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We may begin our discussion of bilinear forms by looking at a special case that we are

already familiar with. Given a vector space V over a field F , the dot product between two

elements X and Y (represented as column vectors whose elements are in F ) is the map

V × V → F defined by:

< X, Y >= XT · Y = x1y1 + ... + xnyn

The property of the dot product which we will use to generalize to bilinear forms is bilinearity:

the dot product is a linear function from V to F if one of the elements is fixed.

Definition Let V be a vector space over a field F. A bilinear form B on V is a function of

two variables V × V → F which satisfies the following axioms:

B(v1 + v2, w) = B(v1, w) + B(v2, w) (1)

B(fv, w) = fB(v, w) (2)

B(v, w1 + w2) = B(v, w1) + B(v, w2) (3)

B(v, fw) = fB(v, w) (4)

When working with linear transformations, we represent our transformation by a square

matrix A. Similarly, given a square matrix B̂, we may define a bilinear form for all v, w ∈ V

as follows:

B(v, w) = vT B̂w

This form satisfies the axioms because of the distributive laws and the ability to pull out

a scalar in matrix multiplication. We can also see that given a bilinear form B, after fixing a

basis the matrix representing B is unique. Given a basis {b1, ..., bn} of V , the matrix defined

by B̂i,j = B(bi, bj) is the unique matrix representing the form B. To see this, we can actually
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compute the value of the bilinear form for arbitrary v, w ∈ V . Since {bi} is a basis for V ,

we have v =
∑

i vibi and w =
∑

i wibi, where vi, wi ∈ F . Then

B(v, w) = B(
∑

i

vibi,
∑
j

vjbj) =
∑
i,j

viB(bi, bj)wj = vT B̂w

where v and w are represented as column matrices whose elements are vi and wi respectively.

Since the matrix of a bilinear form is dependent on the choice of basis, we might wonder

how this matrix is affected by a change of basis. Given our original basis {bi} and a new

basis {ci}, we can express our new basis vectors as linear combinations of the old ones:

cj =
∑

i pi,jbi where P is our invertible change of basis matrix. To compute the entries for

the new matrix B̂′ for the bilinear form, we compute the values of the form on the new basis

vectors: B̂′
i,j = B(ci, cj) = B(

∑
k pk,ibk,

∑
l pl,jbl) =

∑
k,l pk,iB(bk, bl)pl,j = {P T B̂P}i,j. So the

new matrix for the bilinear transform is B̂′ = P T B̂P

Given a bilinear form, we would like to be able to classify it by just a single element of

our field F to be able to read certain properties of the form. The determinant of the matrix

B̂ of our form would be a good mapping to use except for the fact that the matrix of the

form, and hence the determinant associated with the form, is dependent on the choice of

basis. Since we know how the matrix changes when the basis is changed, we can look at how

the determinant changes. If we change bases with associated matrix P, then the new matrix

is P T B̂P so that the new determinant is det(P T B̂P ) = det(P T )det(B̂)det(P ) = det(P )2

det(B̂) (since det(P )=det(P T )). Since any invertible matrix can serve as a change of basis

matrix, and we can construct an invertible matrix to have any nonzero determinant we wish

(make it diagonal with all 1s except one diagonal element set to be the desired determinant),

the set of determinants that we can associate with a given bilinear form are all multiples of

eachother by a square element of F, and conversely given any square element of F, the set

must be closed under multiplication by this element. So we can define a new quantity, called

the discriminant of a bilinear form, to be associated with the set of determinants we can

obtain from matrices associated with the bilinear form.

To be more precise, we define the subgroup of square elements in the multiplicative

group of F : F×2 = {f 2 : f ∈ F ∗} We can see that this is a normal subgroup in F ∗

because conjugating a square by an element produces a new element which is also a square:

fa2f−1 = (faf−1)2. So the discriminant is actually a mapping from the set of bilinear forms

on V to the quotient group we produce using the normal subgroup of squares (or possibly

the element 0 which is not in the multiplicative group). The discriminant is defined in such

a way that it is independent of the choice of basis.

Definition Let B be a bilinear form on a vector space V and B̂ be a matrix associated with
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the form. The discriminant of B is defined to be

discr(B) =

 0 if detB̂ = 0

detB̂F×2 ∈ F ∗/F×2 otherwise.

We call a bilinear form B nondegenerate if the discriminant of B is nonzero. To be able

to apply the properties of the discriminant and nondegeneracy, we must first understand

orthogonality. Given vectors v, w ∈ V we say that v is orthogonal to w (denoted v⊥w) if

B(v, w) = 0. We would like to describe the vectors in a vector space that are orthogonal to

everything else in that vector space. This set of vectors is referred to as the radical. Since

orthogonality is not necessarily a commutative relation, we need to be more specific. Given

a vector space V and a bilinear form B, we define the left and right radicals as follows:

radL(V ) = {v ∈ V : B(v, w) = 0,∀w ∈ V }

radR(V ) = {v ∈ V : B(w, v) = 0,∀w ∈ V }

Proposition 0.1 A bilinear form B on a vector space V is nondegenerate ⇐⇒ radR(V ) =

0 ⇐⇒ radL(V ) = 0

Proof I will only prove the first equivalence because the proof for the second is similar.

⇒ Assume there is a nonzero element X of radR(V ) and B is nondegenerate and fix a bases

{b1, ..., bn} ⇒ B̂X 6= 0 ⇒ there exists some w ∈ V such that B(w, X) 6= 0 ⇒ X 6∈radR(V )

which is a contradiction.

⇐ Assume B not nondegenerate and fix a basis {b1, ..., bn} ⇒ det(B̂)= 0 ⇒ there is a

nontrivial solution to the matrix equation AX = 0 ⇒ wT B̂X = 0 for all w ∈ V ⇒ X ∈
radR(V ) ⇒ radR(V ) has a nonzero element.

While in the definition of a radical we include elements of V that are orthogonal to all

other elements of V , we may be more specific and seek only elements of V that are orthogonal

to all elements of some subset S of V :

⊥L(S) = {v ∈ V : B(v, w) = 0,∀w ∈ S}

⊥R(S) = {v ∈ V : B(w, v) = 0,∀w ∈ S}

It would be nice if we did not have to deal with all of the distinguishing between left and

right orthogonality. A bilinear form B such that B(v, w) = 0 ⇐⇒ B(w, v) = 0 for all

v, w ∈ V is called reflexive. Given a reflexive bilinear form and a subset S of V , we may

write ⊥L(S) = ⊥R(S) = S⊥. If W is a subspace of V then we call W⊥ the orthogonal

complement of W . We define the radical of a subspace W of V to be radW = W
⋂

W⊥ and

call W a nondegenerate subspace if rad W = 0.
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Proposition 0.2 Let B be a reflexive bilinear form on a vector space V , and W be a non-

degenerate subspace of V . Then V = W ⊕W⊥.

Proof We know that W
⋂

W⊥ = 0 because W is nondegenerate. So all we need to show

is that together W and W⊥ span V ⇐⇒ dimV = dimW + dimW⊥. Let n = dimV and

k = dimW and fix a basis {v1, ..., vk} of W and extend to a basis of V with {vk+1, ..., vn}.
Given arbitrary v ∈ W⊥, we may write v = c1v1 + ... + cnvn and v ∈ W⊥ ⇒ B(vi, v) =

0∀1 ≤ i ≤ k ⇒ ∑
j B(vi, vj)cj = 0 ⇒ ∑

j B̂(i, j)cj = 0 ⇒ v is in the null space of a k × n

matrix which is the top k rows of the matrix B̂ ⇒ dimW⊥ ≥ n− k ⇒ dimW + dimW⊥ =

dimW ⊕ dimW⊥ ≥ n + n− k = n ⇒ W ⊕W⊥ = V .

Definition A bilinear form B on a vector space V is called symmetric if B(v, w) = B(w, v)

for all w, v ∈ V

We can see that the matrix B̂ of a symmetric bilinear form must itself be symmetric by

taking standard basis vectors ei and ej:

B(ei, ej) = B(ej, ei) ⇐⇒ eT
i B̂ej = eT

j B̂ei ⇐⇒ B̂i,j = B̂j,i ⇐⇒ B̂ = B̂T

Definition A bilinear form B on a vector space V is called alternate (or skew-symmetric if

char F 6= 2) if B(v, v) = 0 for all w, v ∈ V

If we have an alternate form B and take arbitrary v, w ∈ V then 0 = B(v + w, v + w) =

B(v, v) + B(v, w) + B(w, v) + B(w,w) = B(v, w) + B(w, v) → B(v, w) = −B(w, v). If

the character of F is not 2, then the implication is reversible and so we can replace the

condition for an alternate form with the condition on a skew-symmetric form, namely that

B(v, w) = −B(w, v) for all w, v ∈ V . We also know that the matrix of an alternate form

must itself be alternate. The same method used for symmetric forms shows that such a

matrix B̂ must satisfy B̂ = −B̂T .


