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1. Introduction.

In [2] and [3], Arthur has formulated a number of conjectures about automorphic forms. These con-
jectures would have profound consequences for the unitary representation theory of the group G(R) of real
points of a connected reductive algebraic group G defined over R. Our purpose in this book is to establish
a few of these local consequences. In order to do that, we have been led to combine the ideas of Langlands
and Shelstad (concerning dual groups and endoscopy) with those of Kazhdan and Lusztig (concerning the
fine structure of irreducible representations).

We will recall Arthur’s conjectures in detail in Chapters 22 and 26, but for the moment it is enough to
understand their general shape. We begin by recalling the form of the Langlands classification. Define

I(G(R)) 3 it (G(R)) 2 Tiemp(G(R)) (1.1)

to be the set of equivalence classes of irreducible admissible (respectively unitary or tempered) representations
of G(R). Now define
(I)(G(R)) o (btemp(G(R)) (1-2)

to be the set of Langlands parameters for irreducible admissible (respectively tempered) representations
of G(R) (see [34], [10], [1], Chapter 5, and Definition 22.3). To each ¢ € ®(G(R)), Langlands attaches a
finite set II; C II(G(R)), called an L-packet of representations. The L-packets II4 partition II(G(R)). If
¢ € Premp(G(R)), then the representations in II4 are all tempered, and in this way one gets also a partition
of Iiemp(G(R)).

Now the classification of the unitary representations of G(R) is one of the most interesting unsolved
problems in harmonic analysis. Langlands’ results immediately suggest that one should look for a set between
®(G(R)) and Piemp(G(R)) parametrizing exactly the unitary representations. Unfortunately, nothing quite
so complete is possible: Knapp has found examples in which some members of the set II, are unitary and
some are not.

The next most interesting possibility is to describe a set of parameters giving rise to a large (but
incomplete) family of unitary representations. This is the local aim of Arthur’s conjectures. A little more
precisely, Arthur defines a new set

V(G/R) (1.3)(a)

of parameters (Definition 22.4). (We write G/R rather than G(R) because Arthur’s parameters depend only
on an inner class of real forms, and not on one particular real form.) Now assume that G(R) is quasisplit.
Then Arthur defines an inclusion

U(G/R) = ®(G(R)), 1+ dy. (1.3)(b)
Write @ arthur(G(R)) for the image of this inclusion. Then
®(G(R)) D Parthur(G(R)) D Ppemp(G(R)). (1.3)(c)

Roughly speaking, Arthur proposes that ¥(G/R) should parametrize all the unitary representations of G(R)
that are of interest for global applications. More specifically, he proposed the following problems (still for
G(R) quasisplit at first).



Problem A. Associate to each parameter ¢ € ¥(G/R) a finite set II, C II(G(R)). This set (which we
might call an Arthur packet) should contain the L-packet IIy, (cf. (1.3)(b)) and should have other nice
properties, some of which are specified below.

The Arthur packet will not in general turn out to be a union of L-packets; so we cannot hope to define it
simply by attaching some additional Langlands parameters to .
Associated to each Arthur parameter is a certain finite group A, (Definition 21.4).

Problem B. Associate to each m € I, a non-zero finite-dimensional representation 7 (7) of Ay.
Problem C. Show that the distribution on G(R)

Y (exdim(ry(m))) O(m)

welly

is a stable distribution in the sense of Langlands and Shelstad ([35], [48]). Here e, = +1 is also to be
defined.

Problem D. Prove analogues of Shelstad’s theorems on lifting tempered characters (cf. [48]) in this
setting.

Problem E. Extend the definition of Il to non-quasisplit G, in a manner consistent with appropriate
generalizations of Problems B, C, and D.

Problem F. Show that every representation 7 € Il is unitary.

We give here complete solutions of problems A, B, C, D, and E. Our methods offer no information
about Problem F. (In that direction the best results are those of [5], where Problem F is solved for complex
classical groups.)

The central idea of the proofs is by now a familiar one in the representation theory of reductive groups.
It is to describe the representations of G(R) in terms of an appropriate geometry on an L-group. So let VG
be the (complex reductive) dual group of G, and VGT the (Galois form of the) L-group attached to the real
form G(R). The L-group is a complex Lie group, and we have a short exact sequence

1-VYG - VG - Gal(C/R) — 1 (1.4)(a)

(The complete definition of the L-group is recalled in Chapter 4.) We also need the Weil group Wg of C/R;
this is a real Lie group, and there is a short exact sequence

1—-C* - Wr — Gal(C/R) — 1. (1.4)(b)

(The Weil group is not a complex Lie group because the action of the Galois group on C* is the non-trivial
one, which does not preserve the complex structure.)

Definition 1.5 ([34], [10]). A quasiadmissible homomorphism ¢ from Wg to VGT is a continuous group
homomorphism satisfying

(a) ¢ respects the homomorphisms to Gal(C/R) defined by (1.4); and
(b) ¢(C*) consists of semisimple elements of ¥V G.

(Langlands’ notion of “admissible homomorphism” includes an additional “relevance” hypothesis on ¢, which
will not concern us. This additional hypothesis is empty if G(R) is quasisplit.) Define

PMVGYY ={¢: Wr — VG' | ¢ is quasiadmissible }.
Clearly VG acts on P(YG") by conjugation on the range of a homomorphism, and we define
®(G/R) = { VG orbits on P(VG")}.

(If G(R) is quasisplit, this is precisely the set of parameters in (1.2). In general Langlands omits the
“irrelevant” orbits.)



Now a homomorphism ¢ is determined by the value of its differential on a basis of the real Lie algebra
of C*, together with its value at a single specified element of the non-identity component of Wg; that is, by
an element of the complex manifold Vg x Vg x YG'. The conditions (a) and (b) of Definition 1.5 amount to
requiring the first two factors to be semisimple, and the third to lie in the non-identity component. Requiring
that these elements define a group homomorphism imposes a finite number of complex-analytic relations,
such as commutativity of the first two factors. Pursuing this analysis, we will prove in Chapter 5

Proposition 1.6. Suppose VG' is an L-group. The set P(VG") of quasiadmissible homomorphisms
from Wrg into ¥ GY may be identified with the set of pairs (y,\) satisfying the following conditions:
a) y € VGY — VG, and X € Vg is a semisimple element;
b) y? = exp(27il); and
¢) [A Ad(y)A] = 0.

The Langlands classification described after (1.2) is thus already geometric: L-packets are parametrized
by the orbits of a reductive group acting on a topological space. Subsequent work of Langlands and Shelstad
supports the importance of this geometry. For example, one can interpret some of the results of [48] as
saying that the L-packet II, may be parametrized using ¥ G-equivariant local systems on the VG orbit of ¢.

By analogy with the theory created by Kazhdan-Lusztig and Beilinson-Bernstein in [28] and [8], one
might hope that information about irreducible characters is encoded by perverse sheaves on the closures
of VG-orbits on P(VG'). Unfortunately, it turns out that the orbits are already closed, so these perverse
sheaves are nothing but the local systems mentioned above. On the other hand, one can often parametrize
the orbits of several rather different group actions using the same parameters; so we sought a different space
with a VG action, having the same set of orbits as P(YGT), but with a more interesting geometry.

In order to define our new space, we need some simple structure theory for reductive groups. (This will
be applied in a moment to VG.)

Definition 1.7. Suppose H is a complex reductive group, with Lie algebra b, and A\ € h is a semisimple
element. Set

bMn ={nebApl=np} (neZ) (1.7)(a)
A=Y b\ (1.7)(b)
e(A\) = exp(2miA) € H. (1.7)(e)

The canonical flat through X is the affine subspace
FA) =A+nN\) Ch. (1.7)(d)

We will see in Chapter 6 that the canonical flats partition the semisimple elements of h — in fact they
partition each conjugacy class — and that the map e is constant on each canonical flat. If A is a canonical
flat, we may therefore write
e(A) = exp(2mil) (any A € A). (1.7)(e)
Finally, write F(h) for the set of all canonical flats in b.
Definition 1.8 Suppose YG' is the L-group of a real reductive group (cf. (1.4)). The geometric
parameter space for VGT is the set

X=X("G") ={(yN)|ye G -G, Ae F(Vg), y* =e(A) }.

This is our proposed substitute for Langlands’ space P(YGY). The set F(¥g) is difficult to topologize
nicely, as one can see already for SL(2); this difficulty is inherited by X. To make use of geometric methods
we will always restrict to the subspaces appearing in the following lemma.

Lemma 1.9 (cf. Proposition 6.16 below). In the setting of Definition 1.8, fix a single orbit O of VG
on the semisimple elements of Vg, and set

XO0,VaY) ={(y,A) e X |ACO}.
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Then X (O,VGY) has in a natural way the structure of a smooth complex algebraic variety, on which VG acts
with a finite number of orbits.

The variety X (O,"G") need not be connected or equidimensional, but this will cause no difficulties. We
topologize X by making the subsets X (O, G") open and closed. (It seems likely that a more subtle topology
will be important for harmonic analysis, as soon as continuous families of representations are involved.)

Of course the first problem is to check that the original Langlands classification still holds.

U s an L-group. Then there is a natural

Proposition 1.10. (cf. Proposition 6.17 below). Suppose VG
VG -equivariant map

p: P(YGY) — X(YGY), p(y,N) = (y,F(N)

inducing a bijection on the level of VG-orbits. The fibers of p are principal homogeneous spaces for unipotent
algebraic groups. More precisely, suppose x = p(¢). Then the isotropy group ¥V Gy is a Levi subgroup of ¥ G .

This proposition shows that (always locally over R!) the geometric parameter space X shares all the
formal properties of P(YG"') needed for the Langlands classification. In particular, if G(R) is quasisplit,
L-packets in II(G(R)) are parametrized precisely by ¥ G-orbits on X. What has changed is that the orbits on
the new space X are not closed; so the first new question to consider is the meaning of the closure relation.

Proposition 1.11. Suppose G(R) is quasisplit. Let ¢, ¢' € ®(G/R) be two Langlands parameters, and
S, §" C X the corresponding ¥ G-orbits. Then the following conditions are equivalent:
i) S is contained in the closure of S’.
i) there are irreducible representations m € I, and 7' € Iy with the property that @' is a composition
factor of the standard representation of which 7 is the unique quotient.
If ¢ is a tempered parameter, then the orbit S is open in the variety X(O,VGY) containing it (cf. Lemma
1.9).

(In the interest of mathematical honesty, we should admit that this result is included only for expository
purposes; we will not give a complete proof. That (ii) implies (i) (even for G(R) not quasisplit) follows from
Corollary 1.25(b) and (7.11). The other implication in the quasisplit case can be established by a subtle
and not very interesting trick. The last assertion follows from Proposition 22.9(b) (applied to an Arthur
parameter with trivial SL(2) part).)

Proposition 1.11 suggests the possibility of a deeper relationship between irreducible representations and
the geometry of orbit closures on X. To make the cleanest statements, we need to introduce some auxiliary
ideas. (These have not been emphasized in the existing literature on the Langlands classification, because
they reflect phenomena over R that are non-existent or uninteresting globally.) The reader should assume at
first that G is adjoint. In that case the notion of “strong real form” introduced below amounts to the usual
notion of real form, and the “algebraic universal covering” of VG is trivial.

Definition 1.12. Suppose G is a complex connected reductive algebraic group. An extended group for
G/R is a pair (G', W), subject to the following conditions.
(a) GT is a real Lie group containing G as a subgroup of index two, and every element of GI' — G acts on
G (by conjugation) by antiholomorphic automorphisms.
(b) W is a G-conjugacy class of triples (0, N, x), with
(1) The element & belongs to G*' — G, and §? € Z(G) has finite order. (Write ¢ = o(4) for the
conjugation action of § on G, and G(R) or G(R,d) for the fixed points of o; this is a real form of
G.)
(2) N C G is a maximal unipotent subgroup, and § normalizes N. (Then N is defined over R; write
N(R) = N(R, ) for the subgroup of real points.)
(3) The element x is a one-dimensional non-degenerate unitary character of N(R). (Here “non-
degenerate” means non-trivial on each simple restricted root subgroup of N.)

We will discuss this definition in more detail in Chapters 2 and 3. For now it suffices to know that each
inner class of real forms of G gives rise to an extended group. The groups G(R) appearing in the definition
are quasisplit (because of (b)(2)) and the pair (N(R),x) is the set of data needed to define a Whittaker
model for G(R).



Definition 1.13. Suppose (G'', W) is an extended group. A strong real form of (G, W) (briefly, of G)
is an element § € G'' — G such that §% € Z(G) has finite order. Given such a §, we write o = o(d) for its
conjugation action on G, and

G(R) = G(R, §)

for the fixed points of o. Two strong real forms § and ¢’ are called equivalent if they are conjugate by G;
we write § ~ §’. (The elements ¢ of Definition 1.12 constitute a single equivalence class of strong real forms,
but in general there will be many others.)

The usual notion of a real form can be described as an antiholomorphic involution ¢ of G. Two such
are equivalent if they differ by the conjugation action of G. This is exactly the same as our definition if G is
adjoint. The various groups G(R, ) (for § a strong real form of (G'', W)) constitute exactly one inner class
of real forms of G.

Definition 1.14. Suppose (G, W) is an extended group. A representation of a strong real form of
(G, W) (briefly, of G) is a pair (7, §), subject to
(a) § is a strong real form of (GT', W) (Definition 1.13); and
(b) 7 is an admissible representation of G(R, d).

Two such representations (m,d) and (n/,0") are said to be (infinitesimally) equivalent if there is an
element g € G such that gég~! = §’, and m o Ad(g~1!) is (infinitesimally) equivalent to «’. (In particular,
this is possible only if the strong real forms are equivalent.) Finally, define

I(GY, W) = II(G/R)

to be the set of (infinitesimal) equivalence classes of irreducible representations of strong real forms of G.

Lemma 1.15. Suppose (G¥', W) is an extended group for G (Definition 1.12). Choose representatives
{ds | s € X} for the equivalence classes of strong real forms of G (Definition 1.13). Then the natural map
from left to right induces a bijection

[T NGR,6,)) ~ TI(G/R)

sEX

(Definition 1.14; the set on the left is a disjoint union).

This lemma is an immediate consequence of the definitions; we will give the argument in Chapter 2.
The set TI(G/R) is the set of representations we wish to parametrize. To do so requires one more
definition on the geometric side.

Definition 1.16. Suppose YG' is the L-group of the inner class of real forms represented by the
extended group G' (cf. (1.4) and Definition 1.13). The algebraic universal covering VG ig the projective
limit of all the finite coverings of YG. This is a pro-algebraic group, of which each finite-dimensional
representation factors to some finite cover of VG.

With the algebraic universal covering in hand, we can define a complete set of geometric parameters for
representations.

Definition 1.17. Suppose G is a connected reductive algebraic group endowed with an inner class of
real forms, and VG' is a corresponding L-group for G. A complete geometric parameter for G is a pair

§= (Sv V)v

where
(a) S is an orbit of VG on X (YGT) (Definition 1.8); and
(b) V is an irreducible Y G-equivariant local system on S, for some finite covering VG of VG.

We may write (Sg, Ve) to emphasize the dependence on £. In (b), it is equivalent to require V to be vgele.
equivariant. Write Z(G/R) for the set of all complete geometric parameters.
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A slightly different formulation of this definition is sometimes helpful. Fix a Y G-orbit S on X, and a
point z € S. Write YG for the stabilizer of z in YG™, and define

loc alg ﬂlg alg
AS ’ - va / (VG )
0

x

for its (pro-finite) component group. We call Agoc’alg the equivariant fundamental group of S; like a funda-
mental group, it is defined only up to inner automorphism (because of its dependence on ). Representations
of Alsoc’alg classify equivariant local systems on .S, so we may also define a complete geometric parameter for
G as a pair

£=(S,7),
where
(a) S is an orbit of VG on X (VG"); and
(b) 7 is an irreducible representation of A9
Again we may write (Se, 7¢).

Theorem 1.18. Suppose (GT', W) is an extended group for G (Definition 1.12), and ¥V G" is an L-group
for the corresponding inner class of real forms. Then there is a natural bijection between the set II(G/R)
of equivalence classes of irreducible representations of strong real forms of G (Definition 1.14), and the
set Z(G/R) of complete geometric parameters for G (Definition 1.17). In this parametrization, the set of
representations of a fized real form G(R) corresponding to complete geometric parameters supported on a
single orbit is precisely the L-packet for G(R) attached to that orbit (Proposition 1.10).

As we remarked after Proposition 1.6, one can find results of this nature in [48].
For each complete geometric parameter £, we define (using Theorem 1.18 and Definition 1.14)

(m(£),d(£)) = some irreducible representation parametrized by & (1.19)(a)

M (&) = standard representation with Langlands quotient 7(§). (1.19)(b)

As a natural setting in which to study character theory, we will also use
KTI(G/R) = free Z-module with basis II(G/R). (1.19)(c)

We will sometimes call this the lattice of virtual characters. One can think of it as a Grothendieck group of
an appropriate category of representations of strong real forms. In particular, any such representation p has
a well-defined image

o] € KTI(G/R).

By abuse of notation, we will usually drop the brackets, writing for example M (§) € KII(G/R). (All of
these definitions are discussed in somewhat more depth in Chapters 11 and 15.)

In order to write character formulas, we will also need a slight variant on the notation of (1.19)(a). Fix
a strong real form § of G, and a complete geometric parameter £. By the proof of Lemma 1.15, there is at
most one irreducible representation 7 of G(R,d) so that (m,d) is equivalent to (7(£),d(€)). We define

m(&,6) = . (1.19(d)
If no such representation 7 exists, then we define
m(€,0) = 0. (1.19)(e)

Similarly we can define M (&, 4).
Lemma 1.20 (Langlands — see [54], [56]). The (image in KII(G/R) of the) set

{M() | €€ E(G/R)}
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is a basis for KII(G/R).

Because the standard representations of real groups are fairly well understood, it is natural to try to
describe the irreducible representations in terms of the standard ones. On the level of character theory, this
means relating the two bases {m(£)} and {M (&)} of KII(G/R):

M) = mu(y,)m(v). (1.21)

YEE

(The subscript r stands for “representation-theoretic,” and is included to distinguish this matrix from an
analogous one to be introduced in Definition 1.22.) Here the multiplicity matriz m.,.(v, ) is what we want.
The Kazhdan-Lusztig conjectures (now proved) provide a way to compute the multiplicity matrix, and a
geometric interpretation of it — the “Beilinson-Bernstein picture” of [8]. Unfortunately, this geometric
interpretation is more complicated than one would like in the case of non-integral infinitesimal character,
and it has some fairly serious technical shortcomings in the case of singular infinitesimal character. (What
one has to do is compute first at nonsingular infinitesimal character, then apply the “translation principle.”
The translation principle can introduce substantial cancellations, which are not easy to understand in the
Beilinson-Bernstein picture.) We have therefore sought a somewhat different geometric interpretation of the
multiplicity matrix. Here are the ingredients. (A more detailed discussion appears in Chapter 7.)

Definition 1.22. Suppose Y is a complex algebraic variety on which the pro-algebraic group H acts
with finitely many orbits. Define

C(Y,H) = category of H-equivariant constructible sheaves on Y. (1.22)(a)

P(Y,H) = category of H-equivariant perverse sheaves on Y. (1.22)(b)

(For the definition of perverse sheaves we refer to [9]. The definition of H-equivariant requires some care in
the perverse case; see [38], section 0, or [39], (1.9.1) for the case of connected H.) Each of these categories is
abelian, and every object has finite length. (One does not ordinarily expect the latter property in a category
of constructible sheaves; it is a consequence of the strong assumption about the group action.) The simple
objects in the two categories may be parametrized in exactly the same way: by the set of pairs

§= (Sg,Vg) = (57 V) (1'22)(0)

with S an orbit of H on Y, and V an irreducible H-equivariant local system on S. The set of all such pairs
will be written Z(Y, H), the set of complete geometric parameters for H acting on Y. Just as in Definition
1.17, we may formulate this definition in terms of the equivariant fundamental group

AGe=H,/(Hy)o  (y€S)

and its representations. We write u(&) for the irreducible constructible sheaf corresponding to & (the extension
of £ by zero), and P(£) for the irreducible perverse sheaf (the “intermediate extension” of & — cf. [9],
Definition 1.4.22).

The Grothendieck groups of the two categories P(Y, H) and C(Y, H) are naturally isomorphic (by the
map sending a perverse sheaf to the alternating sum of its cohomology sheaves, which are constructible).
Write K (Y, H) for this free abelian group. The two sets {P(§) | £ € E} and {u(&) | £ € E} are obviously
bases of their respective Grothendieck groups, but they are not identified by the isomorphism. Write d(&)
for the dimension of the underlying orbit Se. We can write in K (Y, H)

p©) = (D)% N my(,€)P(y) (1.22)(d)

~EE(Y,H)

with mg(vy,£) an integer. (The subscript g stands for “geometric.”) In this formula, it follows easily from
the definitions that

me(6,€) =1, my(3,) £0onlyif S, C (S~ S¢) (v #8). (1.22)(e)
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The matrix mg(y, ) is essentially the matrix relating our two bases of K (Y, H). It is clearly analogous to
(1.21). In each case, we have a relationship between something uncomplicated (the standard representations,
or the extensions by zero) and something interesting (the irreducible representations, or the simple perverse
sheaves). One can expect the matrix m to contain interesting information, and to be difficult to compute
explicitly.

Definition 1.23. In the setting of Definition 1.8, define
Cx('ah, e

to be the direct sum over semisimple orbits @ C Vg of the categories C(X (O, VGT),YG™9) of Definition 1.22.
The objects of this category are called (by a slight abuse of terminology) VGl

sheaves on X. Similarly we define

-equivariant constructible

PX(VG),VG™M),

the VGal‘q-equivariant perverse sheaves on X. The irreducible objects in either category are parametrized
by Z(G/R) (cf. Definition 1.22), and we write

KX(VGY)

for their common Grothendieck group. We write p(§) and P(€) for the irreducible objects constructed in
Definition 1.22, or their images in KX (VG"). These satisfy (1.22)(d) and (e).

Since Theorem 1.18 tells us that the two Grothendieck groups KX (VG") and KII(G/R) have bases in
natural one-to-one correspondence, it is natural to look for a functorial relationship between a category of
representations of strong real forms of GG, and one of the geometric categories of Definition 1.23. We do not
know what form such a relationship should take, or how one might hope to establish it directly. What we
are able to establish is a formal relationship on the level of Grothendieck groups. This will be sufficient for
studying character theory.

Theorem 1.24 Suppose (G¥', W) is an extended group for G (Definition 1.12), and VG is an L-group
for the corresponding inner class of real forms. Then there is a natural perfect pairing

<, > KI(G/R) x KX(YG") = Z

between the Grothendieck group of the category of finite length representations of strong real forms of G, and
that of ¥ G™ -equivariant (constructible or perverse) sheaves on X (cf. (1.19) and Definition 1.23). This
pairing is defined on the level of basis vectors by

< M(E), u(€') >= e(G(R,6(£)))de &

Here we use the notation of (1.19) and Definition 1.22. The group G(R,0(§)) s the real form represented
by M(&); the constant e(G(R)) = £1 is the one defined in [32] (see also Definition 15.8), and the last § is a
Kronecker delta. In terms of the other bases of (1.19) and Definition 1.23, we have

< (&), P(¢') >= e(G(R,6(£))(~1)" e er.

The content of this theorem is in the equivalence of the two possible definitions of the pairing. We will
deduce it from the main result of [56]. As an indication of what the theorem says, here are three simple
reformulations.

Corollary 1.25.
a) The matrices m, and mg of (1.21) and Definition 1.22(d) are essentially inverse transposes of each

other:
S (1) D, (7, €)mg (7,€') = (—1)*O6¢ .
Y



b) The multiplicity of the irreducible representation m(v) in the standard representation M () is up to a
sign the multiplicity of the local system Ve in the restriction to S¢ of the Euler characteristic of the
perverse sheaf P(7):

my(7,€) = (1)=& Z(—l)i(multiplicity of Ve in H'P(7) |s,).

¢) The coefficient of the standard representation M (7y) in the expression of the irreducible representation
7(€) is equal to (—1)¥M=4E) times the multiplicity of the perverse sheaf P(€) in the expression of

p(y)[=d()]-

Here part (c) refers to the expansion of 7(§) in the Grothendieck group as a linear combination of standard
representations (cf. Lemma 1.20); and similarly for u(y).
Another way to think of Theorem 1.24 is this.

Corollary 1.26. In the setting of Theorem 1.24, write
K = KII(G/R)

for the set of (possibly infinite) integer combinations of irreducible representations of strong real forms of G.
Then K may be identified with the space of Z-linear functionals on the Grothendieck group KX(VGF):

KI(G/R) ~ Homy (KX (VG"),Z).

In this identification,
a) the standard representation M(£) of G(R,(€)) corresponds to e(G(R,§(€))) times the linear functional
“multiplicity of Ve in the restriction to S¢ of the constructible sheaf C;” and
b) the irreducible representation m(€) of G(R,5(€)) corresponds to e(G(R,5(€)))(—=1)%&) times the linear
functional “multiplicity of P(€) as a composition factor of the perverse sheaf Q.”

Here in (a) we are interpreting KX (VG") as the Grothendieck group of constructible sheaves, and in (b) as
the Grothendieck group of perverse sheaves.

We call elements of KII(G/R) formal virtual characters of strong real forms of G.
In order to bring Langlands’ notion of stability into this picture, we must first reformulate it slightly.

Definition 1.27. In the setting of Definition 1.14 and (1.19), suppose

n=y_n(&)((),s()

{eE

is a formal virtual character. We say that n is locally finite if for each strong real form ¢ there are only
finitely many £ with n(£) # 0 and (&) equivalent to 6. Suppose that 7 is locally finite, and that § is a strong
real form of G. There is a finite set 71,...,m, of inequivalent irreducible representations of G(R,d) so that
each (7, d) is equivalent to some (7(¢;),0(§;)) with n(€;) # 0. Each of these representations has a character
©(m;), a generalized function on G(R,d); and we define

O(n,5) = Y _n(&)O(m)),

J

a generalized function on G(R, §). This generalized function has well-defined values at the regular semisimple
elements of G(R, ¢), and these values determine O(#, d). In the notation of (1.19)(d,e), we can write

O(n,0) = > _n()O(r(¢,0)).
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We say that 7 is strongly stable if it is locally finite, and the following condition is satisfied. Suppose §
and ¢’ are strong real forms of G, and g € G(R,§) N G(R, ¢’) is a strongly regular semsimple element. Then

O(n,9)(9) = ©(n,")(9)-

A necessary condition for 7 to be strongly stable is that each ©(#,d) should be stable in Langlands’
sense. Conversely, Shelstad’s results in [48] imply that if © is a stable finite integer combination of characters
on a real form G(R,d), then there is a strongly stable n with © = ©(1, ).

Corollary 1.26 gives a geometric interpretation of formal virtual characters. We can now give a geometric
interpretation of the notion of stability.

Definition 1.28. In the setting of Definition 1.22, fix an H-orbit S C Y, and a point y € S. For a
constructible sheaf C on Y, write C, for the stalk of C' at y, a finite-dimensional vector space. The map

X 0bC(Y,H) = N, xl¢(C) = dim(C,)
is independent of the choice of y in S. It is additive for short exact sequences, and so defines a Z-linear map
X§¢: K(Y,H)— Z,

the local multiplicity along S. If we regard K (Y, H) as a Grothendieck group of perverse sheaves, then the

formula for Xls"c on a perverse sheaf P is

X&°(P) = 3 (~1)'dim(H'P),.

Any Z-linear functional n on K (Y, H) is called geometrically stable if it is in the Z-span of the various Xlsoc.
In the setting of Definition 1.23, a Z-linear functional n on K (Y, H) is called geometrically stable if its
restriction to each summand K (X (0O), VGF) is geometrically stable, and vanishes for all but finitely many

0.

Theorem 1.29. In the identification of Corollary 1.26, the strongly stable formal virtual characters
correspond precisely to the geometrically stable linear functionals.

This is an immediate consequence of Corollary 1.26 and Shelstad’s description of stable characters in [47].
(It is less easy to give a geometric description of the stable characters on a single real form of G, even a
quasisplit one.)

In a sense Arthur’s conjectures concern the search for interesting new stable characters. We have
now formulated that problem geometrically, but the formulation alone offers little help. The only obvious
geometrically stable linear functionals are the x¢. For S corresponding to an L-packet by Proposition
1.10, the corresponding strongly stable formal virtual character is essentially the sum of all the standard
representations attached to the L-packet. This sum is stable and interesting, but not new, and not what is
needed for Arthur’s conjectures. To continue, we need a different construction of geometrically stable linear
functionals on K (Y, H).

Definition 1.30. Suppose Y is a smooth complex algebraic variety on which the pro-algebraic group
H acts with finitely many orbits. To each orbit S we associate its conormal bundle

Ts(Y) cT*(Y);

this is an H-invariant smooth Lagrangian subvariety of the cotangent bundle. Attached to every H-
equivariant perverse sheaf P on Y is a characteristic cycle

Ch(P) =) x&“(P)T5(Y).
S

mic

Here the coefficients x'&*°(P) are non-negative integers, equal to zero unless S is contained in the support
of P. One way to construct Ch(P) is through the Riemann-Hilbert correspondence ([12]): the category
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of H-equivariant perverse sheaves on Y is equivalent to the category of H-equivariant regular holonomic
D-modules on Y, and the characteristic cycle of a D-module is fairly easy to define (see for example [16] or
[24]). The functions % are additive for short exact sequences, and so define Z-linear functionals

x®ie K(Y,H) — Z,

the microlocal multiplicity along S.

Theorem 1.31 (Kashiwara — see [23], [24], Theorem 6.3.1, or [16], Theorem 8.2.) The linear functionals
of Definition 1.30 are geometrically stable. More precisely, for every H-orbit S’ such that S’ D S there
is an integer ¢(S,S’) so that for every H-equivariant perverse sheaf on'Y,

mic
S

XF(P) = eS8, 8 )G (P).

S’

Here Xloc is defined in Definition 1.28.

In fact Kashiwara’s interest was in an inverted form of this relationship, expressing ng"c in terms of the

various X2/, (The invertibility of the matrix ¢(S, S’) is an immediate consequence of the facts that ¢(S, S) =
(=1)4mS "and that ¢(S,S") # 0 only if 7 > S.) We could therefore have defined geometrically stable in
terms of the linear functionals ¥,

Perhaps the main difficulty in Theorem 1.31 is the definition of the matrix ¢(S,.S”). That definition is due
independently to Macpherson in [41]. Although the D-module approach to characteristic cycles is intuitively
very simple, it entails some great technical problems (notably that of lifting [44]). We will therefore find it
convenient to use a geometric definition of X7 due to MacPherson (see (24.10) and Definition 24.11 below).
With this definition, Theorem 1.31 has a very simple proof due to MacPherson; we reproduce it at the end
of Chapter 24.

The matrix ¢(S,S5’) and its inverse have been extensively studied from several points of view (see
for example the references in [16]). If S # S’ is contained in the smooth part of S/, then ¢(S,S’) = 0.
Nevertheless (and in contrast with the multiplicity matrices of (1.22)(d)) there is no algorithm known for
computing it in all the cases of interest to us.

Corollary 1.32. Suppose (YG,W) is an extended group for G (Definition 1.12), and VG is an L-
group for the corresponding inner class of real forms. Fix an orbit S of VG on X (YGT) (Definition 1.8) (or,
equwalently, an L-packet for the quasisplit form of G (Proposition 1.10)). Then the linear functional x5
on KX(VG ) (Definition 1.80) corresponds via Corollary 1.26 to a strongly stable formal virtual represen-
tation nZ°. The irreducible representations of strong real forms occurring in N2 are those for which the
corresponding perverse sheaf P has x'%¢(P) # 0. This includes all perverse sheaves attached to the orbit S
itself, and certain sheaves attached to orbits S’ containing S in their closures. With notation as in (1.19)
and Definition 1.27, the corresponding stable distribution on G(R,9) is

O(ng™,8) = e(G(R,8)) Y (~1)" )= yzic(P(¢)O(n(¢',9)).
&'eE
In terms of standard representations, this distribution may be expressed as
005", 0) = e(G(R, ) (-1 Y o(S, S )O(M(£,9)).
§'e=
The set {77"”0} (as S wvaries) is a basis of the lattice of strongly stable formal virtual representations.

(Recall that the tempered representations correspond to open orbits; in that case x2'“ is equal to (—1
and we get nothing new.)

As the second formula of Corollary 1.32 shows, obtaining explicit character formulas for n2"*¢ amounts
to computing the matrix ¢(S,S’) in Theorem 1.31.

d1m S loc I
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To approach Arthur’s conjectures, we need an extension of some of the notation in Definitions 1.22 and
1.30.

Definition 1.33. Suppose Y is a smooth complex algebraic variety on which the pro-algebraic group
H acts with finitely many orbits. Fix a point y belonging to an H-orbit S C Y, and write 7§ ,(Y') for the
conormal bundle at y to the orbit S. (This is a subspace of the cotangent space at y, having dimension equal
to the codimension of S in Y.) The isotropy group H, acts linearly on Tgyy(Y); so for any v € Ts*,y(y)7
the isotropy group Hy,, is a pro-algebraic subgroup of H,. We can therefore form the pro-finite component
group A,, = Hy,/(Hy.)o. This family of groups will be locally constant in the variable v over most of
T¢,(Y) (Lemma 24.3 below), so we can define the equivariant micro-fundamental group Ag*° to be A, , for
generic v.

Attached to every H-equivariant perverse sheaf P on Y is a representation 75"¢(P) of A% (Theorem
24.8 and Corollary 24.9 below), of dimension equal to x%*¢(P) (Definition 1.30).

The differences between Langlands’ original conjectures and those of Arthur amount geometrically to
the difference between local geometry (on the orbits S) and microlocal geometry (on the union of the
conormal bundles T%(Y)); formally, to the difference between the equivariant fundamental group A%¢ and
the equivariant micro-fundamental group A%Z°. (Here we are writing Y for the geometric parameter space
X(0,VG") containing S.) Notice that if S is open, then T5,(Y) is zero, and A coincides with the
equivariant fundamental group Af.;"c. Because tempered representations correspond to open orbits in Theorem
1.18 (Proposition 1.11), we see why the Langlands theory is so effective for tempered representations: the
local and the microlocal geometry coincide.

More generally, an L-packet is called generic if some irreducible representation in it admits a Whittaker
model (see (3.11) and (14.11)—(14.14) below. Here we must understand L-packets as extending over all
strong real forms of G.) The generic L-packets (in fact the individual generic representations) were explicitly
determined in [30] and [52]. Using those results and Proposition 1.11, it is not difficult to show that an
L-packet is generic if and only if the corresponding orbit S is open; that is, if and only if S coincides with
the conormal bundle T¢(Y). We believe that this collapsing of microlocal to local geometry explains why
representation theory should be simpler for generic L-packets.

The existence of the representation 72'“(P) in Definition 1.33 is well-known but quite subtle. We will
construct it, following Goresky and MacPherson in [17], using a pair of small spaces J D K that reflect the
local nature of the singularity of the orbit stratification of Y along S. The representation 72"“(P) will be the
hypercohomology of the pair (J, K) with coefficients in P. By a “purity” theorem of Goresky-MacPherson
and Kashiwara-Schapira ([17], [26]; see also Chapter 24 below) this hypercohomology is non-zero in only one
degree.

Our approach to Arthur’s conjectures is now fairly straightforward. Arthur attaches to his parameter 1
a Langlands parameter ¢, and thus (by Proposition 1.10) an orbit Sy,. We define IL, to consist of all those
representations appearing in ng”f; that is, representations for which the corresponding perverse sheaf has
the conormal bundle of Sy in its characteristic cycle. We will show (Corollary 27.13) that this agrees with
the previous definition of Barbasch and Vogan (in the case of “unipotent” parameters) in terms of primitive
ideals. It follows from Proposition 22.9 that Arthur’s group Ay is isomorphic to a quotient of the equivariant
micro-fundamental group Arsn;c’alg . The difference arises only from our use of the algebraic universal covering

of VG, and for these local purposes our choice seems preferable. We therefore define
! ic,al
Ay = Ago™ (1.34)(a)
Definition 1.33 provides a representation Tg?PiC(P) of A9 of dimension equal to Xgifc(P). Now Problems

A, B, C, and E are resolved as special cases of Corollary 1.32 and the preceding definitions. In particular,
the representation 7y () of Problem B is defined to be

Ty = Tg,(P(7)), (1.34) (b)

with P(7) the irreducible perverse sheaf corresponding to 7 (Theorem 1.24).
Arthur’s Problem C identifies one interesting linear combination of the representations in IL, using the
dimensions of the representations 7, (7). If we use instead other character values, we can immediately define
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. 1 . . . . .
several more. Fix an element o € Azg, and consider the complex-valued linear functional on equivariant
perverse sheaves given by

Prstr [TgZC(P)](O') (1.34)(e)

By Corollary 1.26, this linear functional corresponds to a complex formal virtual representation 7, (c); that
is, to a formal sum with complex coefficients of representations of various strong real forms of G. Just as in
Corollary 1.32, we can write this virtual representation on a single strong real form § as

O(ny(0),8) =e(G(R,86) > (=)™ =AmSutr (1) (0)O(m). (1.34)(d)
TEI(G(R,5))y

(More details may be found in Definition 26.8.) Arthur’s Problem D asks for a description of the (complex
formal virtual) character 7y (o) in terms of stable characters like 7, (1) on smaller groups.

To see how this might be possible, we need a long digression about Langlands’ functoriality principle.
This principle concerns relationships between the representations of real forms of G and those of a smaller
reductive group H. The simplest way that such relationships arise is when G and H are equipped with fixed
real forms, and H(R) C G(R). In that case we have functors of induction (carrying representations of H(R)
to representations of G(R)) and restriction (carrying representations of G(R) to representations of H(R)).
Except in a few very special cases (for example, when G/H is symmetric and we restrict attention to the
trivial representation of H(R)) these functors are poorly behaved on irreducible representations, and offer
little insight into their structure.

A more interesting situation arises when H is a Levi subgroup of a real parabolic subgroup P = HN
of G. Then we have the functor of parabolic induction, which carries irreducible representations of H(R) to
finite-length representations of G(R). (There are also various “Jacquet functors,” analogous to restriction,
carrying irreducible representations of G(R) to finite-length (sometimes only virtual) representations of

The parabolic induction functors provide the basic model for Langlands functoriality. They exhibit
a number of important features of functoriality in general, of which we will mention two. First, they are
most simply defined on the level of virtual representations. The reason is that we want to go directly from
representations of H(R) to representations of G(R). The definition of parabolic induction requires the choice
of a parabolic subgroup P with Levi subgroup H. Different choices of P lead to inequivalent representations,
but to the same virtual representations. If we work with virtual representations, we may therefore suppress
the dependence on P.

The second feature is actually hidden within the first. To get independence of P even on the level of
virtual representations, we must normalize parabolic induction using certain “p-shifts.” The definition of
these shifts requires the extraction of a square root of a character of H (on the top exterior power of the Lie
algebra of N). This character happens to be real-valued on H(R), so the square root more or less exists on
H(R). (The problem of square roots of —1 can be swept under the rug.) Nevertheless it is clear that (linear)
coverings of H are waiting in the wings.

To get correspondences from representations of a small group H to those of a larger group G that
behave like parabolic induction, we will use Theorem 1.24. It is therefore natural to begin with extended
groups (G, W) and (H", Wy), and corresponding L-groups VG and VHT. Adopting the suggestion from
the preceding paragraph that we should seek only a correspondence of virtual representations, we find that
we want something like a Z-linear map

e, : KTI(H/R) — KTI(G/R). (1.35)(a)

According to Theorem 1.24 (compare Corollary 1.26), such a map is more or less the same as the transpose
of a Z-linear map

& KX(VGY) - Kx(VHY). (1.35)(b)

(The “more or less” refers only to issues of finiteness — the difference between K and K in Corollary 1.26.)
Recall now that the Grothendieck groups in (1.35)(b) are built from equivariant constructible sheaves on
geometric parameter spaces. Bearing in mind that H is supposed to be smaller than G, we find that a
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natural source for a map like (1.35)(b) is the pullback of constructible sheaves by an equivariant morphism
of varieties. It is therefore natural to seek a morphism of pro-algebraic groups

o VH™ — vGalg, (1.35)(c)
and a compatible morphism of geometric parameter spaces
X(e): X(VH") — X(VG"). (1.35)(d)

Because the geometric parameter spaces are constructed from the L-groups, this suggests finally the definition
at the heart of the functoriality principle.

Definition 1.36 (cf. Definitions 5.1 and 26.3 below). Suppose (GF', W) and (HY, Wy) are extended
groups (Definition 1.12), with corresponding L-groups VGY and VHT. An L-homomorphism is a morphism

E:VI{F_)\/GF

respecting the homomorphisms to Gal(C/R) (cf. (1.4)(a)).

Proposition 1.37 (Corollary 6.21 and Proposition 7.18 below). Suppose (GY',W) and (H", Wy) are
extended groups with corresponding L-groups VG* and VHT, and ¢ : VHY — VG is an L-homomorphism.

a) The restriction of € to the identity component ¥ H induces a morphism of pro-algebraic groups
€o : Vg Vg

as in (1.35)(c).
b) The map € induces a morphism of geometric parameter spaces

X(e): X(VH") = X(VG")

as in (1.35)(d), compatible with the actions of VH9 and VG9 and the morphism e, of (a).
¢) Pullback of constructible sheaves via the morphism X (€) of (b) defines a Z-linear map

e KX(YGY) = KX(VH")

as in (1.35)(b).
d) The transpose of the map in (c) is a Z-linear map

€. : KII(H/R) — KII(G/R)

(cf. Corollary 1.26), which we call Langlands functoriality. It carries representations of strong real forms
of H to formal virtual characters of strong real forms of G.

The most important point about this proposition is that the relationship between H and G is entirely
on the dual group side; there may be no homomorphism from H to G dual to € in any sense. (A typical
example is provided by the split symplectic group G = Sp(2n), and the split orthogonal group H = SO(2n).
The corresponding L-groups are YG'' = SO(2n + 1) x I and VH' = SO(2n) x T, so there is an obvious
L-homomorphism as in Definition 1.36. For n at least 3, however, any homomorphism from H to G must be
trivial.) Similarly, a group homomorphism from H to G need not give rise to an L-homomorphism in general.
On the other hand, a real parabolic subgroup P = HN of G does provide an L-homomorphism. (Here “real”
should be interpreted with respect to one of the special real forms defining the extended group structure
on G.) It is not very difficult to show that in this case the Langlands functoriality map of Proposition 1.37
implements the parabolic induction functor discussed earlier; this is implicit in Proposition 26.4.

The primary motivations for studying Langlands functoriality are connected with automorphic repre-
sentation theory and the trace formula (see for example [2]); we will not discuss them further. However,
there are also purely local motivations. One is that the distribution character of the (virtual) representation
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€.(mr) can be expressed in terms of the distribution character of my. We will not explain in detail how to
do this; but in Proposition 26.4(b) we will solve the closely related problem of calculating e, in the basis of
standard representations.

In the setting of (1.34), we can now refine slightly our formulation of Arthur’s Problem D: the goal is
to find ny (o) in the image of a Langlands functoriality map e,. Choose an elliptic element

§eVG™ (1.38)(b)

representing the class o € Aleg ; this is possible by Lemma 26.20. (We may actually choose § to have finite

order in every algebraic quotient of VGal‘q.) The idea is to use the element § to construct the data (e, H)
required for Proposition 1.37. To do this, we begin by defining

Y H = identity component of centralizer in VG of 3. (1.38)(¢)

We can then define H to be a complex reductive group with dual group YH. The Arthur parameter 1
defines a Langlands parameter ¢, and therefore a geometric parameter x,, (Proposition 1.10). As a point
of a geometric parameter space, Ty is a pair (yy, Ay) (Definition 1.8), with y, an element of VG — VG
commuting with 5. Set

VH" = group generated by y, and vV H, (1.38)(d)

and let € : VHT — VGT be the identity map. Because of our choice of 3, the Arthur parameter v takes values
in the group VH'; we may write it as 1y when we wish to emphasize this.
We are now nearly in the setting of Proposition 1.37. The group Y H? inherits from VG a short exact
sequence
1—VH - VH" - Gal(C/R) — 1 (1.38)(e)

as in (1.4)(a). In particular, there is an action of Gal(C/R) on the based root datum for ¥ H and for H (see
Definition 2.10). This gives rise to an extended group structure (H™, Wy) (see Chapter 3). The reductive
group H, together with the inner class of real forms defined by the extended group structure, is an endoscopic
group for G (see Definition 26.15 and (26.17) below). Unfortunately, YH' fails to be an L-group for H'
(Definition 4.6 below) for two reasons. First, the sequence (1.38)(e) may admit no distinguished splittings.
Second, even if such splittings exist, there is no natural way to fix a vV H-conjugacy class of them. The
second of these problems is only a minor nuisance, but the first is somewhat more serious. We will postpone
discussing it for a moment in order to formulate a solution to Arthur’s Problem D.

Theorem 1.39 (cf. Theorem 26.25 below). Suppose (G, W) is an extended group with L-group VG,
Y is an Arthur parameter for G, and o € Afplg. Following (1.34), define a complex formal virtual character
Ny (o) for strong rational forms of G. Choose an elliptic representative § € VGt for o, and define VHF, €,
and (H,Wy) as in (1.88). Finally, choose any preimage 5 € VH™ for § under the map €. of (1.35)(c).

Assume that VH" is endowed with the structure of an L-group for (H,Wx). Then vy may be regarded
as an Arthur parameter for H, and §g represents a class og € Afj}g. The complex formal virtual characters

of strong rational forms of H and G defined in (1.34) are related by Langlands functoriality (Proposition
1.37) as follows:

() = €y (0m))-

We will discuss the proof of this result in a moment; first there are some formal issues to address. At
(1.34), we asked for a description of 7y (0) in terms of virtual representations like 7, (1) on smaller groups.
The right side of the formula in Theorem 1.39 involves not 1y, (1), but rather 0y, (cg). The difference is

harmless, for the following reason. The element p representing oy is central in ¥ HY (by (1.38)(c)). Its
image in VH is fixed by the action of T" on Z(VH) (by (1.38)(d)). Now Lemma 26.12 below shows that for
any strong real form 0y of H there is a non-zero complex number ¢ = Tyni (65)(55) so that

@(77111H (UH)v(SH) = C@(nﬂlH(l)vdH)' (140)
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(Here we use the notation of Definition 1.27.) If 0 is one of the distinguished (quasisplit) strong real forms
of H defining the extended group structure, then ¢ = 1.

The second formal issue is the one we postponed a moment ago: what happens when Y HT is not the
L-group for H? The answer is implicit in [35]. All of the geometry we have discussed for L-groups can still be
carried out on VHT. The resulting geometric parameter space is slightly different from the one constructed
using the L-group of H, and so it should correspond to something slightly different from representations of
real forms of H. The right objects turn out to be projective representations. The failure of ¥ H' to be an
L-group is measured by a certain cocycle (the “second invariant of an E-group” introduced in Definition
4.6 below). This same cocycle defines a class of projective representations of real forms of H (Definition
10.3). There is a version of Theorem 1.18 (Theorem 10.4 below) relating these representations to geometry
on VHY. Once all this extra formalism is assembled, Theorem 1.39 makes sense (and is true) without the
hypothesis that ¥ H' is an L-group. It is this version that is proved in Chapter 26. (Recall also that the use
of projective representations in Langlands functoriality is one of the possibilities suggested by the example
of parabolic induction.)

A third formal issue is exactly how much Theorem 1.39 is telling us about distribution characters. In
light of the remarks after Proposition 1.37 on the computability of Langlands functoriality (cf. Proposition
26.4(a) and (b)), Theorem 1.39 reduces the calculation of the complex formal virtual characters n,(o) to
the case 0 = 1. This is the case considered in Corollary 1.32, where we found that it was equivalent to an
interesting but (in general) unsolved geometric problem. (Another approach that is sometimes effective is
described in the next paragraph.)

A fourth issue in the formulation of Theorem 1.39 is the dependence of the endoscopic group H on
the choice § of a representative of 0. Simple examples show that this dependence is very strong: different
choices lead to very different endoscopic groups. For example, if the identity component of the group v Gy,
(the centralizer of the Arthur parameter 1) is not central in VG, one can choose a non-central element §
to represent 1 € Azlg . Theorem 1.39 then computes the stable character 7, (1) in terms of the same kind
of character on a strictly smaller group, bypassing the problem of computing the matrix ¢(S,S’). (More
precisely, we are showing how to compute the matrix ¢(.5,S") in the presence of a non-trivial torus action.)
The variation of H with the choices should therefore be regarded as a helpful tool, rather than as a weakness
of the result.

The last formal issue is that of computing irreducible characters. It is natural to consider the identities
(1.34)(d) for fixed ¥ and varying o, and to try to invert them to get formulas for the individual irreducible
characters ©(m) (for m € II,) as linear combinations of the formal virtual representations ny(c). This
was done by Shelstad for tempered representations in [48], and by Barbasch-Vogan for special unipotent
representations of complex groups in [7]. In both cases the result is an elementary consequence of two facts
peculiar to these cases: the representation 7y (m) of Azlg is irreducible, and the map 7 +— 7, (from Il to

/Alleg ) is injective. The second fact is certainly not true for Arthur packets in general (see Theorem 27.18
and the remarks after it). It seems likely that the first fails as well; but a counterexample would have to be
geometrically rather complicated, and we have not found one. In any case, the identities (1.34)(d) cannot
be inverted in general. We do not know whether to expect the existence of a larger set of natural identities
that could be inverted.

Here is a sketch of the proof of Theorem 1.39. After unwinding the definition in (1.34) of the virtual
representations 7y (c), and the definition in Proposition 1.37 of the Langlands functoriality map e, what
must be proved is the following formula. Suppose C is any VGalg-equivariant constructible complex on the
geometric parameter space X (VG'). Then

> (1)Ptr (o on HP(J,K;C)) =Y (=1)%r (g on H(Ju, Kp;e*(C))). (1.41)

Here J D K is the pair of spaces arising in the definition of 7, at (1.34); the cohomology is the hyperco-
homology of the pair with coefficients in the complex C. (By taking C perverse, we could arrange for this
cohomology to be zero except in one degree. But even in that case €*(C') would not necessarily be perverse,
so we would still need the alternating sum on the right.) The objects on the right are defined similarly for
H and the Arthur parameter ¢ g. The spaces J and K may be chosen invariant under the action of §; then
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the left side of (1.41) is a Lefschetz number for § acting on J D K (an automorphism of finite order). If we
recall that ¥ H was defined as the centralizer of 3, it is perhaps not surprising that Jy D Ky turns out to be
the fixed point set of §. We should be able to compute a Lefschetz number in terms of local contributions
along this fixed point set; a theorem of Goresky and MacPherson allows us to do this explicitly, leading to
(1.41). The answer is so simple because the automorphism § is of finite order. The geometric details are in
Chapter 25 (Theorem 25.8).

Shave and a haircut, two bits.
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