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How does symmetry inform mathematics (I)?

Example.
∫ π
−π sin5(t)dt =? Zero!

Principle: group G acts on vector space V ;
decompose V using G; study each piece.
Here G = {1,−1} acts on V = functions on R;
pieces are even and odd functions.
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How does symmetry inform mathematics (II)?
Example. Temp distn T (t , θ) on hot ring governed by

∂T/∂t = c2∂2T/∂θ2, T (0, θ) = T0(θ).

Too hard for (algebraist) to solve; so look at special initial
conditions with rotational (almost) symmetry:

T (0, θ) = a0/2 + am cos(mθ).

Diff eqn is symmetric, so hope soln is symmetric:
T (t , θ)

?
= a0(t)/2 + am(t) cos(mθ).

Leads to ORDINARY differential equations
da0/dt = 0, dam/dt = −c2m2am.

These are well-suited to an algebraist:
T (t , θ) = a0/2 + ame−c2·m2t cos(mθ).

Generalize: Fourier series expansion of initial temp. . .

Principle: group G acts on vector space V ; decompose V ;
study pieces separately. Here G = rotations of ring acts
on V = functions on ring; decomposition is by frequency.
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What’s so good about sin and cos?
What’s “cos(mθ) is almost rotationally symmetric” mean?

If f (θ) any function on the circle (f (θ + 2π) = f (θ)), define
rotation of f by φ to be new function [ρ(φ)f ](θ) = f (θ − φ).
Rotationally symm. =def unchgd by rotation =def constant.

cm(θ) =def cos(mθ), sm(θ) =def sin(mθ).

[ρ(φ)cm](θ) = cm(θ − φ) = cos(mθ −mφ)

= cos(mθ) cos(mφ) + sin(mθ) sin(mφ)

= [cos(mφ)cm + sin(mφ)sm](θ).

.

Rotation of cm is a linear combination of cm and sm:
“almost rotationally symmetric.”

Similar calculation for sin shows that

ρ(φ)

(
cm
sm

)
=

(
cos(mφ) sin(mφ)
− sin(mφ) cos(mφ)

)(
cm
sm

)
.

HARD transcendental rotation EASY linear algebra!
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In which we meet the hero of our story. . .

ρ(φ)

(
cm
sm

)
=

(
cos(mφ) sin(mφ)
− sin(mφ) cos(mφ)

)(
cm
sm

)
.

Definition
A representation of a group G on a vector space V is a
group homomorphism

ρ : G→ GL(V ).

Equiv: action of G on V by linear transformations.
Equiv (if V = Cn): each g ∈ G n × n matrix ρ(g),

ρ(gh) = ρ(g)ρ(h), ρ(e) = In.

HARD questions about G, (nonlinear) actions 
EASY linear algebra!
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How does symmetry inform math (III)?
First two examples involved easy abelian G; usually
understood without groups.
Fourier series provide a nice basis
{cos(mθ), sin(mθ)} for functions on the circle S1.
What analogues are possible on the sphere S2?

G = O(3) = group of 3× 3 real orthogonal matrices,
the distance-preserving linear transformations of R3.

V = functions on S2.

Seek small subspaces of V preserved by O(3).
Example. V0 = 〈1〉 = constant functions; 1-diml.
Example. V1 = 〈x , y , z〉 = linear functions; 3-diml.
Example. V2 = 〈x2, xy , . . . , z2〉 = quad fns; 6-diml.
Problem: x2 + y2 + z2 = 1 on S2: so V2 ⊃ V0.
Example. Vm = 〈xm, . . . , zm〉 = deg m polys;(m+2

2

)
-diml.
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Polynomials and the group O(3)
S(R3)︸ ︷︷ ︸
poly fns

= V0︸︷︷︸
constants

dim=1

+ V1︸︷︷︸
linear
dim=3

+ · · ·+ Vm︸︷︷︸
degree m

dim=(m+2
2 )

+ · · ·

Want to understand restriction of these functions to

S2 = {(x , y , z) | r2 = 1} (r2 = x2 + y2 + z2).

Algebraic geometry point of view (Q for quotient):

nice fns on S2 =def Q(S2) = S(R3)/〈r2 − 1〉.

To study polynomials with finite-dimensional linear
algebra, use the increasing filtration S≤m(R3); get

Q≤m(S2) = S≤m(R3)/(r2 − 1)S≤m−2(R3).

S≤m(R3)/S≤m−1(R3) ' Vm,

Q≤m(S2)/Q≤m−1(S2) ' Vm/(r2)Vm−2.

O(3) has rep on Vm/r2Vm−2, dim =
(m+2

2

)
−
(m

2

)
= 2m + 1;

sum over m gives all (polynomial) fns on S2.
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Polynomials and the group O(3) (reprise)

S(R3)︸ ︷︷ ︸
poly fns

= V0︸︷︷︸
constants

+ V1︸︷︷︸
linear

+ · · ·+ Vm︸︷︷︸
degree m

+ · · ·

Want to understand restriction of these functions to S2.

Analysis point of view ∆ = ∂2/∂x2 + ∂2/∂y2 + ∂2/∂z2.

nice fns on S2 = initial conditions for diff eq ∆F = 0.

Vm−2

·r2

↪−−−→
�−−−−

∆
Vm; Hm =def ker(∆|Vm ).

Proposition
Hm is a complement for r2Vm−2 in Vm. Consequently

Vm/r2Vm−2 ' Hm, (O(3) rep of dim = 2m + 1).

Vm = Hm ⊕ r2Hm−2 ⊕ r4Hm−4 + · · · .

functions on S2 ' H0 ⊕ H1 ⊕ H2 ⊕ · · ·
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Fourier series on S2

Abstract representation theory: group O(3) has two
irr repns of each odd dim 2m + 1, namely

Hm = harmonic polys of deg m ' Vm/r2Vm−2,
and Hm ⊗ ε; here

ε : O(3)→ {±1} ⊂ GL(1), sgn(g) =def sgn(det(g)).

Schur’s lemma: any invariant Hermitian pairing
〈, 〉 : E × F → C

between distinct irreducible representations of a
compact group G must be zero. Consequence:

subspaces Hm ⊂ L2(S2) are orthogonal.
Stone-Weierstrass: span(Hm) dense in L2(S2).

Proposition
L2(S2) is Hilbert space sum of the 2m + 1-diml
subspaces Hm of harmonic polys of degree m.

f ∈ L2(S2)→ fm ∈ Hm, f =
∑∞

m=0 fm.

Fourier coeff fm in 2m + 1-diml O(3) rep.
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Gelfand’s abstract harmonic analysis
Topological grp G acts on X , have questions about X .

Step 1. Attach to X Hilbert space H (e.g. L2(X )).
Questions about X  questions about H.
Step 2. Find finest G-eqvt decomp H = ⊕αHα.
Questions about H questions about each Hα.
Each Hα is irreducible unitary representation of G:
indecomposable action of G on a Hilbert space.
Step 3. Understand Ĝu = all irreducible unitary
representations of G: unitary dual problem.
Step 4. Answers about irr reps answers about X .

Topic for these lectures: Step 3 for Lie group G.
Mackey theory (normal subgps) case G reductive.
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Making everything noncompact
Examples so far have compact spaces,groups. . .

D = pos def quad forms in n vars

= n × n real symm matrices, eigenvalues > 0

= GL(n,R)/O(n).

(invertible n × n real matrices modulo subgroup of
orthogonal matrices.

GL(n,R) acts on D by change of variables. In matrix
realization, g · A = gAtg. Action is transitive; isotropy
group at In is O(n).
C(D) = cont fns on D, [λ(g)f ](x) = f (g−1·x) (g ∈ GL(n,R));

inf-diml rep of G! action of G on D.

Seek (minimal = irreducible) GL(n,R)-invt subspaces
inside C(D), use them to “decompose” L2(D).

(V , ρ) any rep of G = GL(n,R); write K = O(n).

T ∈ HomG(V ,C(D)) ' HomK (V ,C) = K -fixed lin fnls on V 3 τ,
[T (v)](gK ) = τ(ρ(g−1v)).



David Vogan

1. Why
representations?
Fourier series

Finite-diml representations

Abstract harmonic analysis

Quadratic forms

2. Automorphic
forms
Defining automorphic forms

Automorphic cohomology

3. Orbit method
Commuting algebras

Differential operator
algebras

Hamiltonian G-spaces

4. Classical limit
Associated varieties

Deformation quantization

Howe’s wavefront set

5. (g, K )-modules
Case of SL(2, R)

Definition of
(g, K)-modules

Harish-Chandra
algebraization theorems

Study D by representation theory
G = GL(n,R), K = O(n)

D = positive definite quadratic forms,

HomG(V ,C(D)) ' K -fixed linear functionals on V .
So seek to construct (irreducible) reps of G having
nonzero K -fixed linear functionals.

Idea from Borel-Weil theorem for compact groups:

irr repns! secs of line bdles on flag mflds.
Complete flag in m-diml E is chain of subspaces

F = {0 = F0 ⊂ F1 ⊂ · · · ⊂ Fm = E}, dim Fi = i .
Define X (R) = complete flags in Rn. Group G acts
transitively on flags. Base point of X (R) is std flag

F0 = {R0 ⊂ R1 ⊂ · · · ⊂ Rn},GF
0

= B,
B group of upper triangular matrices. Hence X (R) ' G/B.

Get rep of G on V = C(X (R)) (functions on flags); has
K -fixed lin fnl τ = integration over X (R). Get embedding

T : V ↪→ C(D), [Tv ](gK ) =

∫
x∈X(R)

v(g · x) dx .



David Vogan

1. Why
representations?
Fourier series

Finite-diml representations

Abstract harmonic analysis

Quadratic forms

2. Automorphic
forms
Defining automorphic forms

Automorphic cohomology

3. Orbit method
Commuting algebras

Differential operator
algebras

Hamiltonian G-spaces

4. Classical limit
Associated varieties

Deformation quantization

Howe’s wavefront set

5. (g, K )-modules
Case of SL(2, R)

Definition of
(g, K)-modules

Harish-Chandra
algebraization theorems

Study D by rep theory (continued)
G = GL(n,R), K = O(n), B = upper ∆

D = pos def quad forms ' G/K ,

X (R) = complete flags in Rn ' G/B
Found embedding

T : C(X (R)) ↪→ C(D), [Tv ](gK ) =

∫
x∈X(R)

v(g · x) dx .

To generalize, use G-eqvt real line bdle Li on X (R),
1 ≤ i ≤ n; fiber at F is Fi/Fi−1.

R× 3 t  |t |ν sgn(t)ε ∈ C× (any ν ∈ C, ε ∈ Z/2Z);

Similarly get G-eqvt cplx line bdle Lν,ε = Lν1,ε1
1 ⊗ · · · ⊗ Lνn,εn

n .

V ν,ε = C(X (R),Lν,ε) = continuous sections of Lν,ε

family of reps ρν,ε of G: index n cplx numbers, n “parities.”

This is what “all” reps of “all” G look like; study more!

Case all εi = 0: can make sense of

T ν : V ν,0 → C(D), [T νv ](gK ) =

∫
x∈X(R)

v(g · x) dx .
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Study D directly
G = GL(n,R), K = O(n)

D = positive definite quadratic forms.
Seek (minimal = irreducible) GL(n,R)-invt subspaces
inside C(D), use them to “decompose” L2(D).

If G acts on functions, how do you find invt subspaces?

Look at this in third lecture. For now, two ideas. . .

Can scale pos def quad forms (mult by nonzero pos real):

C(D) ⊃ Cλ1 (D) = fns homog of degree λ1 ∈ C.
= {f ∈ C(D) | f (tx) = tλ1 f (x) (t ∈ R+, x ∈ D)}
= {f ∈ C(D) | ∆1f = λ1f},

∆1 = Euler degree operator =
∑

j xj∂/∂xj .

D has G-invt Riemannian structure and therefore Laplace
operator ∆2 commuting with G.

C(D) ⊃ Cλ2 (D) = λ2-eigenspace of ∆2

= {f ∈ C(D) | ∆2f = λ2f (λ2 ∈ C)}.
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Study D directly (continued)
G = GL(n,R), K = O(n)

D = positive definite quadratic forms.
Seek (minimal = irreducible) GL(n,R)-invt subspaces.

So far: found eigenspaces of two G-invt diff ops (Euler
degree op ∆1, Laplace op ∆2

Theorem (Harish-Chandra, Helgason)
Algebra DG of G-invt diff ops on D is a (comm) poly ring, gens
{∆1,∆2, . . . ,∆n}, deg(∆j ) = j .

Get nice G-invt spaces of (analytic) functions
C(D) ⊃ Cλ(D) = joint eigenspace of all ∆j

= {f ∈ C(D) | ∆j f = λj f (1 ≤ j ≤ n)}.
Relation to rep-theoretic approach: had

T ν : V ν,0 → C(D), [T νv ](gK ) =

∫
x∈X(R)

v(g · x) dx

Here V ν = secs of bundle on flag variety X (R); each V ν

maps to one eigenspace λ(ν).



David Vogan

1. Why
representations?
Fourier series

Finite-diml representations

Abstract harmonic analysis

Quadratic forms

2. Automorphic
forms
Defining automorphic forms

Automorphic cohomology

3. Orbit method
Commuting algebras

Differential operator
algebras

Hamiltonian G-spaces

4. Classical limit
Associated varieties

Deformation quantization

Howe’s wavefront set

5. (g, K )-modules
Case of SL(2, R)

Definition of
(g, K)-modules

Harish-Chandra
algebraization theorems

What’s so great about automorphic forms?
Arithmetic questions (about ratl solns of poly eqns) hard:
lack tools from analysis and geometry).

Cure: embed arithmetic questions in real ones. . .

Arithmetic: cardinality of {(p,q) ∈ Z2 | p2 + q2 ≤ N}?

Geom: area of {(p,q) ∈ R2 | p2 + q2 ≤ N}? Ans: Nπ.

Conclusion: answer to arithmetic question is “Nπ+ small error.”
Error O(N131/416+ε) (Huxley 2003); conjecturally N1/4+ε.

Similarly: counting solns of arithmetic eqns mod pn !
analytic/geometric problems over Qp.

Model example: relationship among Z, R, circle.

Algebraic/counting problems live on Z; analysis lives on R;
geometry lives on circle R/Z.

Automorphic forms provide parallel interaction among
arithmetic, analysis, geometry.
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What’s so great about automorphic forms

Theorem
Write A = R×

∏′
p Qp (restricted product). Then A is locally

compact topological ring containing Q as a discrete subring,
and A/Q is compact.

Corollary
1. GL(n,A) = GL(n,R)×

∏′
p GL(n,Qp) is loc cpt grp.

2. GL(n,Q) is a discrete subgroup.
3. Quotient space GL(n,A)/GL(n,Q) is nearly compact.

Conclusion: the space GL(n,Q)\GL(n,A) is a convenient
place to relate arithmetic and analytic questions.

A(n) = automorphic forms on GL(n) = functions on
GL(n,Q)\GL(n,A) (+ technical growth conds).

Vector space A(n) is a representation of GL(n,A).

Irr constituents of A(n) are automorphic representations;
carry information about arithmetic.
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What’s that mean really???
K = O(n)×

∏
p GL(n,Zp) is compact subgroup of

GL(n,A) = GL(n,R)×
∏′

p GL(n,Qp).

Since representation theory for compact groups is nice,
can look only at “almost K -invt” automorphic forms.

A(n)K = fns on GL(n,Q)\GL(n,A)/K .

Easy:
GL(n,Q)\GL(n,A)/K ⊃ GL(n,Z)\GL(n,R/O(n)

= GL(n,Z)\D
= GL(n,Z)\pos def forms

= {(rk n lattice, R-val pos def form)}/ ∼
Conclusion: automorphic form on GL(n) ≈ fn on isom
classes of [rank n lattice w pos def R-valued form].

More general automorphic forms:
GL(n,Zp) open subgp

O(n)-invt rep E of O(n)

GL(n,Z) cong subgp Γ

fns on Γ\D  secs of E → Γ\D

G reductive group defined over Q: replace GL(n, by G(.
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What representation theory can tell you (I)

Automorphic forms A(n) for GL(n). . .

Make “decomposition” as in Gelfand’s abstract program

A(n) =

∫
π∈ĜL(n,A)u

Vπ ⊗M(π,A(n)).

Vπ = rep space of π, M = multiplicity space.

Done by Langlands (1965).

K -invt aut forms = A(n)K

=

∫
π∈ĜL(n,A)u

V K
π ⊗M(π,A(n)).

Knowing which unitary reps π can have V K
π 6= 0 restricts

K -invt automorphic forms.

Knowing which unitary reps of GL(n,R) can have
O(n)-fixed vectors restricts L2(GL(n,Z)\D).

Questions answered (for GL(n)) by DV, Tadić in 1980s.
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What representation theory can tell you (II)

Example. X compact (arithmetic) locally symmetric
manifold of dim 128; dim

(
H28(X ,C)

)
=? Eight!

Same as H28 for compact globally symmetric space.

Generalize: X = Γ\G/K , Hp(X ,C) = Hp
cont(G, L2(Γ\G)). Decomp L2:

L2(Γ\G) =
∑

π irr rep of G

mπ(Γ)Hπ (mπ = dim of some aut forms)

Deduce Hp(X ,C) =
∑
π mπ(Γ) · Hp

cont(G,Hπ).

General principle: group G acts on vector space V ;
decompose V ; study pieces separately.
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Time for something serious
Today: orbit method for predicting what irreducible
representations look like.
Can’t emphasize enough how important this idea is.
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What the orbit method does

Gelfand’s program says that to better understand
problems involving Lie group G, should understand Ĝu,
the set of equiv classes of irr unitary reps π of G.

Such π is homomorphism of G into group of unitary
operators on (usually∞-diml) Hilbert space Hπ: seems
much more complicated than G; so what have we gained?

How should we think of an irr unitary representation?

Kirillov-Kostant idea: philosophy of coadjoint orbits. . .

irr unitary rep! coadjoint orbit,

orbit of G on dual vector space g∗0 of g0 = Lie(G).

Case of GL(n): says unitary rep is more or less a conj
class of n × n matrices.

Will explain what this statement means, why it is
reasonable, and how one can try to prove it.
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Decomposing a representation

Given: interesting operators A on Hilbert space H.
Goal: decompose H in A-invt way.
Finite-dimensional case:
V/C fin-diml, A ⊂ End(V ) cplx semisimple algebra.
Classical (Wedderburn) structure theorem:

W1, . . . ,Wr list of all simple A-modules; then

A ' End(W1)×· · ·×End(Wr ) V ' m1W1 + · · ·+mr Wr .

Positive integer mi is multiplicity of Wi in V .

Slicker version: define multiplicity space
Mi = HomA(Wi ,V ); then mi = dim Mi , and

V ' M1 ⊗W1 + · · ·+ Mr ⊗Wr .

Slickest version: COMMUTING ALGEBRAS. . .



David Vogan

1. Why
representations?
Fourier series

Finite-diml representations

Abstract harmonic analysis

Quadratic forms

2. Automorphic
forms
Defining automorphic forms

Automorphic cohomology

3. Orbit method
Commuting algebras

Differential operator
algebras

Hamiltonian G-spaces

4. Classical limit
Associated varieties

Deformation quantization

Howe’s wavefront set

5. (g, K )-modules
Case of SL(2, R)

Definition of
(g, K)-modules

Harish-Chandra
algebraization theorems

Commuting algebras and all that

Theorem
A = semisimple algebra of ops on fin-diml V as above;
define Z = Cent End(V )(A), second semisimple alg of ops
on V .

1. Relation between A and Z is symmetric:
A = Cent End(V )(Z).

2. There is a natural bijection between irr modules Wi
for A and irr modules Mi for Z, given by

Mi ' HomA(Wi ,V ), Wi ' HomZ(Mi ,V ).

3. V '
∑

i Mi ⊗Wi as a module for A×Z.

Example 1: finite G acts left and right on V = C[G].
Example 2: Sn and GL(E) act on V = T n(E).

But those are stories for other days. . .
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A version for Lie algebras

Just to show that commuting algebra idea can be
made to work. . . g ⊃ h reductive in g.
A =def U(h), Z = CentU(g)(A) = U(g)h.
Fix V = U(g)-module. For (µ,Eµ) fin diml h-irr, set

Mµ = HomA(Eµ,V ) = Homh(Eµ,V ); then

Mµ ⊗ Eµ ↪→ V (all copies of µ in V );

and Mµ is Z-module.
Theorem (Lepowsky-McCollum)
Suppose V irr for g, and action of h locally finite. Then

V =
∑
µ for h

Mµ ⊗ Eµ.

Each Mµ is an irreducible module for Z; and Mµ

determines µ and V.
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Infinite-dimensional representations
Need framework to study ops on inf-diml V .

Dictionary

Fin-diml ↔ Inf-diml

finite-diml V ↔ C∞(M)

repn of G on V ↔ action of G on M
End(V ) ↔ Diff(M)

A = im(C[G]) ⊂ End(V ) ↔ A = im(U(g)) ⊂ Diff(M)

Z = CentEnd(V )(A) ↔ Z = G-invt diff ops

Suggests: G-irr V ⊂ C∞(M)! simple modules E for
Diff(M)G, V ! HomDiff(M)G (E ,C∞(M)).

Suggests: G action on C∞(M) irr! Diff(M)G = C.
Not always true, but a good place to start.

Which differential operators commute with G?
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Differential operators and symbols

Diffn(M) = diff operators of order ≤ n.

Increasing filtration, (Diffp)(Diffq) ⊂ Diffp+q .

Theorem (Symbol calculus)
1. There is an isomorphism of graded algebras

σ : gr Diff(M)→ Poly(T ∗(M))

to fns on T ∗(M) that are polynomial in fibers.
2.

σn : Diffn(M)/Diffn−1(M)→ Polyn(T ∗(M)).

3. Commutator of diff ops Poisson bracket {, } on
T ∗(M): for D ∈ Diffp(M),D′ ∈ Diffq(M),

σp+q−1([D,D′]) = {σp(D), σq(D′)}.
Diff ops comm with G! symbols Poisson-comm with g.
!: =⇒ is true, and ⇐= closer than you’d think.
Orig question which diff ops commute with G? becomes
which functions on T ∗(M) Poisson-commute with g?
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Poisson structure and Lie group actions

To find fns on T ∗(M) Poisson-comm w g, generalize. . .

Poisson manifold X has Lie bracket {, } on C∞(M), such
that {f , ·} is a derivation of C∞(M). Poisson bracket on
T ∗(M) is an example.

Bracket with f  ξf ∈ Vect(X ): ξf (g) = {f ,g}.

Vector flds ξf called Hamiltonian; preserve {, }. Map
C∞(X )→ Vect(X ), f 7→ ξf is Lie alg homomorphism.

G acts on mfld X  Lie alg hom g→ Vect(X ), Y 7→ ξY .

Poisson X is Hamiltonian G-space if Lie alg action lifts

C∞(X ,R)
↗ ↓

g0 → Vect(X )

fY
↗ ↓

Y → ξY

A linear map g0 → C∞(X ,R) is the same thing as a
smooth moment map µ : X → g∗0.
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Poisson structure and invt diff operators

X Hamiltonian G-space, moment map µ : X → g∗0
G-eqvt map of Poisson mflds,

fY (x) = 〈µ(x),Y 〉 (Y ∈ g0, x ∈ X ).
f ∈ C∞(X ) Poisson-commutes with g0

⇐⇒ ξY f = 0, (Y ∈ g0)

⇐⇒ f constant on G orbits on X .

Only C Poisson-comm with g0 ⇐⇒ dense orbit on X .
Proves: dense orbit on T ∗(M) =⇒ Diff(M)G = C.
Suggests: G irr on C∞(M)⇐⇒ dense orbit on
T ∗(M).
Suggests to a visionary: Irr reps of G correspond to
homogeneous Hamiltonian G-spaces.



David Vogan

1. Why
representations?
Fourier series

Finite-diml representations

Abstract harmonic analysis

Quadratic forms

2. Automorphic
forms
Defining automorphic forms

Automorphic cohomology

3. Orbit method
Commuting algebras

Differential operator
algebras

Hamiltonian G-spaces

4. Classical limit
Associated varieties

Deformation quantization

Howe’s wavefront set

5. (g, K )-modules
Case of SL(2, R)

Definition of
(g, K)-modules

Harish-Chandra
algebraization theorems

Method of coadjoint orbits

Recall: Hamiltonian G-space X comes with
(G-equivariant) moment map µ : X → g∗0.
Kostant’s theorem: homogeneous Hamiltonian
G-space = covering of G-orbit on g∗0.
Recall: commuting algebra formalism for diff operators
suggests irreducible representations! homogeneous
Hamiltonian G-spaces.

Kirillov-Kostant philosophy of coadjt orbits suggests

{irr unitary reps of G} = Ĝu ! g∗0/G. (?)

MORE PRECISELY. . . restrict right side to “admissible”
orbits (integrality cond). Expect to find “almost all” of Ĝu:
enough for interesting harmonic analysis.
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Evidence for orbit method
With the caveat about restricting to admissible orbits. . .

Ĝu ! g∗/G. (?)

(?) is true for G simply conn nilpotent (Kirillov).

(?) is true for G type I solvable (Auslander-Kostant).

(?) for algebraic G reduces to reductive G (Duflo).

Case of reductive G is still open.
Actually (?) is false for connected nonabelian reductive G.
But there are still theorems close to (?).

Two ways to do repn theory for reductive G:
1. start with coadjt orbit, look for repn. Hard: Lecture 5.
2. start with repn, look for coadjt orbit. Easy: Lecture 4.

Really need to do both things at once. Having started
to do mathematics in the Ford administration, I find
this challenging. (Gave up chewing gum at that time.)



David Vogan

1. Why
representations?
Fourier series

Finite-diml representations

Abstract harmonic analysis

Quadratic forms

2. Automorphic
forms
Defining automorphic forms

Automorphic cohomology

3. Orbit method
Commuting algebras

Differential operator
algebras

Hamiltonian G-spaces

4. Classical limit
Associated varieties

Deformation quantization

Howe’s wavefront set

5. (g, K )-modules
Case of SL(2, R)

Definition of
(g, K)-modules

Harish-Chandra
algebraization theorems

From g-modules to g∗

“Classical limit” direction of the orbit philosophy asks for a
map (irr unitary reps) orbits in g∗0.

V rep of complex Lie alg g.

Assume V is finitely generated: exists fin diml V0 ⊂ V so
that U(g)V0 = V .

Define increasing family of subspaces
V0 ⊂ V1 ⊂ V2 ⊂ · · · , Vm = Um(g)V0.

Vm = span of Y1 · Y2 · · ·Ym′ · v0, (v0 ∈ V0,Yi ∈ g,m′ ≤ m).

Action of g gives g× Vm → Vm+1, (Y , vm) 7→ Y · vm, and
therefore a well-defined map
g× [Vm/Vm−1]→ [Vm+1/Vm], (Y , vm + Vm−1) 7→ Y · vm + Vm.

Actions of different elts of g commute; so gr V is a graded
S(g)-module generated by the fin-diml subspace V0.

Associated variety Ass(V ) = supp(gr V ) ⊂ g∗ (defined by
commutative algebra).
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What’s good about Ass(V )

V fin gen /U(g), Vm = Um(g)V0, Ass(V ) = supp(gr(V )).

Commutative algebra tells you many things:

1. dim Vm = pV (m), is a polynomial function of m.
2. The degree d of pV is dim(Ass(V )). Define the

Gelfand-Kirillov dimension of V to be Dim V = d .
3. Igr =def Ann(gr(V )) ⊂ S(g), graded ideal; then

d = dim(S(g)/Igr) (Krull dimension).
4. I =def Ann(V ) ⊂ U(g) 2-sided ideal; gr I ⊂ Igr, usually 6=.

Example. g = span(p,q, z), [p,q] = z, [z,p] = [z,q] = 0.
V = C[x ], p · f = df/dx , q · f = xf , z · f = f .

This is (irr) rep of g generated by V0 = C.
Vm = polys in x of degree ≤ m, dim Vm = m + 1.

gr V ' C[x ]; p  mult by x ; q, z  zero; Igr = 〈q, z〉 ⊂ S(g).

I = 〈z − 1〉, U(g)/I 'Weyl algebra C[d/dx , x ], gr I = 〈z〉.

Ass(V ) = {λ ∈ g∗ | λ(q) = λ(z) = 0} ⊂ supp(gr I) = {λ | λ(z) = 0}.
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What’s bad about Ass(V )
For fin gen M over poly alg S, I = Ann(M) ⊂ S,

Dim(M) = Dim S/I, supp M = supp(I).

For fin gen V over U(g), I = Ann(V ), Igr = Ann(gr(V )),
Dim(V ) = Dim S(g)/Igr, Ass(V ) = supp(Igr), but

gr(I) ⊂ Igr, supp(gr I) ⊃ Ass(V ), Dim(S(g)/ gr I) ≥ Dim(V );

containments and inequalities generally strict.
Closely related and worse: even if V related to nice rep of G,
Ass(V ) rarely preserved by G. Some good news. . .

Proposition
V fin gen /U(g) by V0, V0 preserved by h ⊂ g =⇒ Ass(V ) ⊂ (g/h)∗

stable under coadjt action of H.

I 2-sided ideal in U(g) =⇒ Ass(gr I) G-stable.

Ideal picture (correct for irr (g,K )-modules defined infra):

V = irr U(g)-module,

I = Ann(V ) = 2-sided prim ideal in U(g);

Ass(I) = aff alg Hamilt. G-space, dim Ass(I) = 2d ;

Ass(V ) = coisotropic subvar of X , dim Ass(V ) = d .
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Deformation quantization and wishful thinking
Here is how orbit method might work for reductive groups.

G(R) = real points of conn cplx reductive alg G(C).

Start with O0 ⊂ g∗0 coadjoint orbit for G(R).

O(C) =def G(C) · O0, JO = ideal of O(C).

O0 ⊂ O(R) must be open, but may be proper subset.

Ring of functions RO = S(g)/JO makes O(C) affine alg
Poisson variety, Hamiltonian G-space. (Better: normalize
to slightly larger algebra R(O(C).)

Simplify: O(C) nilp; equiv, JO and RO graded:
RO =

∑
p≥0 Rp, Rp · Rq ⊂ Rp+q , {Rp,Rq} ⊂ Rp+q−1.

G-eqvt deformation quantization of O is filtered algebra
D = ∪p≥0Dp, G(C) action by alg auts, symbol calculus

σp : Dp/Dp−1
∼−→ Rp
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What deformation quantization looks like

RO =
∑

p≥0 Rp graded ring of fns on cplx nilpotent coadjt
orbit, Dp “corresponding” filtered algebra with G(C) action.

Since G(C) reductive, can choose G(C)-stable
complement Cp for Dp−1 in Dp; then σp : Cp ∼−→ Rp must
be isom, so have G(C)-eqvt linear isoms

Dp =
∑

q≤pCp σ−→
∑

q≤pRp, D σ−→ R.

Mult in D defines via isom σ new assoc product m on R:

m : R × R → R, m(r , s) = σ
(
σ−1(r) · σ−1(s)

)
.

Filtration on D implies that for r ∈ Rp, s ∈ Rq ,

m(r , s) =
∑p+q

k=0mk (r , s), mk (r , s) ∈ Rp+q−k .

Proposition
G(C)-eqvt deformation quantization of alg RO (fns on a cplx
nilp coadjt orbit) given by G(C)-eqvt bilinear maps
mk : Rp × Rq → Rp+q−k , subject to m0(r , s) = r · s,
m1(r , s) = {r , s}, and the reqt that

∑∞
k=0 mk is assoc.

OPEN PROBLEM: PROVE DEFORMATIONS EXIST.
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Why this is reasonable
P(C) ⊂ G(C) parabolic, M(C) = G(C)/P(C) proj alg.
G(C) has unique open orbit Õ(C) ⊂ T ∗M(C), which by
Kostant must be finite cover of nilp coadjt orbit O(C):

Õ(C) ⊂ T ∗M(C)
↓ µO ↓ µ
O(C) ⊂ O(C) ⊂ g∗

µO is finite cover; µ is proper surjection. Put

D = alg diff ops on M(C), S = alg fns on T ∗M(C)

Rnorm = alg fns on O(C), R = alg fns on O(C).

1. Symbol calculus provides isom gr D σ−→ S.
2. Restriction provides isom S ' alg fns on Õ(C).
3. µ∗O isom⇔ cover triv⇔ µ is birational.
4. Inclusion exhibits Rnorm as normalization of R.

Conclusion (Borho-Jantzen): D is nice deformation
quantization of O(C)⇔ µ birational with normal image.

Always true for GL(n).
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Simple complex facts

G(C) cplx conn reductive alg, g = Lie(G(C).

h ⊂ b = h + n ⊂ g Cartan and Borel subalgebras.

Xs ∈ g semisimple if following equiv conds hold:

1. ad(Xs) diagonalizable;
2. ρ(Xs) diagonalizable, all ρ : G(C)→ GL(N,C) alg.
3. G(C) · Xs is closed;
4. G(C) · Xs meets h.
5. G(C)Xs is reductive.

Xn ∈ g nilpotent if following equiv conds hold:

1. ad(Xn) nilpotent and Xn ∈ [g, g];
2. ρ(Xn) nilpotent, all ρ : G(C)→ GL(N,C) alg.
3. G(C) · Xn closed under dilation;
4. G(C) · Xn meets n.

Jordan decomposition: every X ∈ g is uniquely
X = Xs + Xn with Xs semisimple, Xn nilpotent, [Xs,Xn] = 0.
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Simple complex dual facts
G(C) still cplx reductive, g∗ = complex dual space, Ad∗

coadjoint action of G(C).

There exists symm Ad-invt form on g; equiv, g ' g∗,
Ad ' Ad∗. Can use to transfer previous slide to g∗.
THIS IS ALWAYS A BAD IDEA: g∗ is different.
λs ∈ g∗ semisimple if following equiv conds hold:

1. G(C) · λs is closed;
2. G(C)λs is reductive.

λn ∈ g∗ nilpotent if following equiv conds hold:
1. G(C) · λn closed under dilation;
2. λn vanishes on some Borel subalgebra of g.
3. For each p ∈ S(g)G(C), p(λn) = p(0).

Jordan decomposition: every λ ∈ g∗ is uniquely
λ = λs + λn with λs semisimple, λn nilpotent, and
λs + tλn ∈ G(C) · λ (all t ∈ C×).

PROBLEM: extend these lists of equiv conds. Find
analogue of Jacobson-Morozov for nilpotents in g∗.
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Back to associated varieties

Z(g) = center of U(g); at first g is arbitrary.

Definition
Rep (π,V ) of g is quasisimple if π(z) = scalar, all z ∈ Z(g). Alg
homomorphism χV : Z(g)→ C is the infinitesimal character of
V . Write JV = ker(χV ), maximal ideal in Z(g).

Easy fact: any irr V is quasisimple, so IV = Ann(V ) ⊃ JV ,
so gr IV ⊃ gr JV .

Another easy fact: grZ(g) = S(g)G(C).

So gr JV is graded maximal ideal in S(g)G(C), so

gr IV ⊃ gr JV = augmentation ideal in S(g)G(C).

Ass(V ) ⊂ Ass(IV ) ⊂ zeros of aug ideal in S(g)G(C).

Theorem
If V is fin gen quasisimple module for reductive g (in particular,
if V irreducible, then Ass(V ) consists of nilpotent elts of g∗.
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Howe’s wavefront set
. . . defined in Howe’s beautiful paper, which you should
read. Defined for unitary (π,Hπ) of Lie gp G; def shows
WF(π) ⊂ g∗0, closed cone preserved by coadjt action of G.
Definition involves wavefront sets of certain distributions T
on G constructed using matrix coeffs of π.

If π is quasisimple (automatic for irr unitary π, by thm of
Segal in Lec 5) then such T has (∂(z)− χπ(z))T = 0.

Distribution on right above is smooth, so wavefront set is
zero. Basic smoothness thm: applying diff op D can
decrease wavefront set only by zeros of σ(D).

So WF(T ) ⊂ zeros of σ(z), all z ∈ Z(g) of pos deg:
WF(π) ⊂ zeros of augmentation ideal in S(g)G(C).

Same proof: WF(π) ⊂ Ass(Ann(Hπ)).

So WF(π) gives G-invt subset of g∗0 sharing many props of

Ass(Vπ)
?
 better classical limit than Ass(Vπ).

But for reductive G, WF(π), Ass(Vπ) computable from
each other (Schmid-Vilonen); so pick by preference.
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Principal series revisited
Recall complete flag in m-diml vector space E is

F = {0 = F0 ⊂ F1 ⊂ · · · ⊂ Fm = E}, dim Fi = i .
Recall construction of principal series representations:

G = GL(n, k) ⊃ B = upper triangular matrices

Xn(k) = complete flags in kn ' G/B.

Fixing n characters (group homomorphisms)
ξj : k× → C× defines complex line bundle Lξ;

V ξ = secs of Lξ ' {f : G→ C | f (gb) = ξ(b)−1f (g) (b ∈ B)},

ξ


b11 b12 · · · b1n
0 b22 · · · b2n

. . .
0 0 · · · bnn

 = ξ1(b11)ξ2(b22) · · · ξn(bnn).

principal series rep of GL(n, k) with param ξ.

Appropriate choice of topological vector space V ξ

(continuous, smooth, L2. . . ) depends on the problem.

k = R: character ξ is (ν, ε) ∈ C× Z/2Z, t 7→ |t |ν sgn(t)ε
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Principal series for SL(2,R)

Want to understand principal series repns for (GL(2,R)
restricted to) SL(2,R). Helpful to use different picture

W ν,ε = {f : (R2 − 0)→ C | f (tx) = |t |−ν sgn(t)εf (x)},
functions on the plane homog of degree −(ν, ε).

Exercise: V (ν1,ν2)(ε1,ε2)|SL(2,R) 'W ν1−ν2,ε1−ε2 .

Lie algs easier than Lie gps write sl(2,R) action, basis
D =

(
1 0
0 −1

)
, E =

(
0 1
0 0

)
, F =

(
0 0
1 0

)
,

[D,E ] = 2E , [D,F ] = −2F , [E ,F ] = D.

action on functions on R2 is by

D = −x1
∂

∂x1
+ x2

∂

∂x2
, E = −x2

∂

∂x1
, F = −x1

∂

∂x2
.

Now want to restrict to homogeneous functions. . .
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Principal series for SL(2,R) (continued)

Study homog fns on R2 − 0 by restr to {(cos θ, sin θ)}:

W ν,ε ' {w : S1 → C | w(−s) = (−1)εw(s)}, f (r , θ) = r−νw(θ).

Compute Lie algebra action in polar coords using
∂

∂x1
= −x2

∂

∂θ
+ x1

∂

∂r
,

∂

∂x2
= x1

∂

∂θ
+ x2

∂

∂r
,

∂

∂r
= −ν, x1 = cos θ, x2 = sin θ.

Plug into formulas on preceding slide: get

ρν(D) = 2 sin θ cos θ
∂

∂θ
+ (− cos2 θ + sin2 θ)ν,

ρν(E) = sin2 θ
∂

∂θ
+ (− cos θ sin θ)ν,

ρν(F ) = − cos2 θ
∂

∂θ
+ (− cos θ sin θ)ν.

Hard to make sense of. Clear: family of reps analytic
(actually linear) in complex parameter ν.

Big idea: see how properties change as function of ν.
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A more suitable basis
Have family ρν,ε of reps of SL(2,R) defined on functions
on S1 of homogeneity (or parity) ε:

ρν(D) = 2 sin θ cos θ
∂

∂θ
+ (− cos2 θ + sin2 θ)ν,

ρν(E) = sin2 θ
∂

∂θ
+ (− cos θ sin θ)ν,

ρν(F ) = − cos2 θ
∂

∂θ
+ (− cos θ sin θ)ν.

Problem: {D,E ,F} adapted to wt vectors for diagonal
Cartan subalgebra; rep ρν,ε has no such wt vectors.

But rotation matrix E − F acts simply by ∂/∂θ.
Suggests new basis of the complexified Lie algebra:

H = −i(E − F ), X =
1
2

(D + iE + iF ), Y =
1
2

(D − iE − iF ).

Same commutation relations as D, E , and F

[H,X ] = 2X , [H,Y ] = −2Y , [X ,Y ] = H

but complex conjugation is different: H = −H, X = Y .

ρν(H) =
1
i
∂

∂θ
, ρν(X) =

e2iθ

2i

(
∂

∂θ
+ iν
)
, ρν(Y ) =

−e−2iθ

2i

(
∂

∂θ
+ iν
)
.
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Matrices for principal series, bad news

Have family ρν,ε of reps of SL(2,R) defined on functions
on S1 of homogeneity (or parity) ε:

ρν(H) =
1
i
∂

∂θ
, ρν(X) =

e2iθ

2i

(
∂

∂θ
+ iν
)
, ρν(Y ) =

−e−2iθ

2i

(
∂

∂θ
+ iν
)
.

These ops act simply on basis wm(cos θ, sin θ) = eimθ:
ρν(H)wm = mwm,

ρν(X )wm =
1
2

(m + ν)wm+2,

ρν(Y )wm =
1
2

(−m + ν)wm−2.

Suggests reasonable function space to consider:
W ν,ε,K = fns homog of deg (ν, ε), finite under rotation

= span({wm | m ≡ ε (mod 2)}).

� Space W ν,ε,K has beautiful rep of g: irr for most ν, easy
submods otherwise. Not preserved by rep of G = SL(2,R):
exp(A) ∈ G  

∑
Ak/k !: Ak preserves W ν,ε,K , sum need not.
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Structure of principal series: good news
Original question was action of G = SL(2,R) on

W ν,ε,∞ = {f ∈ C∞(R2 − 0) | f homog of deg −(ν, ε)} :

what are the closed G-invt subspaces. . . ?

Found nice subspace W ν,ε,K , explicit basis, explicit action
of Lie algebra easy to describe g–invt subspaces.

Theorem (Harish-Chandra tiny)
There is a one-to-one corr closed G-invt subspaces
S ⊂W ν,ε,∞ and g-invt subspaces SK ⊂W ν,ε,K . Corr is S  
subspace of K -finite vectors, and SK  its closure:

SK = {s ∈ S | dim span(ρν,ε(SO(2))s) <∞)}, S = SK .

Content of thm: closure carries g-invt to G-invt.

Why this isn’t obvious: SO(2) acting by translation on C∞(S1).
Lie alg acts by d

dθ , so closed subspace

E = {f ∈ C∞(S1) | f (cos θ, sin θ) = 0, θ ∈ (−π/2, π/2) + 2πZ}

is preserved by so(2); not preserved by rotation.

Reason: Taylor series for in f ∈ E doesn’t converge to f .
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Same formalism, general G

Lesson of SL(2,R) princ series: vecs finite under SO(2)
have nice/comprehensible/meaningful Lie algebra action.

General structure theory: G = G(R) real pts of conn
reductive complex algebraic group can embed

G ↪→ GL(n,R), stable by transpose, G/G0 finite.
Recall polar decomposition:

GL(n,R) = O(n)× (pos def symmetric matrices)

= O(n)× exp(symmetric matrices).

Inherited by G as Cartan decomposition for G:
K = O(n) ∩G, s0 = g0 ∩ (symm mats), S = exp(s0)

G = K × S = K × exp(s0).

(ρ,W ) rep of G on complete loc cvx top vec W ;
W K = {w ∈ W | dim span(ρ(K )w) <∞},
W∞ = {w ∈ W | G→ W , g 7→ ρ(g)w smooth}.

Definition. The (g,K )-module of W is W K ,∞. It is a
representation of the Lie algebra g and of the group K .
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Category of (h,L)-modules
Setting: h ⊃ l complex Lie algebras, L compact Lie group
acting on h by Lie alg auts Ad.

Definition
An (h,L)-module is complex vector space W endowed with
reps of h and of L, subject to following conds.

1. Each w ∈W belongs to fin-diml L-invt W0, such that
action of L on W0 continuous (hence smooth).

2. Complexified differential of L action is l action.
3. For k ∈ L, Z ∈ h, w ∈W ,

k · (Z · (k−1 · w)) = [Ad(k)(Z )] · w .

Proposition
Passage to smooth K -finite vectors defines a functor

(reps of G on complete loc cvx W)→ (g,K )-mods W K ,∞

.
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Representations and R-modules
Rings and modules familiar and powerful try to make
representation categories into module categories.

Category of reps of h = category of U(h)-modules.

Seek parallel for locally finite reps of compact L:
R(L) = convolution alg of C-valued L-finite msres on L

'
∑

(µ,Eµ)∈L̂ End(Eµ) (Peter-Weyl)

� 1 /∈ R(L) if L is infinite: convolution identity is delta
function at e ∈ L; not L-finite.

α ⊂ L̂ finite 1α =def
∑
µ∈α Idµ.

Elts 1α are approximate identity in R(L): for all r ∈ R(L)
there is α(r) finite so 1β · r = r · 1β = r if β ⊃ α(r).

R(L)-module M is approximately unital if for all m ∈ M
there is α(m) finite so 1β ·m = m if β ⊃ α(m).

Loc fin reps of L = approx unital R(L)-modules.

If ring R has approx ident {1α}α∈S, write R -mod for
category of approx unital R-modules.
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Hecke algebras
Setting: h ⊃ l complex Lie algebras, L compact Lie group
acting on h by Lie alg auts Ad.

Definition
The Hecke algebra R(h,L) is

R(h, L) = U(h)⊗U(l) R(L)

' [conv alg of L-finite U(h)-valued msres on L]/[U(l) action]

R(h,L) inherits approx identity from subalg R(L).

Proposition
Category of (h,L)-modules is category R(h,L) -mod of approx
unital modules for Hecke algebra R(h,L).

Exercise: repeat with L cplx alg gp (not nec reductive).

Immediate corollary: category of (h,L)-modules has
projective resolutions, so derived functors. . .

Lecture 7: use easy change-of-ring functors to construct
(g,K )-modules.
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Group reps and Lie algebra reps
G real reductive alg ⊃ K max cpt, Z(g) = center of U(g).

Definition
Rep (π,V ) of G on complete loc cvx V is quasisimple if
π∞(z) = scalar, all z ∈ Z(g). Alg hom χπ : Z(g)→ C is the
infinitesimal character of π.

Make exactly same defn for (g,K )-modules.

Theorem (Segal, Harish-Chandra)
1. Any irr (g,K )-module is quasisimple.
2. Any irr unitary rep of G is quasisimple.
3. Suppose V quasisimple rep of G. Then W 7→W K ,∞

is bij [closed W ⊂ V] and [W K ,∞ ⊂ V K ,∞].
4. Correspondence (irr quasisimple reps of G) (irr

(g,K )-modules) is surjective. Fibers are infinitesimal
equiv classes of irr quasisimple reps of G.

Non-quasisimple irr reps exist if G′ noncompact (Soergel),
but are “pathological;” unrelated to harmonic analysis.

Idea of proof: G/K ' s0, vector space. Describe anything
analytic on G by Taylor exp along K .
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