Unitary representations and bottom layer *K*-types

David Vogan

Rutgers Mini-workshop on the Unitary Dual Problem Hill Center, Rutgers January 29–30, 2030

nduction

Introduction

SO(4,1)

All kinds of induction

G real reductive Lie $\supset K$ maximal compact.

Assume G = real pts of conn reductive cplx algebraic group.

Want to describe \widehat{G}_u = unitary dual: equiv classes of irreducible unitary representations. This is hard. This is hard.

Harish-Chandra: larger set \hat{G}_a = adm dual easier.

HC, Langlands: \widehat{G}_a parametrized by countable union of (ratl vec space) $\otimes_{\mathbb{Q}}\mathbb{C}/(\text{finite group})$

Describing \widehat{G}_u means describing subset of each $E_{\mathbb{Q}} \otimes_{\mathbb{Q}} \mathbb{C}/F$.

Admissible rep X is unitary if

- 1. admits non-zero *G*-invt Hermitian form \langle , \rangle_X , and
- 2. form \langle , \rangle_X is definite.

What's the unitary dual look like II?

$$\widehat{G}_a \leftrightsquigarrow \bigcup_{\delta} [E(\delta)_{\mathbb{Q}} \otimes_{\mathbb{Q}} \mathbb{C}]/F(\delta).$$

Admissible repn $X(\delta, \nu)$ is unitary if and only if (1) Hermitian, and (2) form is definite.

Knapp-Zuckerman: cond (1) \leftrightarrow "real points" of \widehat{G}_a :

$$X(\delta, \nu)$$
 Herm $\iff \exists f \in F(\delta), \quad -\overline{\nu} = f \cdot \nu.$

Easy unitary: f = 1, ν pure imag, $X(\delta, \nu)$ tempered.

Fairly easy unitary: if ν Herm, nonzero imag part, then $X(\delta, \nu)$ unitarily induced from proper P = LN.

Imag ν : all unitary. Nonreal ν : unitarity settled on smaller L.

Hard unitary: $\nu \in E(\delta)_{\mathbb{R}}$ real, $f \cdot \nu = -\nu$.

Theorem. For each δ , hard unitary ν are compact rational polyhedron $C_u(\delta) \subset E(\delta)_{\mathbb{R}}$.

What atlas does: $\nu \in E(\delta)_{\mathbb{Q}} \leadsto is X(\delta, \nu)$ unitary?

This oracle determines any one $C_u(\delta)$ by a finite calculation.

Bottom layer

Vogan

Introduction

Induction

Unitary dual determined by knowledge of countably many compact rational polyhedra $C_u(\delta) \subset E(\delta)_{\mathbb{R}}$

Each $C_u(\delta)$ computable in finite time \leadsto unitary dual of one G computable in countably infinite time.

This is good but not good enough.

Subject today: find conditions for

$$C_{U}(\delta) = C_{U}(\delta'), \qquad C_{U}(G,\delta) = C_{U}(L,\delta_{L})$$

with *L* proper reductive subgroup.

Know since 1980s: there are enough such equalities to make \widehat{G}_u computation finite.

Goal: sharpen to make computation feasible.

$$G = SO(4,1); \quad \widehat{G}_u \subset \widehat{G}_a \quad \text{found 1962 by Takeshi Hirai.}$$

```
classical
           δ
                                                   atlas
                                                                         E_{\mathbb{O}}
                                                                                C_{u}(\delta)
(n+3/2, m+1/2)
                           disc ser (0, [n+3/2, m+1/2])
                                                                          0
                                                                                   0
    n > m > 0
    \dim 2n + 1
                           princ ser (1, [n+1/2, \pm 1/2]) \mathbb{Q} [-\frac{1}{2}, \frac{1}{2}]
 O(3) \text{ rep } (n \ge 1)
        dim 1
                           spherical
                                              (1,[1/2,\pm 1/2]) \mathbb{Q} [-\frac{3}{2},\frac{3}{2}]
      O(3) rep
                           princ ser
```

```
C_u(\delta) = [-\frac{1}{2}, \frac{1}{2}] \iff Bargmann comp ser of SO(2) \times SO(2, 1).
```

```
atlas> set G=SO(4,1)
atlas> set q=parameter(KGB(G)[1],[2+1/2,1/2],[0,1/2])
          {n=2, nu=1/2}
atlas> is_unitary(q)
Value: true
atlas> set r=parameter(KGB(G)[1],[2+1/2,1/2],[0,1])
          {n=2, nu=1}
atlas> is_unitary(r)
Value: false
```

Vogan

Introduction SO(4, 1)

Induction

6

Restriction to O(2) of SO(2, 1) princ series

5 (•)

4 • (•)

3 • • •

2 💿 hwts (2,0), (2,1), (2,2) **(0)**

Restriction to K = O(4) of SO(4, 1) princ series Bottom layer for this princ series is three O(4) reps. Mults and sigs match O(2) reps in SO(2,1) princ series.

I interchanged x and y axes in the diagram above. Fixing that in

picture is probably beyond my skills, certainly beyond my

Bottom layer

Vogan

SO(4, 1)

Signatures on the bottom layer

Signature of SO(2,1) sph princ series, $\nu=3$

Signature of SO(4,1) princ series $\delta=5$ -diml, $\nu=3$ sig in sph series for SO(2,1) neg on 1, $\nu>1/2$.

Means 1 is nonunitarity certificate.

```
ightharpoonup  sig in \delta = 5 series for SO(4,1) neg on (2,1), \nu > 1/2. Means (2,1) is nonunitarity certificate.
```

Bottom layer

Vogan

Introductio

SO(4, 1)

nduction

Know in advance about SO(2,1) spherical series $J(\nu)$:

- 1. $C_u(spherical) = [-1/2, 1/2].$
- 2. Lowest O(2)-type of any $J(\nu)$ is $\mu(0)$, form pos there.
- 3. If $|\nu| > 1/2$, form neg on $\mu(1)$; nonunitarity certif.

Deduce about SO(4,1) princ series $J(n,\nu)$:

- 1. $C_u(n) \supset [-1/2, 1/2]$.
- 2. Lowest O(4)-type of $J(n, \nu)$ is $\mu(n, 0)$, form pos there.
- 3. If $|\nu| > 1/2$, $J(n, \nu)$ form neg on $\mu(n, 1)$ if (n, 1) is highest wt for O(4);

that is, if $n \ge 1$: nonunitarity certif.

Remains to calculate spherical comp series $C_u(0)$:

```
atlas> set G=SO(4,1) (value of \nu) atlas> set p=parameter(KGB(G)[1],[1/2,1/2],[0,2]) atlas> is_unitary(p)  
Value: false (so \nu=2 excluded from C_u(0)) atlas> is_unitary(p*(3/4))  
Value: true (so \nu=3/2 included in C_u(0)) atlas> is_unitary(p*(1/2))  
Value: true (so C_u(0)=[-3/2,3/2]).
```

Calculation gives nonunitarity certif $\mu(1,0)$ for $|\nu| > 3/2$.

Vogan

Introduction SO(4, 1)

nduction

Gelfand, Mackey and a host of glamorous costars invented parabolic induction.

 \mathbb{R} -alg $P \subset G$ called parabolic if $G(\mathbb{C})/P(\mathbb{C})$ projective.

Then P = LU with U conn unip, L reductive; any $\pi_L \in \widehat{L}_a$ extends (triv on U) to P, defines finite length

$$\pi_{G} = \operatorname{Ind}_{P}^{G}(\pi_{L}).$$

Ind: unitary \rightarrow unitary, depends on L, not P.

Relates nicely to maximal compact K:

$$\left(\operatorname{Ind}_{P}^{G}(\pi_{L})\right)\Big|_{K}=\operatorname{Ind}_{P\cap K}^{K}(\pi_{L}|_{P\cap K}).$$

But this is not general enough.

Zuckerman and a host of glamorous costars invented cohomological parabolic induction.

Write \mathfrak{g} for cplx Lie alg of G, $\theta = Cartan involution.$