Unitary representations and bottom layer K-types

David Vogan

Rutgers Mini-workshop on the Unitary Dual Problem Hill Center, Rutgers January 29-30, 2030

Outline

Introduction

$S O(4,1)$

All kinds of induction

What's the unitary dual look like?

G real reductive Lie $\supset K$ maximal compact. Assume $G=$ real pts of conn reductive cplx algebraic group.
Want to describe $\widehat{G}_{u}=$ unitary dual: equiv classes of irreducible unitary representations. This is hard.
This is hard.
Harish-Chandra: larger set $\widehat{G}_{a}=$ adm dual easier.
HC, Langlands: \widehat{G}_{a} parametrized by countable union of (ratl vec space) $\otimes_{\mathbb{Q}} \mathbb{C} /$ (finite group)
Describing \widehat{G}_{u} means describing subset of each $E_{\mathbb{Q}} \otimes_{\mathbb{Q}} \mathbb{C} / F$.
Admissible rep X is unitary if

1. admits non-zero G-invt Hermitian form \langle,\rangle_{X}, and
2. form \langle,\rangle_{X} is definite.

What's the unitary dual look like II?

$$
\widehat{G}_{a} \leadsto \bigcup_{\delta}\left[E(\delta)_{\mathbb{Q}} \otimes_{\mathbb{Q}} \mathbb{C}\right] / F(\delta)
$$

Admissible repn $X(\delta, \nu)$ is unitary if and only if
(1) Hermitian, and (2) form is definite.

Knapp-Zuckerman: cond (1) $\mathrm{m} \rightarrow$ "real points" of \widehat{G}_{a} :

$$
X(\delta, \nu) \text { Herm } \Longleftrightarrow \exists f \in F(\delta), \quad-\bar{\nu}=f \cdot \nu
$$

Easy unitary: $f=1, \nu$ pure imag, $X(\delta, \nu)$ tempered.
Fairly easy unitary: if ν Herm, nonzero imag part, then $X(\delta, \nu)$ unitarily induced from proper $P=L N$. Imag ν : all unitary. Nonreal ν : unitarity settled on smaller L. Hard unitary: $\nu \in E(\delta)_{\mathbb{R}}$ real, $f \cdot \nu=-\nu$.
Theorem. For each δ, hard unitary ν are compact rational polyhedron $C_{u}(\delta) \subset E(\delta)_{\mathbb{R}}$.
What at las does: $\nu \in E(\delta)_{\mathbb{Q}^{\rightsquigarrow}}$ is $X(\delta, \nu)$ unitary?
This oracle determines any one $C_{u}(\delta)$ by a finite calculation.

Subject of this talk

Unitary dual determined by knowledge of countably many compact rational polyhedra $C_{u}(\delta) \subset E(\delta)_{\mathbb{R}}$
Each $C_{u}(\delta)$ computable in finite time \rightsquigarrow unitary dual of one G computable in countably infinite time.
This is good but not good enough.
Subject today: find conditions for

$$
C_{u}(\delta)=C_{u}\left(\delta^{\prime}\right), \quad C_{u}(G, \delta)=C_{u}\left(L, \delta_{L}\right)
$$

with L proper reductive subgroup.
Know since 1980s: there are enough such equalities to make \widehat{G}_{u} computation finite.
Goal: sharpen to make computation feasible.

What's that look like?

$G=S O(4,1) ; \quad \hat{G}_{u} \subset \widehat{G}_{a}$ found 1962 by Takeshi Hirai.

δ	classical	atlas	$E_{\mathbb{Q}}$	$C_{u}(\delta)$	SO(4, 1)
$n+3 / 2, m+1 / 2)$ $n \geq m \geq 0$	disc ser	$(0,[n+3 / 2, m+1 / 2])$	0	0	
$\operatorname{dim} 2 n+1$	princser	$(1,[n+1 / 2, \pm 1 / 2])$	$\mathbb{Q} \quad\left[-\frac{1}{2}, \frac{1}{2}\right]$		
$O(3) \operatorname{rep}(n \geq 1)$					
$\operatorname{dim} 1$	spherical	$(1,[1 / 2, \pm 1 / 2])$	$\mathbb{Q}\left[-\frac{3}{2}, \frac{3}{2}\right]$		

$C_{u}(\delta)=\left[-\frac{1}{2}, \frac{1}{2}\right] \rightsquigarrow$ Bargmann comp ser of $S O(2) \times S O(2,1)$.

```
atlas> set G=SO(4,1)
```

atlas> set $q=$ parameter $(\operatorname{KGB}(G)[1],[2+1 / 2,1 / 2],[0,1 / 2])$
\{ $\mathbf{n}=\mathbf{2}, \quad \mathrm{nu}=1 / 2\}$
atlas> is_unitary(q)
Value: true
atlas> set $r=$ parameter $(\operatorname{KGB}(G)[1],[2+1 / 2,1 / 2],[0,1])$
\{ $n=2$, $n u=1\}$
atlas> is_unitary(r)
Value: false

Where's the bottom layer?

Restriction to $K=O(4)$ of $S O(4,1)$ princ series Bottom layer for this princ series is three $O(4)$ reps. Mults and sigs match $O(2)$ reps in $S O(2,1)$ princ series.

I interchanged x and y axes in the diagram above. Fixing that in

Signatures on the bottom layer

Signature of $S O(2,1)$ sph princ series, $\nu=3$

Signature of $S O(4,1)$ princ series $\delta=5$-diml, $\nu=3$ sig in sph series for $S O(2,1)$ neg on $1, \nu>1 / 2$.

Means 1 is nonunitarity certificate.
$\rightsquigarrow \operatorname{sig}$ in $\delta=5$ series for $S O(4,1)$ neg on $(2,1), \nu>1 / 2$.
Means $(2,1)$ is nonunitarity certificate.

Unitary dual of $S O(4,1)$

Know in advance about $S O(2,1)$ spherical series $J(\nu)$:

1. $C_{u}($ spherical $)=[-1 / 2,1 / 2]$.
2. Lowest $O(2)$-type of any $J(\nu)$ is $\mu(0)$, form pos there.
3. If $|\nu|>1 / 2$, form neg on $\mu(1)$; nonunitarity certif.

Deduce about $S O(4,1)$ princ series $J(n, \nu)$:

1. $C_{u}(n) \supset[-1 / 2,1 / 2]$.
2. Lowest $O(4)$-type of $J(n, \nu)$ is $\mu(n, 0)$, form pos there.
3. If $|\nu|>1 / 2, J(n, \nu)$ form neg on $\mu(n, 1)$
if $(n, 1)$ is highest wt for $O(4)$;
that is, if $n \geq 1$: nonunitarity certif.
Remains to calculate spherical comp series $C_{u}(0)$:
```
atlas> set G=SO(4,1) (value of }\nu
atlas> set p=parameter(KGB(G)[1],[1/2,1/2],[0,2])
atlas> is_unitary(p)
Value: false (so \nu=2 excluded from }\mp@subsup{C}{u}{}(0)\mathrm{ )
atlas> is_unitary(p*(3/4))
Value: true (so \nu=3/2 included in Cu(0))
atlas> is_unitary(p*(1/2))
Value: true (so C C (0) = [-3/2,3/2]).
```

Calculation gives nonunitarity certif $\mu(1,0)$ for $|\nu|>3 / 2$.

Induction, schminduction

Gelfand, Mackey and a host of glamorous costars invented parabolic induction.
\mathbb{R}-alg $P \subset G$ called parabolic if $G(\mathbb{C}) / P(\mathbb{C})$ projective.
Then $P=L U$ with U conn unip, L reductive; any $\pi_{L} \in \widehat{L}_{a}$ extends (triv on U) to P, defines finite length

$$
\pi_{G}=\operatorname{Ind}_{P}^{G}\left(\pi_{L}\right)
$$

Ind: unitary \rightarrow unitary, depends on L, not P.
Relates nicely to maximal compact K :

$$
\left.\left(\operatorname{Ind}_{P}^{G}\left(\pi_{L}\right)\right)\right|_{K}=\operatorname{Ind}_{P \cap K}^{K}\left(\left.\pi_{L}\right|_{P \cap K}\right)
$$

But this is not general enough.
Zuckerman and a host of glamorous costars invented cohomological parabolic induction.
Write \mathfrak{g} for cplx Lie alg of $G, \theta=$ Cartan involution.

