
Bottom layer

Vogan

Introduction

SO(4, 1)

Induction
Unitary representations and bottom layer

K -types

David Vogan

Rutgers Mini-workshop on
the Unitary Dual Problem

Hill Center, Rutgers
January 29–30, 2030



Bottom layer

Vogan

Introduction

SO(4, 1)

Induction

Outline

Introduction

SO(4,1)

All kinds of induction



Bottom layer

Vogan

Introduction

SO(4, 1)

Induction

What’s the unitary dual look like?

G real reductive Lie ⊃ K maximal compact.
Assume G = real pts of conn reductive cplx algebraic group.

Want to describe Ĝu = unitary dual: equiv classes of
irreducible unitary representations. This is hard.
This is hard.

Harish-Chandra: larger set Ĝa = adm dual easier.

HC, Langlands: Ĝa parametrized by countable union
of (ratl vec space)⊗QC/(finite group)

Describing Ĝu means describing subset of each
EQ ⊗Q C/F .
Admissible rep X is unitary if

1. admits non-zero G-invt Hermitian form 〈, 〉X , and
2. form 〈, 〉X is definite.
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What’s the unitary dual look like II?
Ĝa !

⋃
δ

[E(δ)Q ⊗Q C]/F (δ).

Admissible repn X (δ, ν) is unitary if and only if
(1) Hermitian, and (2) form is definite.
Knapp-Zuckerman: cond (1)! “real points” of Ĝa:

X (δ, ν) Herm ⇐⇒ ∃f ∈ F (δ), −ν = f · ν.
Easy unitary: f = 1, ν pure imag, X (δ, ν) tempered.
Fairly easy unitary: if ν Herm, nonzero imag part,
then X (δ, ν) unitarily induced from proper P = LN.
Imag ν: all unitary. Nonreal ν: unitarity settled on smaller L.

Hard unitary: ν ∈ E(δ)R real, f · ν = −ν.
Theorem. For each δ, hard unitary ν are compact
rational polyhedron Cu(δ) ⊂ E(δ)R.
What atlas does: ν ∈ E(δ)Q is X (δ, ν) unitary?
This oracle determines any one Cu(δ) by a finite calculation.
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Subject of this talk

Unitary dual determined by knowledge of countably
many compact rational polyhedra Cu(δ) ⊂ E(δ)R

Each Cu(δ) computable in finite time unitary dual
of one G computable in countably infinite time.
This is good but not good enough.
Subject today: find conditions for

Cu(δ) = Cu(δ
′), Cu(G, δ) = Cu(L, δL)

with L proper reductive subgroup.
Know since 1980s: there are enough such equalities
to make Ĝu computation finite.
Goal: sharpen to make computation feasible.
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What’s that look like?
G = SO(4,1); Ĝu ⊂ Ĝa found 1962 by Takeshi Hirai.

δ classical atlas EQ Cu(δ)

(n + 3/2,m + 1/2)
n ≥ m ≥ 0 disc ser (0, [n + 3/2,m + 1/2]) 0 0

dim 2n + 1
O(3) rep (n ≥ 1) princ ser (1, [n + 1/2,±1/2]) Q [− 1

2 ,
1
2 ]

dim 1
O(3) rep

spherical
princ ser (1, [1/2,±1/2]) Q [− 3

2 ,
3
2 ]

Cu(δ) = [− 1
2 ,

1
2 ]! Bargmann comp ser of SO(2)× SO(2, 1).

atlas> set G=SO(4,1)
atlas> set q=parameter(KGB(G)[1],[2+1/2,1/2],[0,1/2])

{n=2, nu=1/2}
atlas> is_unitary(q)
Value: true
atlas> set r=parameter(KGB(G)[1],[2+1/2,1/2],[0,1])

{n=2, nu=1}
atlas> is_unitary(r)
Value: false
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Where’s the bottom layer?
0 1 2 3 4 5 6q q q q q q q q

Restriction to O(2) of SO(2, 1) princ series
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dd
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Restriction to K = O(4) of SO(4, 1) princ series

�� ��

�� ��

hwts (2, 0), (2, 1), (2, 2)

Bottom layer for this princ series is three O(4) reps.

Mults and sigs match O(2) reps in SO(2,1) princ series.

I interchanged x and y axes in the diagram above. Fixing that in

picture is probably beyond my skills, certainly beyond my
pa

tie
nc

e
.
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Signatures on the bottom layer
0 1 2 3 4 5 6
+ − + − − − −

Signature of SO(2, 1) sph princ series, ν = 3

qq0

q1

2

qq
q

3

qq4

q5

+

−

−

−

−

+

+

+

+

−

−

−

Signature of SO(4, 1) princ series δ = 5-diml, ν = 3

�� ��

�� ��

hwts (2, 0), (2, 1), (2, 2)

sig on higher layers
unrelated to bottom layer

sig in sph series for SO(2, 1) neg on 1, ν > 1/2.
Means 1 is nonunitarity certificate.

 sig in δ = 5 series for SO(4, 1) neg on (2, 1), ν > 1/2.
Means (2, 1) is nonunitarity certificate.



Bottom layer

Vogan

Introduction

SO(4, 1)

Induction

Unitary dual of SO(4,1)
Know in advance about SO(2,1) spherical series J(ν):

1. Cu(spherical) = [−1/2,1/2].
2. Lowest O(2)-type of any J(ν) is µ(0), form pos there.
3. If |ν| > 1/2, form neg on µ(1); nonunitarity certif.

Deduce about SO(4,1) princ series J(n, ν):
1. Cu(n) ⊃ [−1/2,1/2].
2. Lowest O(4)-type of J(n, ν) is µ(n,0), form pos there.
3. If |ν| > 1/2, J(n, ν) form neg on µ(n,1)

if (n,1) is highest wt for O(4);
that is, if n ≥ 1: nonunitarity certif.

Remains to calculate spherical comp series Cu(0):
atlas> set G=SO(4,1) (value of ν)
atlas> set p=parameter(KGB(G)[1],[1/2,1/2],[0,2])
atlas> is_unitary(p)
Value: false (so ν = 2 excluded from Cu(0))
atlas> is_unitary(p*(3/4))
Value: true (so ν = 3/2 included in Cu(0))
atlas> is_unitary(p*(1/2))
Value: true (so Cu(0) = [−3/2, 3/2]).

Calculation gives nonunitarity certif µ(1,0) for |ν| > 3/2.
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Induction, schminduction
Gelfand, Mackey and a host of glamorous costars invented
parabolic induction.
R-alg P ⊂ G called parabolic if G(C)/P(C) projective.

Then P = LU with U conn unip, L reductive; any
πL ∈ L̂a extends (triv on U) to P, defines finite length

πG = IndG
P (πL) .

Ind : unitary→ unitary, depends on L, not P.

Relates nicely to maximal compact K :(
IndG

P (πL)
)∣∣∣

K
= IndK

P∩K (πL|P∩K ).

But this is not general enough.
Zuckerman and a host of glamorous costars invented
cohomological parabolic induction.
Write g for cplx Lie alg of G, θ = Cartan involution.
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