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1 Introduction

The most basic and important example of a Lie group is the group GL(n,R)
of invertible n× n matrices. This group is very closely related to the asso-
ciative algebra M(n,R) of all n× n matrices. In particular, the Lie algebra
gl(n,R) is just given by commutator in the associative algebra M(n,R).

These notes examine orthogonal and symplectic groups from a similar
point of view. The groups are defined as subgroups of GL(n,R) preserving
some bilinear forms. We want to offer a related perspective on them, as
related to some associative algebras. In the case of symplectic groups, the
associative algebra is a Weyl algebra of polynomial coefficient differential
operators. In the case of orthogonal groups, it is a Clifford algebra. The two
theories are in many respects exactly parallel; if my TEX skills were greater,
I would have written these notes in two columns, doing the two cases side
by side. As it is, I need to put one first. The Weyl algebra is infinite-
dimensional, and for that reason a bit scarier; but it consists of differential
operators, and so is more familiar. The Clifford algebra is finite-dimensional,
and so technically simpler, but much less familiar.

I will write about the symplectic case first; you can read in whichever
order you prefer.

2 Symplectic groups and Weyl algebras

We begin with a finite-dimensional real vector space V , endowed with a
nondegenerate skew-symmetric bilinear form

ω : V × V → R, ω(v, w) = −ω(w, v). (2.1a)

1



The symplectic group is

Sp(V ) = {g ∈ GL(V ) | ω(gv, gw) = ω(v, w)}. (2.1b)

Its Lie algebra is

sp(V ) = {X ∈ gl(V ) | ω(Xv,w) + ω(v,Xw) = 0}. (2.1c)

It is an elementary exercise to show that V has a symplectic basis

(p1, . . . , pn, q1, . . . , qn) : (2.1d)

the defining properties are

ω(pi, pj) = 0, ω(qk, q`) = 0, ω(pi, qk) = δik. (2.1e)

In particular, V must be even-dimensional. In this basis,

sp(R2n) =

{(
A B
C D

)
| A = −tD, B = tB, C = tC

}
; (2.1f)

here A, B, C, and D are n× n matrices.
We want to make an associative algebra related to V and to ω. From V

one can construct the tensor algebra

Tm(V ) = V ⊗R · · · ⊗R V︸ ︷︷ ︸
m copies

, T (V ) =

∞∑
m=0

Tm(V ). (2.1g)

Here we define
T 0(V ) = R, (2.1h)

which contains the multiplicative identity element 1 for T (V ). The algebra
T (V ) can be thought of as the free associative algebra generated by V . The
group GL(V ) acts on T (V ) by algebra automorphisms. The algebra T (V )
is Z-graded, and the action of GL(V ) preserves this grading.

We are going to impose relations on T (V ) using the symplectic form ω.
The Weyl algebra A(V ) is by definition the quotient of T (V ) by the ideal
generated by the elements

v ⊗ w − w ⊗ v − ω(v, w) (v, w ∈ V ). (2.1i)

Because ⊗ is the multiplication in T (V ), we can write these elements as

vw − wv − ω(v, w) (v, w ∈ V ). (2.1j)
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In terms of the symplectic basis (p1, . . . , qn), these relations become

pipj = pjpi, qkq` = q`qk, piqk − qkpi = δik. (2.1k)

These are the canonical commutation relations of quantum mechanics.
Physicists often prefer to put a factor like

√
−1~ in front of pi, so that

the commutation relation gets this factor in front of it. The factor is math-
ematically helpful in reminding us that (sometimes) we should think of the
Weyl algebra as almost commutative: the commutators are small. But since
the speed of light is one anyway, I will keep life mathematically simpler and
omit the factor.

Our definition is

A(V ) = T (V )/〈vw − wv − ω(v, w) | v, w ∈ V 〉; (2.1l)

the angle brackets are meant to indicate “ideal generated by.” The commu-
tation relations are not homogeneous: they belong to T 2(V )⊕T 0(V ) rather
than to one degree separately. As a consequence, A(V ) does not inherit the
graded algebra structure from T (V ). The filtered algebra structure survives:

A≤p(V ) = im

(
p∑

m=0

Tm(V )

)
, A≤pA≤q ⊂ A≤p+q. (2.1m)

In addition, the relations are even, so A(V ) does inherit from T (V ) a Z/2Z
grading:

Aeven(V ) = im

(∑
m

T 2m(V )

)
, Aodd(V ) = im

(∑
m

T 2m+1(V )

)
.

(2.1n)
That this is a grading means that

Aeven(V )Aodd(V ) ⊂ Aodd(V ) (2.1o)

and so on. Multiplication in the tensor algebra adds degrees, and so does
taking commutators: if s is a tensor of degree p and t a tensor of degree q,
then st has degree exactly p + q, and st − ts also has degree exactly p + q
(although the commutator might be zero; zero is declared to be homogeneous
of any degree, so the the tensors of a fixed degree can be a vector space).
But in the Weyl algebra, the nature of the defining relations guarantees that
commutator lowers degrees:

a ∈ A≤p, b ∈ A≤q =⇒ ab− ba ∈ A≤p+q−1. (2.1p)
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Proposition 2.2. Suppose we are in the setting (2.1).

1. The graded action of Sp(V ) ⊂ GL(V ) on T (V ) descends to the Weyl
algebra A(V ), identifying Sp(V ) as the group of filtration-preserving
algebra automorphisms of A(V ).

2. The associated graded algebra

gr(A(V )) =
∞∑
m=0

A≤m(V )/A≤m−1(V )

is isomorphic to the symmetric algebra S(V ).

3. The Lie algebra sp(V ) may be identified with the filtration-preserving
derivations of A(V ); equivalently, with linear maps

X : V → V, ω(Xv,w) + ω(v,Xw) = 0.

4. Every such derivation is commutator with an element of

A≤2,even ' S2(V )⊕ R.

5. The image of S2(V ) (identified with symmetric 2-tensors and then
mapped to A≤2) is closed under commutator, and so identified with
sp(V ).

6. Any module M for the associative algebra A(V ) is automatically (by
restriction to S2(V )) a module for the Lie algebra sp(V ).

Proof. The assertions in (1) are more or less obvious from the definition of
A(V ). The surjective map

S(V )→ grA(V ) (2.3a)

in (2) exists because of (2.1p). That it is an isomorphism can be proven
directly, but I prefer to prove it either as part of Theorem 2.4 or as part of
Theorem 2.6 below.

For (3), the action of Sp(V ) may be studied in the finite-dimensional
subspaces A≤p(V ), so finite-dimensional linear algebra (including the expo-
nential map) can be used. The derivative of the definition of automorphism
is the definition of derivation: more precisely, exp(tX) is an automorphism
for all t if and only if X is a derivation. Now (3) follows.
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For (4), if a ∈ A≤2,even and

v ∈ A≤1,odd = V, (2.3b)

then [a, v] is odd of degree at most 2. As a consequence of (2),

A≤2,odd = A≤1,odd ' V. (2.3c)

This shows that commutator with a preserves V , and therefore is filtration
preserving. We have therefore defined a Lie algebra homomorphism

A≤2,even → sp(V ), a 7→ (v 7→ [a, v]). (2.3d)

Using the canonical commutation relations, one can compute this map ex-
plicitly in a symplectic basis. To simplify the notation, I will do this just
for n = 1, with a symplectic basis (p, q). Then (using pq − qp = 1)

[p2, q] = p2q − qp2

= p(qp+ 1)− qp2 = pqp− qp2 + p

= (qp+ 1)p− qp2 + p = 2p.

Similarly,
[p2, p] = 0, [q2, p] = −2q, [q2, q] = 0.

Finally,
[pq + qp, p] = −2p, [pq + qp, q] = 2q.

The map (2.3d) is therefore

p2 7→
(

0 2
0 0

)
, q2 7→

(
0 0
−2 0

)
, pq + qp 7→

(
−2 0
0 2

)
. (2.3e)

The three matrices here span sp(R2) (see (2.1f)), proving that (2.3d) is an
isomorphism when dimV = 2. The general case is identical.

I don’t know a reasonable proof of the assertion in (5); one can compute
all the commutators by hand, but this is not very nice. Part (6) is immediate
(being true for any Lie subalgebra of any associative algebra).

Theorem 2.4. The Weyl algebra may be identified with the algebra of poly-
nomial coefficient differential operators in the n variables q1, . . . , qn: the
identification is

pi 7→
∂

∂qi
, qk 7→ multiplication by qk.
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In this identification, A≤p(V ) corresponds to differential operators of total
degree (adding degrees of differentiation and degrees of polynomial coeffi-
cients) at most p.

Proof. Write P for the algebra of polynomial coefficient differential opera-
tors. To get an algebra surjection

A(V )→ P, (2.5)

one just has to verify that the canonical commutation relations (2.1k) are
satisfied by the corresponding differential operators. The main one is

∂(qkf)

∂qi
− qk

∂f

∂qi
= δikf,

which is the Leibnitz rule.
Because the elements qα ∂β

∂qβ
are a basis of P , we see that the map from

S(V ) (with basis pβqα) to grP (composing the surjection (2.3a) with gr of
the surjection (2.5)) is an isomorphism. It follows (2.3a) and (2.5) are both
isomorphisms.

In the setting of orthogonal groups, the best analogues of symplectic
bases (which involve hyperbolic planes) are not always available without
complexification; and even then orthogonal matters are a little more com-
plicated. We will therefore give a cruder version of Theorem 2.4 that does
not rely on symplectic bases.

Theorem 2.6. Suppose V is any vector space. The algebra P (V ) of poly-
nomial coefficient differential operators on functions on V has the following
generators. To each element v ∈ V is attached the first-order differential
operator ∂(v) which is the directional derivative in the direction v:

[∂(v)f ](x) =
d

dt
f(x+ tv)|t=0.

To each linear functional λ on V is attached the zeroth-order differential
operator m(λ) which is multiplication by the function λ:

[m(λ)f ](x) = λ(x)f(x).

All the operators ∂(v) commute with each other, as do all the operators
m(λ). We have

[∂(v),m(λ)] = λ(v),
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multiplication by the constant λ(v).
Suppose now that V is a symplectic vector space. To each v ∈ V corre-

sponds the linear functional

λv : V → R, λv(x) = ω(x, v).

The Weyl algebra A(V) may be embedded in P (V ) by sending v to the first-
order differential operator

D(v) = ∂(v) + λv/2.

Proof. The linear map D defines (by the universality of tensor products)
an algebra map T (V ) → P (V ), which we continue to denote by D. We
compute

[D(v), D(w)] = [∂(v), λw/2]− [∂(w), λv/2]

= λw(v)/2− λv(w)/2 = ω(v, w)/2− ω(w, v)/2

= ω(v, w).

This says that D vanishes on the defining ideal of A(V ) (see (2.1l)), so it
descends to an algebra homomorphism

D : A(V )→ P (V ).

Clearly D sends the filtration on A(V ) to the degree filtration on differential
operators. The associated graded map, composed with the surjection of
(2.3a), is the isomorphism

S(V )→ constant coefficient differential operators on V .

It follows first that D is an inclusion, and second that the surjection of (2.3a)
is an isomorphism.

3 Orthogonal groups and Clifford algebras

We begin with a finite-dimensional real vector space V , endowed with a
nondegenerate symmetric bilinear form

Q : V × V → R, Q(v, w) = Q(w, v).

The orthogonal group is

O(V ) = {g ∈ GL(V ) | Q(gv, gw) = Q(v, w)}.
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Its Lie algebra is

o(V ) = {X ∈ gl(V ) | Q(Xv,w) +Q(v,Xw) = 0}.

It is an elementary exercise to show that V has an orthogonal basis

(e1, . . . , ep+q), Q(er, es) = εrδrs;

here

εr =

{
1 1 ≤ r ≤ p,
−1 p+ 1 ≤ r ≤ p+ q

(3.1a)

(It would be mathematically better to call an orthogonal basis any in which
the basis vectors are mutually orthogonal, but have arbitrary lengths not
necessarily equal to ±1. With this more general definition, a nondegenerate
quadratic form over any field of characteristic not two has an orthogonal
basis; and almost all of the discussion below carries through with just a bit
more notation.) In this basis,

o(p, q) =

{(
A B
C D

)
| A = −tA, B = tC, D = −tD

}
; (3.1b)

here A is p× p, B is p× q, C is q × p, and D is q × q.
We want to make an associative algebra related to V and to Q. As in

the symplectic case we begin with the tensor algebra

Tm(V ) = V ⊗R · · · ⊗R V︸ ︷︷ ︸
m copies

, T (V ) =

∞∑
m=0

Tm(V ).

We are going to impose relations on T (V ) using the symmetric form Q.
The Clifford algebra C(V ) is by definition the quotient of T (V ) by the ideal
generated by the elements

v ⊗ w + w ⊗ v + 2Q(v, w) (v, w ∈ V ).

Because ⊗ is the multiplication in T (V ), we can write these elements as

vw + wv + 2Q(v, w) (v, w ∈ V ).

In terms of the orthogonal basis (e1, . . . , ep+q), these relations become

eres = −eser (1 ≤ r 6= s ≤ p+ q), e2r = −εr. (3.1c)
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Here are some examples. If p = 1 and q = 0, the Clifford algebra is

C(1, 0) = R[e1]/〈e21 = −1〉 ' C,

the complex numbers (with e1 = i). If p = 2 and q = 0, the Clifford algebra
is

C(2, 0) = R[e1, e2]/〈e2r = −1, e1e2 = −e2e1〉.
This is the algebra of quaternions, with e1 = i, e2 = j, and e1e2 = k.

Our general definition is

C(V ) = T (V )/〈vw + wv + 2Q(v, w) | v, w ∈ V 〉; (3.1d)

the angle brackets are meant to indicate “ideal generated by.” The commu-
tation relations are not homogeneous: they belong to T 2(V )⊕T 0(V ) rather
than to one degree separately. As a consequence, C(V ) does not inherit the
graded algebra structure from T (V ). The filtered algebra structure survives:

C≤p(V ) = im

(
p∑

m=0

Tm(V )

)
, C≤pC≤q ⊂ C≤p+q. (3.1e)

In addition, the relations are even, so C(V ) does inherit from T (V ) a Z/2Z
grading:

Ceven(V ) = im

(∑
m

T 2m(V )

)
, Codd(V ) = im

(∑
m

T 2m+1(V )

)
.

That this is a grading means that

Ceven(V )Codd(V ) ⊂ Codd(V ) (3.1f)

and so on. Multiplication in the tensor algebra adds degrees, and so does
taking commutators or anticommutators: if s is a tensor of degree p and
t a tensor of degree q, then st has degree exactly p + q, and st ± ts also
has degree exactly p + q (although it might be zero; zero is declared to be
homogeneous of any degree, so the the tensors of a fixed degree can be a
vector space).

A Z-graded algebra L is called anticommutative if

`r`s = (−1)rs`s`r (`r ∈ Lr, `s ∈ Ls).

Just as the canonical commutation relations say that the Weyl algebra is
“approximately” commutative, the Clifford relations say that the Clifford
algebra is approximately anticommutative:

a ∈ C≤r, b ∈ C≤s =⇒ ab = (−1)rsba+ C≤r+s−1. (3.1g)
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Proposition 3.2. Suppose we are in the setting (3.1).

1. The graded action of O(V ) ⊂ GL(V ) on T (V ) descends to the Clifford
algebra C(V ), identifying O(V ) as the group of filtration-preserving
algebra automorphisms of C(V ).

2. The associated graded algebra

gr(C(V )) =
∞∑
m=0

C≤m(V )/C≤m−1(V )

is isomorphic to the (graded anticommutative) algebra
∧

(V ).

3. The Lie algebra o(V ) may be identified with the filtration-preserving
derivations of C(V ); equivalently, with linear maps

X : V → V, Q(Xv,w) +Q(v,Xw) = 0.

4. Every such derivation is commutator with an element of

C≤2,even '
∧2(V )⊕ R.

5. The image of
∧2(V ) (identified with antisymmetric 2-tensors and then

mapped to C≤2) is closed under commutator, and so identified with
o(V ).

6. Any module S for the associative algebra C(V ) is automatically (by
restriction to

∧2(V )) a module for the Lie algebra o(V ).

Proof. The assertions in (1) are more or less obvious from the definition of
C(V ). The surjective map ∧

(V )→ grC(V ) (3.3a)

in (2) exists because of (3.1g). That it is an isomorphism can be proven
directly, but I prefer to prove it as part of Theorem 3.4 below. At any rate
we now know that

dimC(V ) ≤ dim
∧

(V ) = 2dimV .

Part (3) is technically simpler than the corresponding statement for the
Weyl algebra because C(V ) is finite-dimensional. The derivative of the defi-
nition of automorphism is the definition of derivation: more precisely (given
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a linear transformation X of a finite-dimensional real algebra), exp(tX) is
an automorphism for all t if and only if X is a derivation. Now (3) follows.

For (4), if a ∈ C≤2,even and

v ∈ C≤1,odd = V, (3.3b)

then [a, v] is odd of degree at most 2. As a consequence of (2),

C≤2,odd = C≤1,odd ' V. (3.3c)

This shows that commutator with a preserves V , and therefore is filtration
preserving. We have therefore defined a Lie algebra homomorphism

C≤2,even → o(V ), a 7→ (v 7→ [a, v]). (3.3d)

Using the Clifford commutation relations (3.1c), one can compute this map
explicitly in an orthogonal basis. To simplify the notation, I will do this just
for n = 2, with an orthogonal basis (e1, e2). Then (using e1e2 + e2e1 = 0
and e2j = εj)

[e1e2, e1] = e1e2e1 − e21e2
= −2e21e2 = −2ε1e2

Similarly,
[e1e2, e2] = 2ε2e2,

The map (3.3d) is therefore

e1e2 7→
(

0 2ε2
−2ε1 0

)
. (3.3e)

This matrix spans o(R2) (see (3.1b)), proving that (3.3d) is an isomorphism
when dimV = 2. The general case is identical.

I don’t know a reasonable proof of the assertion in (5); one can compute
all the commutators by hand, but this is not very nice. Part (6) is immediate
(being true for any Lie subalgebra of any associative algebra).

Theorem 3.4. Suppose V is any vector space. Recall that the exterior
algebra

∧
(V ) is the quotient of T (V ) by the ideal generated by elements

v ⊗ v. We consider an algebra E(V ) of linear transformations of
∧
V with

the following generators. To each element v ∈ V is attached the operator
m(v) (raising degree by 1) which is multiplication by v:

m(v)(x1 ∧ · · · ∧ xr) = v ∧ x1 ∧ · · · ∧ xr.
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Because of the definition of the exterior algebra,

m(v)2 = 0.

To each linear functional λ on V is attached the operator ι(λ) (lowering
degree by 1) which is interior product with λ:

ι(λ)(x1 ∧ · · · ∧ xr) =

r∑
i=1

(−1)i−1λ(xi)(x1 ∧ · · · x̂i · · · ∧ xr).

(The notation means that the factor xi on the right is omitted.) Not quite
as obviously as for m(v), but pretty easily,

ι(λ)2 = 0.

All the operators m(v) anticommute with each other, as do all the operators
ι(λ). We have

ι(λ)m(v) +m(v)ι(λ) = λ(v),

multiplication by the constant λ(v).
Suppose now that V is an orthogonal vector space. To each v ∈ V

corresponds the linear functional

λv : V → R, λv(x) = Q(x, v).

The Clifford algebra C(V) may be embedded in E(V ) by sending v to the
operator

δ(v) = m(v)− ι(λv).

Proof. The linear map δ defines (by the universality of tensor products) an
algebra map T (V )→ E(V ), which we continue to denote by δ. We compute

δ(v)δ(w) + δ(w)δ(v) = −m(v)ι(λw)− ι(λw)m(v)−m(w)ι(λv)− ι(λw)m(v)

= −λw(v)− λv(w) = −Q(v, w)−Q(w, v)

= −2Q(v, w).

This says that δ vanishes on the defining ideal of C(V ) (see (3.1d)), so it
descends to an algebra homomorphism

δ : C(V )→ E(V ).

Clearly δ sends the filtration on C(V ) to the degree filtration on E(V ) (how
much does the linear transformation increase degree in the exterior algebra).
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The associated graded map, composed with the surjection of (3.3a), is the
isomorphism∧

(V )→ wedge-with-something linear operators on
∧

(V ).

It follows first that δ is an inclusion, and second that the surjection of (3.3a)
is an isomorphism.

4 Orthogonal groups are not simply connected

Suppose n ≥ 3. I proved in class that

|π1(SO(n))| ≤ 2. (4.1a)

I want to prove here that equality holds: that SO(n) is not simply connected.
The idea is to find a finite-dimensional vector space S and a Lie algebra
homomorphism

φ : o(n)→ gl(S) (4.1b)

which is not the differential of a Lie group homomorphism

Φ: SO(n)→ GL(S). (4.1c)

Here is the strategy. Fix an orthonormal basis (e1, . . . , en) of V = Rn, and
consider the linear map

Xe1 = e2, Xe2 = −e2, Xej = 0 (j ≥ 3). (4.1d)

This matrix is zero except for a two by two block

(
0 −1
1 0

)
in the upper left

corner. Then X ∈ o(n), and exp(2πX) = IV . So it will be enough to find S
and φ so that

exp(2πφ(X)) 6= IS . (4.1e)

Here is how we do this. Define

S = C(V ), (4.1f)

a vector space of dimension 2n. Because C(V ) associative, left multiplication
provides an algebra homomorphism

δ : C(V ) ↪→ End(C(V )). (4.1g)
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Proposition 3.2 provides a Lie algebra homomorphism

o(n) '
2∧
V ↪→ C(V ); (4.1h)

composing these two maps gives a Lie algebra homomorphism

φ : o(n)→ gl(C(V )). (4.1i)

According to (3.3e), the matrix X maps to −e1e2/2 ∈ C(V ). Left multipli-
cation by −e1e2 satisfies

φ(X)e1 = (−e1e2/2)e1 = e21e2/2 = −e2/2,
φ(X)e2 = (−e1e2/2)e2 = −e1e22/2 = e1/2.

(4.1j)

That is, ψ(X) acts on the two-dimensional span of e1 and e2 in C(V ) by the
matrix

φ(X) =

(
0 1/2
−1/2 0

)
. (4.1k)

Consequently exp(2πφ(X)) acts by −I on the span of e1 and e2, proving
(4.1e).

This argument is in some sense constructive: it describes the double
cover Spin(n) of SO(n) as the group of linear transformations of C(Rn)
(that is, as 2n×2n matrices) having a specified Lie algebra. There is a LOT
more to say about these ideas; some of it will appear on the problems for
November 9.
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