquigarrow$ open subgp $GL(n, \mathbb{Z}) \rightsquigarrow$ cong subgp Γ O(n)-invt \rightsquigarrow rep E of O(n) fns on $\Gamma \setminus D \rightsquigarrow$ secs of $\mathcal{E} \to \Gamma \setminus D$

G reductive group defined over \mathbb{Q} : replace GL(n, by G(.

David Vogan

1. Why representations?

Fourier series Finite-diml representations Abstract harmonic analysis Quadratic forms

2. Automorphic forms

Defining automorphic forms

Automorphic cohomology

3. Orbit method Commuting algebras

Differential operator algebras Hamiltonian *G*-spaces

4. Classical limit

Associated varieties Deformation quantization Howe's wavefront set

5. (\mathfrak{g}, K) -modules

What representation theory can tell you (I)

Automorphic forms $\mathcal{A}(n)$ for GL(n)...

Make "decomposition" as in Gelfand's abstract program

 $\mathcal{A}(n) = \int_{\pi \in \widehat{GL(n,\mathbb{A})}_u} V_{\pi} \otimes M(\pi,\mathcal{A}(n)).$

 V_{π} = rep space of π , M = multiplicity space.

Done by Langlands (1965).

$$\begin{aligned} & \mathsf{K}\text{-invt aut forms} = \mathcal{A}(n)^{\mathsf{K}} \\ & = \int_{\pi \in \widehat{\mathit{GL}(n,\mathbb{A})}_u} V_{\pi}^{\mathsf{K}} \otimes \mathit{M}(\pi,\mathcal{A}(n)). \end{aligned}$$

Knowing which unitary reps π can have $V_{\pi}^{K} \neq 0$ restricts *K*-invt automorphic forms.

Knowing which unitary reps of $GL(n, \mathbb{R})$ can have O(n)-fixed vectors restricts $L^2(GL(n, \mathbb{Z}) \setminus D)$.

Questions answered (for GL(n)) by DV, Tadić in 1980s.

David Vogan

1. Why representations?

Fourier series Finite-diml representations Abstract harmonic analysis Quadratic forms

2. Automorphic forms

Defining automorphic forms

Automorphic cohomology

3. Orbit method Commuting algebras Differential operator algebras Hamiltonian G-spaces

4. Classical limit

Associated varieties Deformation quantization Howe's wavefront set

5. (\mathfrak{g}, K) -modules

What representation theory can tell you (II)

Example. X compact (arithmetic) locally symmetric manifold of dim 128; dim $(H^{28}(X, \mathbb{C})) =$? Eight!

Same as H^{28} for compact globally symmetric space.

Generalize: $X = \Gamma \setminus G/K$, $H^{p}(X, \mathbb{C}) = H^{p}_{cont}(G, L^{2}(\Gamma \setminus G))$. Decomp L^{2} :

 $L^{2}(\Gamma \setminus G) = \sum_{\pi \text{ irr rep of } G} m_{\pi}(\Gamma) \mathcal{H}_{\pi}$ ($m_{\pi} = \text{dim of some aut forms}$)

Deduce $H^{p}(X, \mathbb{C}) = \sum_{\pi} m_{\pi}(\Gamma) \cdot H^{p}_{cont}(G, \mathcal{H}_{\pi}).$

General principle: group G acts on vector space V; decompose V; study pieces separately.

David Vogan

1. Why representations?

Fourier series Finite-diml representations Abstract harmonic analysis Quadratic forms

2. Automorphic orms Defining automorphic forms Automorphic cohomology

B. Orbit method Commuting algebras Differential operator algebras Hamiltonian Gespaces

4. Classical limit

Associated varieties Deformation quantization Howe's wavefront set

5. (\mathfrak{g}, K) -modules

Time for something serious

Today: orbit method for predicting what irreducible representations look like.

Can't emphasize enough how important this idea is.

David Vogan

1. Why representations?

Fourier series Finite-diml representations Abstract harmonic analysis Quadratic forms

2. Automorphic forms

Defining automorphic forms Automorphic cohomology

3. Orbit method

Commuting algebras Differential operator algebras Hamiltonian *G*-spaces

4. Classical limit

Associated varieties Deformation quantization Howe's wavefront set

5. (g, K)-modules

What the orbit method does

Gelfand's program says that to better understand problems involving Lie group *G*, should understand \hat{G}_u , the set of equiv classes of irr unitary reps π of *G*.

Such π is homomorphism of *G* into group of unitary operators on (usually ∞ -diml) Hilbert space \mathcal{H}_{π} : seems much more complicated than *G*; so what have we gained?

How should we think of an irr unitary representation?

Kirillov-Kostant idea: philosophy of coadjoint orbits...

irr unitary rep 🛶 coadjoint orbit,

orbit of *G* on dual vector space \mathfrak{g}_0^* of $\mathfrak{g}_0 = \text{Lie}(G)$.

Case of GL(n): says unitary rep is more or less a conj class of $n \times n$ matrices.

Will explain what this statement means, why it is reasonable, and how one can try to prove it.

David Vogan

1. Why representations?

Fourier series Finite-diml representations Abstract harmonic analysis Quadratic forms

2. Automorphic orms

Defining automorphic forms Automorphic cohomology

3. Orbit method

Commuting algebras Differential operator algebras Hamiltonian *G*-spaces

4. Classical limit

Associated varieties Deformation quantization Howe's wavefront set

5. (g, K)-modules

Decomposing a representation

Given: interesting operators \mathcal{A} on Hilbert space \mathcal{H} . Goal: decompose \mathcal{H} in \mathcal{A} -invt way.

Finite-dimensional case:

 V/\mathbb{C} fin-diml, $\mathcal{A} \subset \text{End}(V)$ cplx semisimple algebra. Classical (Wedderburn) structure theorem:

 W_1, \ldots, W_r list of all simple A-modules; then

 $\mathcal{A} \simeq \operatorname{End}(W_1) \times \cdots \times \operatorname{End}(W_r) \quad V \simeq m_1 W_1 + \cdots + m_r W_r.$

Positive integer m_i is *multiplicity* of W_i in *V*. Slicker version: define *multiplicity space* $M_i = \text{Hom}_{\mathcal{A}}(W_i, V)$; then $m_i = \dim M_i$, and

$$V\simeq M_1\otimes W_1+\cdots+M_r\otimes W_r.$$

Slickest version: COMMUTING ALGEBRAS...

David Vogan

1. Why representations?

Fourier series Finite-diml representations Abstract harmonic analysis Quadratic forms

2. Automorphic forms

Defining automorphic forms Automorphic cohomology

3. Orbit method

Commuting algebras

Differential operator algebras Hamiltonian *G*-spaces

4. Classical limit

Associated varieties Deformation quantization Howe's wavefront set

5. (g, K)-modules

Commuting algebras and all that

Theorem $\mathcal{A} = semisimple algebra of ops on fin-diml V as above; define <math>\mathcal{Z} = Cent_{End(V)}(\mathcal{A})$, second semisimple alg of ops on V.

1. Relation between A and Z is symmetric:

 $\mathcal{A} = \operatorname{Cent}_{\operatorname{End}(V)}(\mathcal{Z}).$

 There is a natural bijection between irr modules W_i for A and irr modules M_i for Z, given by

 $M_i \simeq \operatorname{Hom}_{\mathcal{A}}(W_i, V), \qquad W_i \simeq \operatorname{Hom}_{\mathcal{Z}}(M_i, V).$

3. $V \simeq \sum_{i} M_{i} \otimes W_{i}$ as a module for $\mathcal{A} \times \mathcal{Z}$.

Example 1: finite *G* acts left and right on $V = \mathbb{C}[G]$. Example 2: S_n and GL(E) act on $V = T^n(E)$. But those are stories for other days...

David Vogan

1. Why representations?

Fourier series Finite-diml representations Abstract harmonic analysis Quadratic forms

2. Automorphic forms

Defining automorphic forms Automorphic cohomology

3. Orbit method

Commuting algebras

Differential operator algebras Hamiltonian *G*-spaces

4. Classical limit

Associated varieties Deformation quantization Howe's wavefront set

5. (\mathfrak{g}, K) -modules

A version for Lie algebras

Just to show that commuting algebra idea can be made to work... $\mathfrak{g} \supset \mathfrak{h}$ reductive in \mathfrak{g} . $\mathcal{A} =_{def} U(\mathfrak{h}), \mathcal{Z} = Cent_{U(\mathfrak{g})}(\mathcal{A}) = U(\mathfrak{g})^{\mathfrak{h}}.$ Fix $\mathcal{V} = U(\mathfrak{g})$ -module. For (μ, E_{μ}) fin diml \mathfrak{h} -irr, set

$$M_{\mu} = \operatorname{Hom}_{\mathcal{A}}(E_{\mu}, V) = \operatorname{Hom}_{\mathfrak{h}}(E_{\mu}, V);$$
 then

 $M_{\mu} \otimes E_{\mu} \hookrightarrow V$ (all copies of μ in V);

and M_{μ} is \mathcal{Z} -module.

Theorem (Lepowsky-McCollum)

Suppose V irr for g, and action of h locally finite. Then

$$V = \sum_{\mu \text{ for } \mathfrak{h}} M_{\mu} \otimes E_{\mu}.$$

Each M_{μ} is an irreducible module for \mathcal{Z} ; and M_{μ} determines μ and V.

David Vogan

1. Why representations?

Fourier series Finite-diml representations Abstract harmonic analysis Quadratic forms

2. Automorphic orms

Defining automorphic forms Automorphic cohomology

3. Orbit method

Commuting algebras

Differential operator algebras Hamiltonian *G*-spaces

4. Classical limit

Associated varieties Deformation quantization Howe's wavefront set

5. (\mathfrak{g}, K) -modules

Infinite-dimensional representations

Need framework to study ops on inf-diml V. Dictionary

Fin-diml	\leftrightarrow	Inf-diml
finite-diml V	\leftrightarrow	$C^\infty(M)$
repn of G on V	\leftrightarrow	action of G on M
End(V)	\leftrightarrow	Diff(<i>M</i>)
$\mathcal{A} = im(\mathbb{C}[G]) \subset End(V)$	\leftrightarrow	$\mathcal{A} = im(U(\mathfrak{g})) \subset Diff(M)$
$\mathcal{Z} = Cent_{End(V)}(\mathcal{A})$	\leftrightarrow	$\mathcal{Z} = G$ -invt diff ops

Suggests: G-irr $V \subset C^{\infty}(M) \iff$ simple modules E for $\text{Diff}(M)^{G}$, $V \iff \text{Hom}_{\text{Diff}(M)^{G}}(E, C^{\infty}(M))$.

Suggests: *G* action on $C^{\infty}(M)$ irr \longleftrightarrow Diff $(M)^G = \mathbb{C}$.

Not always true, but a good place to start.

Which differential operators commute with G?

David Vogan

1. Why representations?

Fourier series Finite-diml representations Abstract harmonic analysis Quadratic forms

2. Automorphic forms

Defining automorphic forms Automorphic cohomology

3. Orbit method

Commuting algebras Differential operator algebras

Hamiltonian G-spaces

4. Classical limit

Associated varieties Deformation quantization Howe's wavefront set

5. (\mathfrak{g}, K) -modules

Differential operators and symbols

 $\operatorname{Diff}_n(M) = \operatorname{diff}$ operators of order $\leq n$.

Increasing filtration, $(Diff_{\rho})(Diff_{q}) \subset Diff_{\rho+q}$.

Theorem (Symbol calculus)

1. There is an isomorphism of graded algebras σ : gr Diff(M) \rightarrow Poly($T^*(M)$) to fns on $T^*(M)$ that are polynomial in fibers. 2.

 σ_n : Diff_n(M)/Diff_{n-1}(M) \rightarrow Polyⁿ(T^{*}(M)).

Commutator of diff ops → Poisson bracket {, } on T*(M): for D ∈ Diff_p(M), D' ∈ Diff_q(M),

 $\sigma_{p+q-1}([D,D']) = \{\sigma_p(D), \sigma_q(D')\}.$

Diff ops comm with $G \iff$ symbols Poisson-comm with \mathfrak{g} .

 \leftrightarrow : \Rightarrow is true, and \Leftarrow closer than you'd think.

Orig question which diff ops commute with *G*? becomes which functions on $T^*(M)$ Poisson-commute with g?

David Vogan

1. Why representations?

Fourier series Finite-diml representations Abstract harmonic analysis Quadratic forms

2. Automorphic forms

Defining automorphic forms Automorphic cohomology

3. Orbit method

Commuting algebras Differential operator algebras

Hamiltonian G-spaces

4. Classical limit

Associated varieties Deformation quantization Howe's wavefront set

5. (g, K)-modules

Poisson structure and Lie group actions

To find fns on $T^*(M)$ Poisson-comm w g, generalize...

Poisson manifold X has Lie bracket $\{,\}$ on $C^{\infty}(M)$, such that $\{f,\cdot\}$ is a derivation of $C^{\infty}(M)$. Poisson bracket on $T^*(M)$ is an example.

Bracket with $f \rightsquigarrow \xi_f \in \text{Vect}(X)$: $\xi_f(g) = \{f, g\}$.

Vector flds ξ_f called *Hamiltonian*; preserve $\{,\}$. Map $C^{\infty}(X) \rightarrow \text{Vect}(X), f \mapsto \xi_f$ is Lie alg homomorphism.

G acts on mfld $X \rightsquigarrow$ Lie alg hom $\mathfrak{g} \rightarrow \text{Vect}(X), \ Y \mapsto \xi_Y$.

Poisson X is Hamiltonian G-space if Lie alg action lifts

$$egin{array}{ccc} C^\infty(X,\mathbb{R}) & f_Y & & & & \
earrow & & & & \downarrow & & \
earrow & & & & \downarrow & & \
earrow & & & & & \downarrow & & \
earrow & & & & & \downarrow & & \
earrow & & & & & \downarrow & & \
earrow & & & & & \downarrow & & & \
earrow & & & & & \downarrow & & & \
earrow & & & & & \downarrow & & & \
earrow & & & & & \downarrow & & & \
earrow & & & & & \downarrow & & & \
earrow & & & & & \downarrow & & & \
earrow & & & & & \downarrow & & & \
earrow & & & & & \downarrow & & & \
earrow & & & & & \downarrow & & & \
earrow & & & & & \downarrow & & & \
earrow & & & & & \downarrow & & & \
earrow & & & & & \downarrow & & & \
earrow & & & & & \downarrow & & & \
earrow & & & & & \downarrow & & & \
earrow & & & & & \downarrow & & & & \
earrow & & & & & \downarrow & & & & \
earrow & & & & & \downarrow & & & & \
earrow & & & & & \downarrow & & & & \
earrow & & & & & \downarrow & & & & \
earrow & & & & & \downarrow & & & & \
earrow & & & & & \downarrow & & & & \
earrow & & & & & \downarrow & & & & \downarrow & & & \
earrow & & & & & \downarrow & & & \downarrow & & & \
earrow & & & & & \downarrow & & & \downarrow & & & \
earrow & & & & & \downarrow & & & \downarrow & & & \
earrow & & & & & \downarrow & & & \downarrow & & & \downarrow & & \
earrow & & & & & \downarrow & \downarrow & & \downarrow & & \downarrow & \downarrow & & \downarrow & \downarrow & \downarrow & & \downarrow & \downarrow$$

A linear map $\mathfrak{g}_0 \to C^{\infty}(X, \mathbb{R})$ is the same thing as a smooth moment map $\mu \colon X \to \mathfrak{g}_0^*$.

David Vogan

. Why enresentations

Fourier series Finite-diml representations Abstract harmonic analysis Quadratic forms

2. Automorphic forms

Defining automorphic forms Automorphic cohomology

3. Orbit method

Commuting algebras Differential operator algebras

Hamiltonian G-spaces

4. Classical limit

Associated varieties Deformation quantization Howe's wavefront set

5. (\mathfrak{g}, K) -modules

Poisson structure and invt diff operators

X Hamiltonian G-space, moment map $\mu \colon X \to \mathfrak{g}_0^*$ G-eqvt map of Poisson mflds,

> $f_{Y}(x) = \langle \mu(x), Y \rangle \qquad (Y \in \mathfrak{g}_{0}, x \in X).$ $f \in C^{\infty}(X) \text{ Poisson-commutes with } \mathfrak{g}_{0}$ $\iff \xi_{Y}f = 0, \quad (Y \in \mathfrak{g}_{0})$ $\iff f \text{ constant on } G \text{ orbits on } X.$

Only \mathbb{C} Poisson-comm with $\mathfrak{g}_0 \iff$ dense orbit on X. Proves: dense orbit on $T^*(M) \Longrightarrow$ Diff $(M)^G = \mathbb{C}$. Suggests: *G* irr on $C^{\infty}(M) \iff$ dense orbit on $T^*(M)$.

Suggests to a visionary: Irr reps of *G* correspond to homogeneous Hamiltonian *G*-spaces.

David Vogan

1. Why representations'

Fourier series Finite-diml representations Abstract harmonic analysis Quadratic forms

2. Automorphic forms

Defining automorphic forms Automorphic cohomology

3. Orbit method

Commuting algebras Differential operator algebras

Hamiltonian G-spaces

4. Classical limit

Associated varieties Deformation quantization Howe's wavefront set

5. (\mathfrak{g}, K) -modules

Method of coadjoint orbits

Recall: Hamiltonian *G*-space *X* comes with (*G*-equivariant) moment map $\mu \colon X \to \mathfrak{g}_0^*$. Kostant's theorem: homogeneous Hamiltonian *G*-space = covering of *G*-orbit on \mathfrak{g}_0^* .

Recall: commuting algebra formalism for diff operators suggests irreducible representations *compositions* homogeneous Hamiltonian *G*-spaces.

Kirillov-Kostant philosophy of coadjt orbits suggests

{irr unitary reps of G} = $\widehat{G}_u \iff \mathfrak{g}_0^*/G$. (*)

MORE PRECISELY... restrict right side to "admissible" orbits (integrality cond). Expect to find "almost all" of \hat{G}_u : enough for interesting harmonic analysis.

David Vogan

1. Why representations?

Fourier series Finite-diml representations Abstract harmonic analysis Quadratic forms

2. Automorphic forms

Defining automorphic forms Automorphic cohomology

3. Orbit method

Commuting algebras Differential operator algebras

Hamiltonian G-spaces

4. Classical limit Associated varieties Deformation quantization

5. (g, *K*)-modules

Evidence for orbit method

With the caveat about restricting to admissible orbits...

 $\widehat{G}_{u} \iff \mathfrak{g}^{*}/G.$ (*)

(\star) is true for G simply conn nilpotent (Kirillov).

(\star) is true for G type I solvable (Auslander-Kostant).

(\star) for algebraic *G* reduces to reductive *G* (Duflo).

Case of reductive *G* is still open.

Actually (*) is false for connected nonabelian reductive *G*. But there are still theorems close to (*).

Two ways to do repn theory for reductive *G*:

- 1. start with coadjt orbit, look for repn. Hard: Lecture 5.
- 2. start with repn, look for coadjt orbit. Easy: Lecture 4.

Really need to do both things at once. Having started to do mathematics in the Ford administration, I find this challenging. (Gave up chewing gum at that time.)

David Vogan

1. Why representations?

Fourier series Finite-diml representations Abstract harmonic analysis Quadratic forms

2. Automorphic forms

Defining automorphic forms Automorphic cohomology

3. Orbit method

Commuting algebras Differential operator algebras

Hamiltonian G-spaces

4. Classical limit Associated varieties Deformation quantization

5. (\mathfrak{g}, K) -modules

From g-modules to g^*

"Classical limit" direction of the orbit philosophy asks for a map (irr unitary reps) \rightsquigarrow orbits in \mathfrak{g}_0^* .

V rep of complex Lie alg \mathfrak{g} .

Assume *V* is finitely generated: exists fin diml $V_0 \subset V$ so that $U(\mathfrak{g})V_0 = V$.

Define increasing family of subspaces $V_0 \subset V_1 \subset V_2 \subset \cdots, V_m = U_m(\mathfrak{g}) V_0.$

 $V_m = \text{span of } Y_1 \cdot Y_2 \cdots Y_{m'} \cdot v_0, (v_0 \in V_0, Y_i \in \mathfrak{g}, m' \leq m).$

Action of g gives $g \times V_m \to V_{m+1}$, $(Y, v_m) \mapsto Y \cdot v_m$, and therefore a well-defined map

 $\mathfrak{g} \times [V_m/V_{m-1}] \rightarrow [V_{m+1}/V_m], \quad (Y, v_m + V_{m-1}) \mapsto Y \cdot v_m + V_m.$ Actions of different elts of \mathfrak{g} commute; so gr *V* is a graded $S(\mathfrak{g})$ -module generated by the fin-diml subspace V_0 .

Associated variety $Ass(V) = supp(gr V) \subset \mathfrak{g}^*$ (defined by commutative algebra).

David Vogan

1. Why representations?

Fourier series Finite-diml representations Abstract harmonic analysis Quadratic forms

2. Automorphic forms

Defining automorphic forms Automorphic cohomology

3. Orbit method

Commuting algebras Differential operator algebras Hamiltonian *G*-spaces

4. Classical limit

Associated varieties Deformation quantization Howe's wavefront set

. (\mathfrak{g}, K) -modules

What's good about Ass(V)

V fin gen $/U(\mathfrak{g}), V_m = U_m(\mathfrak{g})V_0$, Ass(V) = supp(gr(V)).

Commutative algebra tells you many things:

- 1. dim $V_m = p_V(m)$, is a polynomial function of *m*.
- 2. The degree *d* of p_V is dim(Ass(*V*)). Define the Gelfand-Kirillov dimension of *V* to be Dim V = d.
- 3. $I_{gr} =_{def} Ann(gr(V)) \subset S(g)$, graded ideal; then $d = \dim(S(g)/I_{gr})$ (Krull dimension).

4. $I =_{def} Ann(V) \subset U(\mathfrak{g})$ 2-sided ideal; gr $I \subset I_{gr}$, usually \neq .

Example. $\mathfrak{g} = \operatorname{span}(p, q, z), [p, q] = z, [z, p] = [z, q] = 0.$ $V = \mathbb{C}[x], \quad p \cdot f = df/dx, \quad q \cdot f = xf, z \cdot f = f.$ This is (irr) rep of \mathfrak{g} generated by $V_0 = \mathbb{C}.$

 $V_m = \text{polys in } x \text{ of degree} \le m, \quad \dim V_m = m + 1.$ gr $V \simeq \mathbb{C}[x]; p \rightsquigarrow \text{mult by } x; q, z \rightsquigarrow \text{zero; } l_{gr} = \langle q, z \rangle \subset S(\mathfrak{g}).$

 $I = \langle z - 1 \rangle, \quad U(\mathfrak{g})/I \simeq \text{Weyl algebra } \mathbb{C}[d/dx, x], \, \text{gr} \, I = \langle z \rangle.$

 $\mathsf{Ass}(V) = \{\lambda \in \mathfrak{g}^* \mid \lambda(q) = \lambda(z) = 0\} \subset \mathsf{supp}(\mathsf{gr}\, I) = \{\lambda \mid \lambda(z) = 0\}.$

David Vogan

1. Why representations?

Fourier series Finite-diml representations Abstract harmonic analysis Quadratic forms

2. Automorphic forms

Defining automorphic forms Automorphic cohomology

3. Orbit method

Commuting algebras Differential operator Igebras Hamiltonian *G*-spaces

4. Classical limit

Associated varieties Deformation quantization

5. (g, *K*)-modules

What's bad about Ass(V)

For fin gen *M* over poly alg S, $I = Ann(M) \subset S$,

Dim(M) = Dim S/I, supp M = supp(I).

For fin gen V over $U(\mathfrak{g})$, $I = \operatorname{Ann}(V)$, $I_{gr} = \operatorname{Ann}(\operatorname{gr}(V))$, $\operatorname{Dim}(V) = \operatorname{Dim} S(\mathfrak{g})/I_{gr}$, $\operatorname{Ass}(V) = \operatorname{supp}(I_{gr})$, but $\operatorname{gr}(I) \subset I_{gr}$, $\operatorname{supp}(\operatorname{gr} I) \supset \operatorname{Ass}(V)$, $\operatorname{Dim}(S(\mathfrak{g})/\operatorname{gr} I) \ge \operatorname{Dim}(V)$;

containments and inequalities generally strict. Closely related and worse: even if V related to nice rep of G,

Ass(V) rarely preserved by G. Some good news...

Proposition

V fin gen $/U(\mathfrak{g})$ by V_0 , V_0 preserved by $\mathfrak{h} \subset \mathfrak{g} \implies Ass(V) \subset (\mathfrak{g}/\mathfrak{h})^*$ stable under coadjt action of H.

I 2-sided ideal in $U(\mathfrak{g}) \Longrightarrow \operatorname{Ass}(\operatorname{gr} I)$ G-stable.

Ideal picture (correct for irr (g, K)-modules defined *infra*):

 $V = \operatorname{irr} U(\mathfrak{g})$ -module,

I = Ann(V) = 2-sided prim ideal in U(g);

Ass(I) = aff alg Hamilt. G-space,

Ass(V) = coisotropic subvar of X,

 $\dim \operatorname{Ass}(I) = 2d;$ $\dim \operatorname{Ass}(V) = d.$

David Vogan

1. Why representations?

Fourier series Finite-diml representations Abstract harmonic analysis Quadratic forms

2. Automorphic orms

Defining automorphic forms Automorphic cohomology

3. Orbit method

Commuting algebras Differential operator algebras Hamiltonian *G*-spaces

4. Classical limit

Associated varieties Deformation quantization

Howe's wavefront set

5. (g, K)-modules

Deformation quantization and wishful thinking

Here is how orbit method might work for reductive groups.

 $G(\mathbb{R})$ = real points of conn cplx reductive alg $G(\mathbb{C})$.

Start with $\mathcal{O}_0 \subset \mathfrak{g}_0^*$ coadjoint orbit for $G(\mathbb{R})$.

 $\mathcal{O}(\mathbb{C}) =_{\mathsf{def}} G(\mathbb{C}) \cdot \mathcal{O}_0, \quad J_{\mathcal{O}} = \mathsf{ideal} \mathsf{ of } \mathcal{O}(\mathbb{C}).$

 $\mathcal{O}_0 \subset \mathcal{O}(\mathbb{R})$ must be open, but may be proper subset.

Ring of functions $R_{\overline{\mathcal{O}}} = S(\mathfrak{g})/J_{\mathcal{O}}$ makes $\overline{\mathcal{O}}(\mathbb{C})$ affine alg Poisson variety, Hamiltonian *G*-space. (Better: normalize to slightly larger algebra $R(\mathcal{O}(\mathbb{C}).)$

Simplify: $\mathcal{O}(\mathbb{C})$ nilp; equiv, $J_{\mathcal{O}}$ and $R_{\overline{\mathcal{O}}}$ graded:

 $R_{\overline{\mathcal{O}}} = \sum_{p>0} R^p, \quad R^p \cdot R^q \subset R^{p+q}, \quad \{R^p, R^q\} \subset R^{p+q-1}.$

G-eqvt deformation quantization of \overline{O} is filtered algebra $D = \bigcup_{p \ge 0} D_p$, $G(\mathbb{C})$ action by alg auts, symbol calculus

$$\sigma_p \colon D_p / D_{p-1} \xrightarrow{\sim} R^p$$

David Vogan

1. Why representations?

Fourier series Finite-diml representations Abstract harmonic analysis Quadratic forms

2. Automorphic forms

Defining automorphic forms Automorphic cohomology

3. Orbit method

Commuting algebras Differential operator algebras Hamiltonian G-spaces

4. Classical limit Associated varieties Deformation quantization Howe's wavefront set

5. (g, K)-modules Case of $SL(2, \mathbb{R})$ Definition of (g, K)-modules

larish-Chandra Igebraization theorems

What deformation quantization looks like

 $R_{\mathcal{O}} = \sum_{\rho \geq 0} R^{\rho}$ graded ring of fns on cplx nilpotent coadjt orbit, D_{ρ} "corresponding" filtered algebra with $G(\mathbb{C})$ action.

Since $G(\mathbb{C})$ reductive, can choose $G(\mathbb{C})$ -stable complement C^p for D_{p-1} in D_p ; then $\sigma_p \colon C^p \xrightarrow{\sim} R^p$ must be isom, so have $G(\mathbb{C})$ -eqvt linear isoms

 $D_p = \sum_{q \leq p} C^p \xrightarrow{\sigma} \sum_{q \leq p} R^p, \qquad D \xrightarrow{\sigma} R.$

Mult in D defines via isom σ new assoc product m on R:

 $m: R \times R \to R, \quad m(r, s) = \sigma \left(\sigma^{-1}(r) \cdot \sigma^{-1}(s) \right).$ Filtration on *D* implies that for $r \in R^p, s \in R^q$,

 $m(r,s) = \sum_{k=0}^{p+q} m_k(r,s), \quad m_k(r,s) \in \mathbb{R}^{p+q-k}.$

Proposition

 $G(\mathbb{C})$ -eqvt deformation quantization of alg $R_{\mathcal{O}}$ (fns on a cplx nilp coadjt orbit) given by $G(\mathbb{C})$ -eqvt bilinear maps $m_k \colon \mathbb{R}^p \times \mathbb{R}^q \to \mathbb{R}^{p+q-k}$, subject to $m_0(r, s) = r \cdot s$, $m_1(r, s) = \{r, s\}$, and the reqt that $\sum_{k=0}^{\infty} m_k$ is assoc.

OPEN PROBLEM: PROVE DEFORMATIONS EXIST.

David Vogan

1. Why representations?

Fourier series Finite-diml representations Abstract harmonic analysis Quadratic forms

2. Automorphic forms

Defining automorphic forms Automorphic cohomology

3. Orbit method

Commuting algebras Differential operator algebras Hamiltonian *G*-spaces

4. Classical limit Associated varieties Deformation quantization Howe's wavefront set

5. (g, K)-modules

Why this is reasonable

 $P(\mathbb{C}) \subset G(\mathbb{C})$ parabolic, $M(\mathbb{C}) = G(\mathbb{C})/P(\mathbb{C})$ proj alg. $G(\mathbb{C})$ has unique open orbit $\widetilde{\mathcal{O}}(\mathbb{C}) \subset T^*M(\mathbb{C})$, which by Kostant must be finite cover of nilp coadjt orbit $\mathcal{O}(\mathbb{C})$:

 $\begin{array}{lll} \widetilde{\mathcal{O}}(\mathbb{C}) &\subset & \mathcal{T}^* \boldsymbol{M}(\mathbb{C}) \\ \downarrow \mu_{\mathcal{O}} & & \downarrow \mu \\ \mathcal{O}(\mathbb{C}) &\subset & \overline{\mathcal{O}(\mathbb{C})} &\subset & \mathfrak{g}^* \end{array}$

 $\mu_{\mathcal{O}}$ is finite cover; μ is proper surjection. Put

D =alg diff ops on $M(\mathbb{C})$, S =alg fns on $T^*M(\mathbb{C})$

 $R^{\text{norm}} = \text{alg fns on } \mathcal{O}(\mathbb{C}), \qquad R = \text{alg fns on } \overline{\mathcal{O}(\mathbb{C})}.$

- 1. Symbol calculus provides isom gr $D \xrightarrow{\sigma} S$.
- 2. Restriction provides isom $S \simeq$ alg fns on $\widetilde{\mathcal{O}}(\mathbb{C})$.
- 3. $\mu_{\mathcal{O}}^*$ isom \Leftrightarrow cover triv \Leftrightarrow μ is birational.
- 4. Inclusion exhibits *R*^{norm} as normalization of *R*.

Conclusion (Borho-Jantzen): *D* is nice deformation quantization of $\mathcal{O}(\mathbb{C}) \Leftrightarrow \mu$ birational with normal image.

Always true for GL(n).

David Vogan

1. Why representations?

Fourier series Finite-diml representations Abstract harmonic analysis Quadratic forms

2. Automorphic forms

Defining automorphic forms Automorphic cohomology

3. Orbit method

Commuting algebras Differential operator algebras Hamiltonian *G*-spaces

4. Classical limit Associated varieties Deformation quantization Howe's wavefront set

5. (g, *K*)-modules

Simple complex facts

 $G(\mathbb{C})$ cplx conn reductive alg, $\mathfrak{g} = \text{Lie}(G(\mathbb{C})$.

 $\mathfrak{h}\subset\mathfrak{b}=\mathfrak{h}+\mathfrak{n}\subset\mathfrak{g}$ Cartan and Borel subalgebras.

 $X_s \in \mathfrak{g}$ *semisimple* if following equiv conds hold:

- 1. $ad(X_s)$ diagonalizable;
- **2.** $\rho(X_s)$ diagonalizable, all $\rho: G(\mathbb{C}) \to GL(N, \mathbb{C})$ alg.
- 3. $G(\mathbb{C}) \cdot X_s$ is closed;
- 4. $G(\mathbb{C}) \cdot X_s$ meets \mathfrak{h} .
- 5. $G(\mathbb{C})^{X_s}$ is reductive.

 $X_n \in \mathfrak{g}$ *nilpotent* if following equiv conds hold:

- 1. $ad(X_n)$ nilpotent and $X_n \in [\mathfrak{g}, \mathfrak{g}]$;
- 2. $\rho(X_n)$ nilpotent, all $\rho: G(\mathbb{C}) \to GL(N, \mathbb{C})$ alg.
- 3. $G(\mathbb{C}) \cdot X_n$ closed under dilation;
- 4. $G(\mathbb{C}) \cdot X_n$ meets \mathfrak{n} .

Jordan decomposition: every $X \in \mathfrak{g}$ is uniquely $X = X_s + X_n$ with X_s semisimple, X_n nilpotent, $[X_s, X_n] = 0$.

David Vogan

1. Why representations?

Fourier series Finite-diml representations Abstract harmonic analysis Quadratic forms

2. Automorphic forms

Defining automorphic forms Automorphic cohomology

3. Orbit method

Commuting algebras Differential operator algebras Hamiltonian *G*-spaces

4. Classical limit Associated varieties Deformation guantization

Howe's wavefront set

5. (\mathfrak{g}, K) -modules

Simple complex dual facts

 $G(\mathbb{C})$ still cplx reductive, $\mathfrak{g}^* =$ complex dual space, Ad^* coadjoint action of $G(\mathbb{C})$.

There exists symm *Ad*-invt form on \mathfrak{g} ; equiv, $\mathfrak{g} \simeq \mathfrak{g}^*$, Ad \simeq Ad^{*}. Can use to transfer previous slide to \mathfrak{g}^* .

THIS IS ALWAYS A BAD IDEA: g* is different.

 $\lambda_s \in \mathfrak{g}^*$ semisimple if following equiv conds hold:

- 1. $G(\mathbb{C}) \cdot \lambda_s$ is closed;
- 2. $G(\mathbb{C})^{\lambda_s}$ is reductive.
- $\lambda_n \in \mathfrak{g}^*$ *nilpotent* if following equiv conds hold:
 - 1. $G(\mathbb{C}) \cdot \lambda_n$ closed under dilation;
 - 2. λ_n vanishes on some Borel subalgebra of g.
 - **3**. For each $p \in S(\mathfrak{g})^{G(\mathbb{C})}$, $p(\lambda_n) = p(0)$.

Jordan decomposition: every $\lambda \in \mathfrak{g}^*$ is uniquely $\lambda = \lambda_s + \lambda_n$ with λ_s semisimple, λ_n nilpotent, and $\lambda_s + t\lambda_n \in G(\mathbb{C}) \cdot \lambda$ (all $t \in \mathbb{C}^{\times}$).

PROBLEM: extend these lists of equiv conds. Find analogue of Jacobson-Morozov for nilpotents in g*.

David Vogan

1. Why representations?

Fourier series Finite-diml representations Abstract harmonic analysis Quadratic forms

2. Automorphic forms

Defining automorphic forms Automorphic cohomology

3. Orbit method

Commuting algebras Differential operator algebras Hamiltonian *G*-spaces

4. Classical limit Associated varieties Deformation quantization

Howe's wavefront set

5. (\mathfrak{g}, K) -modules

Back to associated varieties

 $\mathfrak{Z}(\mathfrak{g}) =$ center of $U(\mathfrak{g})$; at first \mathfrak{g} is arbitrary. Definition

Rep (π, V) of \mathfrak{g} is *quasisimple* if $\pi(z) = \text{scalar}$, all $z \in \mathfrak{Z}(\mathfrak{g})$. Alg homomorphism $\chi_V \colon \mathfrak{Z}(\mathfrak{g}) \to \mathbb{C}$ is the *infinitesimal character of* V. Write $J_V = \text{ker}(\chi_V)$, maximal ideal in $\mathfrak{Z}(\mathfrak{g})$.

Easy fact: any irr V is quasisimple, so $I_V = Ann(V) \supset J_V$, so gr $I_V \supset$ gr J_V .

Another easy fact: gr $\mathfrak{Z}(\mathfrak{g}) = S(\mathfrak{g})^{G(\mathbb{C})}$.

So gr J_V is graded maximal ideal in $S(\mathfrak{g})^{G(\mathbb{C})}$, so

gr $I_V \supset$ gr J_V = augmentation ideal in $S(\mathfrak{g})^{G(\mathbb{C})}$.

 $\operatorname{Ass}(V) \subset \operatorname{Ass}(I_V) \subset \operatorname{zeros} \text{ of aug ideal in } S(\mathfrak{g})^{G(\mathbb{C})}.$

Theorem

If V is fin gen quasisimple module for reductive \mathfrak{g} (in particular, if V irreducible, then Ass(V) consists of nilpotent elts of \mathfrak{g}^* .

David Vogan

1. Why representations?

Fourier series Finite-diml representations Abstract harmonic analysis Quadratic forms

2. Automorphic forms

Defining automorphic forms Automorphic cohomology

3. Orbit method

Commuting algebras Differential operator algebras Hamiltonian *G*-spaces

4. Classical limit Associated varieties Deformation quantization Howe's wavefront set

5. (\mathfrak{g}, K) -modules

Howe's wavefront set

... defined in Howe's beautiful paper, which you should read. Defined for unitary (π, \mathcal{H}_{π}) of Lie gp *G*; def shows $WF(\pi) \subset \mathfrak{g}_{0}^{*}$, closed cone preserved by coadjt action of *G*. Definition involves wavefront sets of certain distributions *T* on *G* constructed using matrix coeffs of π .

If π is quasisimple (automatic for irr unitary π , by thm of Segal in Lec 5) then such T has $(\partial(z) - \chi_{\pi}(z))T = 0$.

Distribution on right above is smooth, so wavefront set is zero. Basic smoothness thm: applying diff op D can decrease wavefront set only by zeros of $\sigma(D)$.

So WF(*T*) \subset zeros of $\sigma(z)$, all $z \in \mathfrak{Z}(\mathfrak{g})$ of pos deg:

 $\mathsf{WF}(\pi) \subset \mathsf{zeros} \text{ of augmentation ideal in } S(\mathfrak{g})^{G(\mathbb{C})}.$ Same proof: $\mathsf{WF}(\pi) \subset \mathsf{Ass}(\mathsf{Ann}(\mathcal{H}_{\pi})).$

So WF(π) gives *G*-invt subset of \mathfrak{g}_0^* sharing many props of Ass(V_{π}) $\xrightarrow{?}$ *better* classical limit than Ass(V_{π}).

But for reductive *G*, WF(π), Ass(V_{π}) computable from each other (Schmid-Vilonen); so pick by preference.

David Vogan

1. Why representations?

Fourier series Finite-diml representations Abstract harmonic analysis Quadratic forms

2. Automorphic forms

Defining automorphic forms Automorphic cohomology

3. Orbit method

Commuting algebras Differential operator algebras Hamiltonian *G*-spaces

4. Classical limit Associated varieties Deformation quantization

Howe's wavefront set

5. (g, K)-modules Case of *SL*(2, ℝ)

Definition of (g, K)-modules Harish-Chandra algebraization theorems

Principal series revisited

Recall complete flag in *m*-diml vector space *E* is

$$\mathcal{F} = \{ \mathbf{0} = F_{\mathbf{0}} \subset F_{\mathbf{1}} \subset \cdots \subset F_{m} = E \}, \quad \dim F_{i} = i.$$

Recall construction of principal series representations:

 $G = GL(n, k) \supset B$ = upper triangular matrices $X_n(k)$ = complete flags in $k^n \simeq G/B$.

Fixing *n* characters (group homomorphisms) $\xi_i: k^{\times} \to \mathbb{C}^{\times}$ defines complex line bundle \mathcal{L}^{ξ} ;

$$V^{\xi} = ext{secs of } \mathcal{L}^{\xi} \simeq \{f \colon G
ightarrow \mathbb{C} \mid f(gb) = \xi(b)^{-1}f(g) \ (b \in B)\},$$

$$\xi \begin{pmatrix} b_{11} & b_{12} & \cdots & b_{1n} \\ 0 & b_{22} & \cdots & b_{2n} \\ & & \ddots & \\ 0 & 0 & \cdots & b_{nn} \end{pmatrix} = \xi_1(b_{11})\xi_2(b_{22})\cdots\xi_n(b_{nn}).$$

principal series rep of GL(n, k) with param ξ .

Appropriate choice of topological vector space V^{ξ} (continuous, smooth, L^2 ...) depends on the problem.

$$k = \mathbb{R}$$
: character ξ is $(\nu, \epsilon) \in \mathbb{C} \times \mathbb{Z}/2\mathbb{Z}, t \mapsto |t|^{\nu} \operatorname{sgn}(t)^{\epsilon}$

David Vogan

1. Why representations?

Fourier series Finite-diml representations Abstract harmonic analysis Quadratic forms

2. Automorphic orms

Defining automorphic forms Automorphic cohomology

3. Orbit method

Commuting algebras Differential operator algebras Hamiltonian *G*-spaces

4. Classical limit

Associated varieties Deformation quantization Howe's wavefront set

5. (g, *K*)-modules

Case of $SL(2, \mathbb{R})$ Definition of (g, K)-modules

larish-Chandra algebraization theorems

Principal series for $SL(2,\mathbb{R})$

Want to understand principal series repns for $(GL(2, \mathbb{R}))$ restricted to) $SL(2, \mathbb{R})$. Helpful to use different picture

 $W^{\nu,\epsilon} = \{f : (\mathbb{R}^2 - 0) \to \mathbb{C} \mid f(tx) = |t|^{-\nu} \operatorname{sgn}(t)^{\epsilon} f(x)\},$ functions on the plane homog of degree $-(\nu, \epsilon)$.

Exercise: $V^{(\nu_1,\nu_2)(\epsilon_1,\epsilon_2)}|_{SL(2,\mathbb{R})} \simeq W^{\nu_1-\nu_2,\epsilon_1-\epsilon_2}.$

Lie algs easier than Lie gps \rightsquigarrow write $\mathfrak{sl}(2, \mathbb{R})$ action, basis $D = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \quad E = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \quad F = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix},$ $[D, E] = 2E, \quad [D, F] = -2F, \quad [E, F] = D.$

action on functions on \mathbb{R}^2 is by

$$D=-x_1\frac{\partial}{\partial x_1}+x_2\frac{\partial}{\partial x_2},\quad E=-x_2\frac{\partial}{\partial x_1},\quad F=-x_1\frac{\partial}{\partial x_2}.$$

Now want to restrict to homogeneous functions...

David Vogan

1. Why representations?

Fourier series Finite-diml representations Abstract harmonic analysis Quadratic forms

2. Automorphic orms

Defining automorphic forms Automorphic cohomology

3. Orbit method

Commuting algebras Differential operator algebras Hamiltonian *G*-spaces

4. Classical limit

Associated varieties Deformation quantization Howe's wavefront set

5. (g, K)-modules

Principal series for $SL(2, \mathbb{R})$ (continued)

Study homog fns on $\mathbb{R}^2 - 0$ by restr to $\{(\cos \theta, \sin \theta)\}$:

 $W^{\nu,\epsilon} \simeq \{w \colon S^1 \to \mathbb{C} \mid w(-s) = (-1)^{\epsilon} w(s)\}, \ f(r,\theta) = r^{-\nu} w(\theta).$ Compute Lie algebra action in polar coords using

$$\frac{\partial}{\partial x_1} = -x_2 \frac{\partial}{\partial \theta} + x_1 \frac{\partial}{\partial r}, \quad \frac{\partial}{\partial x_2} = x_1 \frac{\partial}{\partial \theta} + x_2 \frac{\partial}{\partial r},$$
$$\frac{\partial}{\partial r} = -\nu, \qquad x_1 = \cos \theta, \qquad x_2 = \sin \theta.$$

Plug into formulas on preceding slide: get

$$\rho^{\nu}(D) = 2\sin\theta\cos\theta\frac{\partial}{\partial\theta} + (-\cos^{2}\theta + \sin^{2}\theta)\nu,$$

$$\rho^{\nu}(E) = \sin^{2}\theta\frac{\partial}{\partial\theta} + (-\cos\theta\sin\theta)\nu,$$

$$\rho^{\nu}(F) = -\cos^{2}\theta\frac{\partial}{\partial\theta} + (-\cos\theta\sin\theta)\nu.$$

Hard to make sense of. Clear: family of reps analytic (actually linear) in complex parameter ν .

Big idea: see how properties change as function of ν .

David Vogan

1. Why representations?

Fourier series Finite-diml representations Abstract harmonic analysis Quadratic forms

2. Automorphic forms

Defining automorphic forms Automorphic cohomology

3. Orbit method

Commuting algebras Differential operator algebras Hamiltonian *G*-spaces

4. Classical limit

Associated varieties Deformation quantization Howe's wavefront set

5. (g, *K*)-modules

Case of $SL(2, \mathbb{R})$ Definition of (g, K)-modules Harish-Chandra

A more suitable basis

Have family $\rho^{\nu,\epsilon}$ of reps of $SL(2,\mathbb{R})$ defined on functions on S^1 of homogeneity (or parity) ϵ :

$$\rho^{\nu}(D) = 2\sin\theta\cos\theta\frac{\partial}{\partial\theta} + (-\cos^{2}\theta + \sin^{2}\theta)\nu$$
$$\rho^{\nu}(E) = \sin^{2}\theta\frac{\partial}{\partial\theta} + (-\cos\theta\sin\theta)\nu,$$
$$\rho^{\nu}(F) = -\cos^{2}\theta\frac{\partial}{\partial\theta} + (-\cos\theta\sin\theta)\nu.$$

Problem: $\{D, E, F\}$ adapted to wt vectors for diagonal Cartan subalgebra; rep $\rho^{\nu,\epsilon}$ has no such wt vectors.

But rotation matrix E - F acts simply by $\partial/\partial \theta$.

Suggests new basis of the complexified Lie algebra:

$$H = -i(E - F), \quad X = \frac{1}{2}(D + iE + iF), \quad Y = \frac{1}{2}(D - iE - iF).$$

Same commutation relations as D, E, and F

$$[H, X] = 2X, \qquad [H, Y] = -2Y, \qquad [X, Y] = H$$

but complex conjugation is different: $\overline{H} = -H$, $\overline{X} = Y$.

$$\rho^{\nu}(H) = \frac{1}{i} \frac{\partial}{\partial \theta}, \ \rho^{\nu}(X) = \frac{e^{2i\theta}}{2i} \left(\frac{\partial}{\partial \theta} + i\nu \right), \ \rho^{\nu}(Y) = \frac{-e^{-2i\theta}}{2i} \left(\frac{\partial}{\partial \theta} + i\nu \right).$$

David Vogan

1. Why representations'

Fourier series Finite-diml representations Abstract harmonic analysis Quadratic forms

2. Automorphic orms

Defining automorphic forms Automorphic cohomology

3. Orbit method

Commuting algebras Differential operator algebras Hamiltonian *G*-spaces

4. Classical limit

Associated varieties Deformation quantization Howe's wavefront set

5. (\mathfrak{g}, K) -modules

Matrices for principal series, bad news

Have family $\rho^{\nu,\epsilon}$ of reps of $SL(2,\mathbb{R})$ defined on functions on S^1 of homogeneity (or parity) ϵ :

$$\rho^{\nu}(H) = \frac{1}{i} \frac{\partial}{\partial \theta}, \ \rho^{\nu}(X) = \frac{e^{2i\theta}}{2i} \left(\frac{\partial}{\partial \theta} + i\nu \right), \ \rho^{\nu}(Y) = \frac{-e^{-2i\theta}}{2i} \left(\frac{\partial}{\partial \theta} + i\nu \right)$$

These ops act simply on basis $w_m(\cos\theta, \sin\theta) = e^{im\theta}$:

$$\rho^{\nu}(H)w_{m} = mw_{m},$$

$$\rho^{\nu}(X)w_{m} = \frac{1}{2}(m+\nu)w_{m+2},$$

$$\rho^{\nu}(Y)w_{m} = \frac{1}{2}(-m+\nu)w_{m-2}$$

Suggests reasonable function space to consider:

 $W^{\nu,\epsilon,K} = \text{fns homog of deg } (\nu,\epsilon), \text{ finite under rotation}$ = span({ $w_m \mid m \equiv \epsilon \pmod{2}$ }).

Space $W^{\nu,\epsilon,K}$ has beautiful rep of g: irr for most ν , easy submods otherwise. Not preserved by rep of $G = SL(2,\mathbb{R})$: exp $(A) \in G \rightsquigarrow \sum A^k/k!$: A^k preserves $W^{\nu,\epsilon,K}$, sum need not.

David Vogan

1. Why representations?

Fourier series Finite-diml representations Abstract harmonic analysis Quadratic forms

2. Automorphic forms

Defining automorphic forms Automorphic cohomology

3. Orbit method

Commuting algebras Differential operator algebras Hamiltonian *G*-spaces

4. Classical limit

Associated varieties Deformation quantization Howe's wavefront set

5. (g, *K*)-modules

Case of SL(2, ℝ) Definition of

(g, K)-modules Harish-Chandra algebraization theorems

Structure of principal series: good news

Original question was action of $G = SL(2, \mathbb{R})$ on

 $W^{\nu,\epsilon,\infty} = \{f \in C^{\infty}(\mathbb{R}^2 - 0) \mid f \text{ homog of deg } -(\nu,\epsilon)\}:$ what are the closed *G*-invt subspaces...?

Found nice subspace $W^{\nu,\epsilon,K}$, explicit basis, explicit action of Lie algebra \rightsquigarrow easy to describe g-invt subspaces.

Theorem (Harish-Chandra tiny)

There is a one-to-one corr closed *G*-invt subspaces $S \subset W^{\nu,\epsilon,\infty}$ and g-invt subspaces $S^K \subset W^{\nu,\epsilon,K}$. Corr is $S \rightsquigarrow$ subspace of *K*-finite vectors, and $S^K \rightsquigarrow$ its closure:

 $S^{\mathsf{K}} = \{ s \in S \mid \operatorname{dim} \operatorname{span}(\rho^{\nu,\epsilon}(SO(2))s) < \infty) \}, \quad S = \overline{S^{\mathsf{K}}}.$

Content of thm: closure carries g-invt to G-invt.

Why this isn't obvious: SO(2) acting by translation on $C^{\infty}(S^1)$. Lie alg acts by $\frac{d}{d\theta}$, so closed subspace

 $E = \{ f \in C^{\infty}(S^1) \mid f(\cos \theta, \sin \theta) = 0, \theta \in (-\pi/2, \pi/2) + 2\pi\mathbb{Z} \}$

is preserved by $\mathfrak{so}(2)$; *not* preserved by rotation.

Reason: Taylor series for in $f \in E$ doesn't converge to f.

David Vogan

1. Why representations?

Fourier series Finite-diml representations Abstract harmonic analysis Quadratic forms

2. Automorphic orms

Defining automorphic forms Automorphic cohomology

3. Orbit method

Commuting algebras Differential operator algebras Hamiltonian *G*-spaces

4. Classical limit

Associated varieties Deformation quantization Howe's wavefront set

5. (g, K)-modules

Same formalism, general G

Lesson of $SL(2, \mathbb{R})$ princ series: vecs finite under SO(2) have nice/comprehensible/meaningful Lie algebra action.

General structure theory: $G = G(\mathbb{R})$ real pts of conn reductive complex algebraic group \rightsquigarrow can embed

 $G \hookrightarrow GL(n, \mathbb{R})$, stable by transpose, G/G_0 finite. Recall *polar decomposition*:

 $GL(n, \mathbb{R}) = O(n) \times (\text{pos def symmetric matrices})$

 $= O(n) \times \exp(\text{symmetric matrices}).$

Inherited by G as Cartan decomposition for G:

 $K = O(n) \cap G$, $\mathfrak{s}_0 = \mathfrak{g}_0 \cap (\text{symm mats})$, $S = \exp(\mathfrak{s}_0)$

 $G = K \times S = K \times \exp(\mathfrak{s}_0).$

 (ρ, W) rep of G on complete loc cvx top vec W;

 $W^{\kappa} = \{ w \in W \mid \dim \operatorname{span}(\rho(K)w) < \infty \},\$ $W^{\infty} = \{ w \in W \mid G \to W, g \mapsto \rho(g)w \operatorname{smooth} \}.$

Definition. The (\mathfrak{g}, K) -module of W is $W^{K,\infty}$. It is a representation of the Lie algebra \mathfrak{g} and of the group K.

David Vogan

1. Why representations?

Fourier series Finite-diml representations Abstract harmonic analysis Quadratic forms

2. Automorphic forms

Defining automorphic forms Automorphic cohomology

3. Orbit method

Commuting algebras Differential operator algebras Hamiltonian *G*-spaces

4. Classical limit

Associated varieties Deformation quantization Howe's wavefront set

5. (g, K)-modules Case of SL(2, ℝ)

Definition of (g, K)-modules Harish-Chandra

Category of (\mathfrak{h}, L) -modules

Setting: $\mathfrak{h} \supset \mathfrak{l}$ complex Lie algebras, *L* compact Lie group acting on \mathfrak{h} by Lie alg auts Ad.

Definition

An (\mathfrak{h}, L) -module is complex vector space W endowed with reps of \mathfrak{h} and of L, subject to following conds.

- 1. Each $w \in W$ belongs to fin-diml *L*-invt W_0 , such that action of *L* on W_0 continuous (hence smooth).
- 2. Complexified differential of L action is L action.
- 3. For $k \in L, Z \in \mathfrak{h}, w \in W$, $k \cdot (Z \cdot (k^{-1} \cdot w)) = [\operatorname{Ad}(k)(Z)] \cdot w$.

Proposition

Passage to smooth K-finite vectors defines a functor

(reps of G on complete loc cvx W) $\rightarrow (\mathfrak{g}, K)$ -mods W^{K, ∞}

David Vogan

1. Why representations

Fourier series Finite-diml representations Abstract harmonic analysis Quadratic forms

2. Automorphic forms

Defining automorphic forms Automorphic cohomology

3. Orbit method

Commuting algebras Differential operator algebras Hamiltonian *G*-spaces

4. Classical limit

Associated varieties Deformation quantization Howe's wavefront set

5. (g, K)-modules

Case of $\textit{SL}(2\,,\,\mathbb{R})$

Definition of (g, K)-modules

larish-Chandra Igebraization theorems

Representations and *R*-modules

Rings and modules familiar and powerful \rightsquigarrow try to make representation categories into module categories.

Category of reps of $\mathfrak{h} =$ category of $U(\mathfrak{h})$ -modules.

Seek parallel for locally finite reps of compact *L*: $R(L) = \text{convolution alg of } \mathbb{C}\text{-valued } L\text{-finite msres on } L$ $\simeq \sum_{(\mu, E_{\nu}) \in \widehat{L}} \text{End}(E_{\mu})$ (Peter-Weyl)

Ś

 $1 \notin R(L)$ if *L* is infinite: convolution identity is delta function at $e \in L$; not *L*-finite.

$$\alpha \subset \widehat{\mathcal{L}}$$
 finite $\rightsquigarrow \mathbf{1}_{\alpha} =_{\mathsf{def}} \sum_{\mu \in \alpha} \mathsf{Id}_{\mu}.$

Elts 1_{α} are *approximate identity* in R(L): for all $r \in R(L)$ there is $\alpha(r)$ finite so $1_{\beta} \cdot r = r \cdot 1_{\beta} = r$ if $\beta \supset \alpha(r)$.

R(*L*)-module *M* is approximately unital if for all $m \in M$ there is $\alpha(m)$ finite so $1_{\beta} \cdot m = m$ if $\beta \supset \alpha(m)$.

Loc fin reps of L = approx unital R(L)-modules.

If ring *R* has approx ident $\{1_{\alpha}\}_{\alpha \in S}$, write *R*-mod for category of approx unital *R*-modules.

David Vogan

L. Why representations

Fourier series Finite-diml representations Abstract harmonic analysis Quadratic forms

2. Automorphic orms

Defining automorphic forms Automorphic cohomology

3. Orbit method

Commuting algebras Differential operator algebras Hamiltonian *G*-spaces

4. Classical limit

Associated varieties Deformation quantization Howe's wavefront set

5. (g, K)-modules Case of SL(2, R)

Definition of (g, K)-modules

larish-Chandra

Hecke algebras

Setting: $\mathfrak{h} \supset \mathfrak{l}$ complex Lie algebras, *L* compact Lie group acting on \mathfrak{h} by Lie alg auts Ad.

Definition

The Hecke algebra $R(\mathfrak{h}, L)$ is

 $R(\mathfrak{h},L)=U(\mathfrak{h})\otimes_{U(\mathfrak{l})}R(L)$

 \simeq [conv alg of *L*-finite *U*(\mathfrak{h})-valued msres on *L*]/[*U*(\mathfrak{l}) action]

 $R(\mathfrak{h}, L)$ inherits approx identity from subalg R(L).

Proposition

Category of (\mathfrak{h}, L) -modules is category $R(\mathfrak{h}, L)$ -mod of approx unital modules for Hecke algebra $R(\mathfrak{h}, L)$.

Exercise: repeat with *L* cplx alg gp (not nec reductive).

Immediate corollary: category of (\mathfrak{h}, L) -modules has projective resolutions, so derived functors...

Lecture 7: use easy change-of-ring functors to construct $(\mathfrak{g}, \mathcal{K})$ -modules.

David Vogan

. Why epresentations

Fourier series Finite-diml representations Abstract harmonic analysis Quadratic forms

2. Automorphic forms

Defining automorphic forms Automorphic cohomology

3. Orbit method

Commuting algebras Differential operator algebras Hamiltonian *G*-spaces

4. Classical limit

Associated varieties Deformation quantization Howe's wavefront set

5. (g, K)-modules Case of $SL(2, \mathbb{R})$ Definition of (g, K)-modules

larish-Chandra Igebraization theorems

Group reps and Lie algebra reps

G real reductive alg $\supset K$ max cpt, $\mathfrak{Z}(\mathfrak{g}) = \text{center of } U(\mathfrak{g})$. Definition

Rep (π, V) of *G* on complete loc cvx *V* is *quasisimple* if $\pi^{\infty}(z) = \text{scalar}$, all $z \in \mathfrak{Z}(\mathfrak{g})$. Alg hom $\chi_{\pi} : \mathfrak{Z}(\mathfrak{g}) \to \mathbb{C}$ is the *infinitesimal character of* π .

Make exactly same defn for (g, K)-modules.

Theorem (Segal, Harish-Chandra)

- 1. Any irr (\mathfrak{g}, K) -module is quasisimple.
- 2. Any irr unitary rep of G is quasisimple.
- Suppose V quasisimple rep of G. Then W → W^{K,∞} is bij [closed W ⊂ V] and [W^{K,∞} ⊂ V^{K,∞}].
- Correspondence (irr quasisimple reps of G) → (irr (g, K)-modules) is surjective. Fibers are infinitesimal equiv classes of irr quasisimple reps of G.

Non-quasisimple irr reps exist if G' noncompact (Soergel), but are "pathological;" unrelated to harmonic analysis.

Idea of proof: $G/K \simeq \mathfrak{s}_0$, vector space. Describe anything analytic on *G* by Taylor exp along *K*.

David Vogan

1. Why representations?

Fourier series Finite-diml representations Abstract harmonic analysis Quadratic forms

2. Automorphic forms

Defining automorphic forms Automorphic cohomology

3. Orbit method

Commuting algebras Differential operator algebras Hamiltonian *G*-spaces

4. Classical limit

Associated varieties Deformation quantization Howe's wavefront set

5. (g, K)-modules

Case of $SL(2, \mathbb{R})$ Definition of (g, K)-modules

Harish-Chandra algebraization theorems