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Adjoining Roots of Polynomials to Fields

We begin our discussion of roots of polynomials with a few useful definitions on rings.

Definition: A ring R is a Euclidean domain if there exists a function N : R → {0, 1, 2, . . .}
such that, given any a, b 6= 0 ∈ R we may find q, r ∈ R such that a = qb+ r and either r = 0
or N(r) < N(b).

This is the standard division algorithm; when R = Z, for example, we have the tradi-
tional norm N(x) = |x|. Note that q and r need not be uniquely determined.

Proposition 1: Let F be a field. Then F [x] is a Euclidean domain.
Proof: We can define the norm of a polynomial to be its degree. Now suppose our poly-
nomials are f(x) = amxm + am−1x

m−1 + . . . + a0 and g(x) = bnxn + bn−1x
n−1 + . . . + b0. If

m < n, then f(x) = 0 · g(x) + f(x) and we are trivially done. Otherwise, we may itera-
tively lower the degree of f as follows: since F is a field, we know bn is invertible, so write
G(x) = b−1

n g(x) = xn+cn−1+. . .+c0. Then we may subtract amxm−nG(x) from f to obtain a
polynomial f ′ of degree not exceeding m−1, and we repeat on f ′ and G. After repeating the
procedure sufficiently often, we have a polynomial f ∗ of degree not exceeding n−1, and it has
the form f ∗(x) = f(x)− q(x) ·G(x) = f(x)− q(x)b−1

n g(x); then f(x) = (b−1
n q(x))g(x)+f ∗(x)

satisfies the condition for a Euclidean domain.

Recall that a principle ideal is an ideal which can be generated by one element. A prin-

ciple ideal domain (or PID) is a ring in which all ideals are principle.

Proposition 2: Any Euclidean domain is a principle ideal domain.
Proof: This statement is entirely analogous to the case of Z, where it can easily be shown
that the ideal generated by two elements is equal to the ideal generated by their greatest
common divisor. For a general Euclidean domain R, suppose an ideal I has two arbitrary
nonzero elements a, b. Then there exist q, r ∈ R such that a = qb + r, and by the definition
of an ideal it follows that a − qb = r is also in I. If r = 0 then we may stop, since both a
and b are in (b) ⊂ I. Otherwise, we note that N(r) < N(b) and repeat on b and r, finding
s, t ∈ R such that b = sr + t. As before, t ∈ I, and we may repeat on r and t. Since
the norm of these remainders is strictly decreasing, it must eventually be 0, and then the
last nonzero remainder generates all remainders found; in particular it generates both a and b.

Among other important results, this means that F [x] is a principle ideal domain. This
will be quite useful later in proving results about roots of polynomials. Still, we need a few
more standard definitions before we may discuss roots themselves. One of the most crucial
concepts is that of a homomorphism:
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Definition: A ring homomorphism is a map φ : R → R′ which satisfies the following three
conditions for all a, b ∈ R:

1. φ(ab) = φ(a)φ(b)

2. φ(a + b) = φ(a) + φ(b)

3. φ(1R) = 1R′

There are many important properties that arise from these definitions alone; for example,
setting a = b = 0R in the second rule shows that φ(0R) = 0R′ . As with groups, we define the
kernel and image of φ to be the sets {r ∈ R : φ(r) = 0} and {φ(r) : r ∈ R}, respectively.
The kernel in particular serves as a good motivation for ideals.

Proposition 3: The kernel of a homomorphism is an ideal.
Proof: We must simply verify that the properties of ideals hold for kernels. The first condi-
tion is that ker φ is a subgroup of R+. If a, b ∈ ker φ then φ(a+ b) = φ(a)+φ(b) = 0+0 = 0,
so the kernel has closure; as noted above, 0 = φ(0) = φ(a − a) = φ(a) + φ(−a) = φ(−a), so
elements of the kernel have inverses in the kernel; and, of course, 0 ∈ ker(φ), so this condition
is satisfied. The second condition is that if a ∈ ker(φ) and r ∈ R, then ra ∈ ker(φ); this
holds because φ(ra) = φ(r)φ(a) = φ(r) · 0 = 0. Thus ker φ is an ideal.

We now need one more result on polynomial rings: namely, the Substitution Principle.

Proposition 4: Given a ring homomorphism φ : R → R′ and an element α ∈ R, there is
a unique homomorphism Φ : R[x] → R′ which maps x to α and r ∈ R to φ(r).
Proof: Given a polynomial f(x) =

∑
rix

i, the above restrictions require that Φ(f(x)) =∑
φ(ri)α

i; this proves that Φ is unique. To show it is a homomorphism, it clearly satisfies
the requirements on addition and the identity, so we only need to show that the multiplica-
tion law holds. Let f(x) =

∑
aix

i and g(x) =
∑

bjx
j be functions in R[x]. Then:

Φ(fg) = Φ((
∑

aix
i)(

∑
bjx

j)) = Φ(
∑

aibjx
i+j) =

∑
φ(ai)φ(bj)α

i+j =
∑

φ(ai)α
iφ(bj)α

j

= (
∑

φ(ai)α
i)(

∑
φ(bj)α

j) = Φ(f)Φ(g).
So Φ is the desired unique homomorphism.

A number is algebraic over a ring R if it is the root of some polynomial in R[x]. To each
such number α we may associate a polynomial of least positive degree which has α as a root;
this is called the irreducible polynomial for α. It is unique up to scalar multiplication, since
if there are two irreducible polynomials f(x) = anxn + . . . + a0 and g(x) = bnxn + . . . + b0,
then bnf(x) − ang(x) has α as a root but has degree less than n, so it is 0.

Proposition 5: Let f(x) ∈ F [x] be the irreducible polynomial for α. If g(α) = 0 and
g ∈ F [x] is nonzero, then f divides g.
Proof: By the Substitution Principle, the map Φ : F [x] → F fixing F and sending x to
α is a homomorphism. Its kernel is the set of polynomials for which α is a root, and by
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Proposition 3 this kernel is an ideal. But Proposition 1 tells us that any ideal in F [x] is
a principle ideal, and so it is generated by a unique element of least degree. Thus ker Φ = (f).

Now we will begin to adjoin roots of polynomials to fields. Given a field F and some value
α, define F (a) to be the smallest field that contains both F and a. One standard example
is R(

√
−1) = C. The operation of adjoining an element to a field is a field extension, and

a useful value is the degree of the field extension. In general, given two fields F ⊂ K, the
degree of the extension, denoted [K : F ], is the dimension of K as an F -vector space. In
the example of the complex numbers, any element in C can be written as a linear combina-
tion over R of 1 and i, so [C : R] = 2. If α has degree n over F , then [f(α) : f ] = n, since
{1, α, α2, . . . , αn−1} is a basis and higher powers of α may be written in terms of lower powers.

Proposition 6: Let F ⊂ K ⊂ L be fields. Then [L : F ] = [L : K][K : F ].
Proof: Let {x1, . . . , xm} be a basis for L over K, and let {y1, . . . , ym} be a basis for K over
F . An arbitrary element of L can be written as l = a1x1 + . . . amxm for some a1, . . . , am ∈ K.
Then each ai can be written as ai = b1iy1 + . . . + bnjyn for some b1j , . . . , bnj ∈ F , so that
l =

∑
cijxiyj for appropriate values of cij. Since each cij is uniquely determined by the

aj, which are in turn uniquely determined by l, we conclude that the set {xiyj} is linearly
independent, so it forms a basis for L over F .
Corollary: Let F ⊂ K be fields with [K : F ] = n, and pick α ∈ K −F . Then α has degree
dividing n in F .

This last proposition has many useful consequences. For example, it sometimes allows
us to determine easily whether a number is in a field extension. Consider Q(α), where
α3 + α + 1 = 0. Is i ∈ Q(α)? Any of a number of methods can show this polynomial is
irreducible, so [Q(α) : Q] = 3. Assume i is in the extension; then Q ⊂ Q(i) ⊂ Q(α), and so
by the previous proposition, 3 = [Q(α) : Q(i)][Q(i) : Q] = 2[Q(α) : Q(i)]. But this implies
that [Q(α) : Q(i)] = 3/2, which is impossible because it must be integral. Thus i 6∈ Q(α).

We end with one last interesting result on these fields.

Proposition 7: Let F be a field. Then a and b are both algebraic over F if and only if
a + b and ab both are.
Proof: First suppose a and b are algebraic. Then [F (a, b) : F ] is finite because both
[F (a, b) : F (a)] and [F (a) : F ] are. Since we have the two chains F ⊂ F (a+ b) ⊂ F (a, b) and
F ⊂ F (ab) ⊂ F (a, b), it follows from Proposition 6 that both [F (ab) : F ] and [F (a + b) : F ]
are finite as well. Second, suppose instead that a + b and ab are algebraic. Then a and
b are the roots of the quadratic equation x2 − (a + b)x + ab = 0, so they both have
degree at most 2 over F (a + b, ab). Again using the previous proposition, we see that
[F (a, b) : F ] = [F (a, b) : F (a + b, ab)][F (a + b, ab) : F ]; both terms on the right are finite, so
[F (a, b) : F ] is and the two intermediate fields F (a) and F (b) then have finite degree as well.

These notes were based on: M. Artin, Algebra, Prentice Hall, New Jersey, 1991.


