18.704	Gary Sivek
April 15, 2005	gsivek@mit.edu

PSp(V) is (Almost Always) Simple

Recall that PSp(2n, q) denotes the projective symplectic group on the vector space \mathbb{F}_q^{2n} . On Wednesday we worked through most of the proof that this group is almost always simple. To be exact, our goal was:

Theorem 1: Except for PSp(2,2), PSp(2,3), and PSp(4,2), every group PSp(V) is simple.

The proof was to follow Iwasawa's Theorem, restated here for convenience:

Theorem (Iwasawa): Suppose that G is faithful and primitive on a set S and that G' = G, where G' is the derived group of G. Fix $s \in S$ and set $H = \text{Stab}_G(s)$. Suppose there is a solvable subgroup $K \triangleleft H$ such that $G = \langle \bigcup \{K^x : x \in G\} \rangle$. Then G is simple.

Our first result showed that the center of the symplectic group is $Z(Sp(V)) = \{\pm 1\}$, from which we define PSp(V) = Sp(V)/Z(Sp(V)). We know that if \mathcal{T} is the subgroup of Sp(V) generated by symplectic transvections, then \mathcal{T} acts transitively on $V \setminus \{0\}$, and we saw in a previous lecture that in fact $\mathcal{T} = Sp(V)$. Since Sp(V) acts on $\mathbb{P} = \mathbb{P}_{n-1}(V)$ with kernel Z(Sp(V)), we see that PSp(V) acts faithfully and transitively on \mathbb{P} .

Proposition 2: Sp(V) is primitive on \mathbb{P} .

Proof: If n = 2 then Sp(n, q) = SL(n, q), and SL(2, q) is always doubly transitive and hence primitive. So assume $n \ge 4$, and assume for the sake of contradiction that there exists a block $S \subseteq \mathbb{P}$ with |S| > 1 and either $\sigma S = S$ or $\sigma S \cap S = \emptyset$ for all $\sigma \in \text{Sp}(V)$.

First we show there exist $[u], [v] \in S$ such that $B(u, v) \neq 0$, where B is the nondegenerate alternate form associated with the symplectic space V. If this is false, then pick $[u] \neq [v]$ and choose a function $f \in V *$ satisfying f(u) = 1 and f(v) = 0. Using a result from chapter 2 of Grove, since B is nondegenerate we can find $x \in V$ such that B(u, x) = f(u) = 1 and B(v, x) = f(v) = 0; then W = Span(u, x) is hyperbolic and we can define $H = \{\sigma \in \text{Sp}(V) : \sigma|_W = 1_W\}$. Every $\sigma \in \text{Sp}(W^{\perp})$ extends to a $\sigma' \in \text{Sp}(V) = \text{Sp}(W \oplus W^{\perp})$ with $\sigma'|_W = 1_W$, so $\text{Sp}(W^{\perp}) = \{\tau|_{W^{\perp}} : \tau \in H\}$. Choose a nonzero $w \in W^{\perp}$; since the transvections act transitively, we can find $\tau \in H$ such that $\tau v = w$; furthermore, since $u \in W$ we know $\tau u = u$, so that $[u] \in S \cap \tau S$ and thus $\tau S = S$. Now $[w] = \tau[v] \in S$ and w was arbitrary; since W^{\perp} is nonzero it contains some hyperbolic pair (y, z), and $[y], [z] \in S$. But since they are hyperbolic, B(y, z) = 1, a contradiction.

So we have $[u], [v] \in S$ with B(u, v) nonzero; assume by rescaling that (u, v) is in fact hyperbolic, and take any $[w] \in \mathbb{P}$. If $B(u, w) \neq 0$ then we may assume that (u, w) is also hyperbolic, and since \mathcal{T} acts transitively on the set of hyperbolic pairs, we can find $\sigma \in \operatorname{Sp}(V)$ such that $\sigma u = u$ and $\sigma v = w$; since $u \in S \cap \sigma S$, we have $S = \sigma S$ and so $[w] \in S$, implying $S = \mathbb{P}$. Otherwise B(u, w) = 0; as before we can find $f \in V *$ with f(u) = B(u, x) = 1 and f(w) = B(w, x) = 1, so we have two hyperbolic pairs again and we can find $\tau \in \operatorname{Sp}(V)$ such that $\tau u = w$ and $\tau x = x$. By the same reasoning as before, $[x] \in S$ and so we must have

18.704	Gary Sivek
April 15, 2005	gsivek@mit.edu

 $\tau S = S$, implying since $[w] = \tau u \in \tau S = S$ that $S = \mathbb{P}$. Thus in either case we have $S = \mathbb{P}$ and so $\operatorname{Sp}(V)$ acts primitively.

Corollary: PSp(V) also acts primitively on \mathbb{P} .

In class on Wednesday we proved the following three results, so I will not do more than sketch their proofs here.

Proposition 3: If $q \ge 4$ then Sp'(n,q) = Sp(n,q).

Proposition 4: If q = 3 and $n \ge 4$ then Sp'(n,q) = Sp(n,q).

Proposition 5: If q = 2 and $n \ge 6$ then $\operatorname{Sp}'(n, q) = \operatorname{Sp}(n, q)$.

We proved Proposition 3 by picking an arbitrary $a \in \mathbb{F}^*$, setting $c = a/(1-b^2)$, setting $d = -b^2c$, choosing $\sigma \in \operatorname{Sp}(V)$ such that $\sigma u = bu$, and showing that $\tau_{u,c}\sigma\tau_{u,c}^{-1}\sigma^{-1} = \tau_{u,a}$, thus constructing an arbitrary generator of $\operatorname{Sp}(V)$. Propositions 4 and 5 were proved by fixing symplectic bases and carefully selecting two linear transformations on those basis elements such that a specific conjugate of their commutator was an arbitrary generator of $\operatorname{Sp}(V)$.

Proof of Theorem 1: We know now that PSp(V) is primitive and faithful on \mathbb{P} , and that it is its own derived group. Fix $[u] \in \mathbb{P}$ and set $H = Stab_{Sp(V)}([u])$. Then define $\overline{H} = H/\{\pm 1\} = Stab_{PSp(V)}([u])$ and $K = \{\tau_{u,a} : a \in \mathbb{F}_q\}$. It can be shown that $K \triangleleft H$, and since $\tau_{u,a}\tau_{u,b} = \tau_{u,a+b}$ we have $K \cong \mathbb{F}_q^+$, so K is abelian. It is also a straightforward exercise to show that for $\sigma \in Sp(V)$ we have $\sigma K \supseteq \{\tau_{\sigma u,a} : a \in \mathbb{F}_q\}$, so since \mathcal{T} acts transitively we see that $\cup \{\sigma K : \sigma \in Sp(V)\}$ contains all symplectic transvections and thus generates all of Sp(V). We conclude that $\langle \overline{\sigma K} : \overline{\sigma} \in PSp(V) \rangle = PSp(V)$, completing the last condition for Iwasawa's Theorem. Thus all projective symplectic groups other than PSp(2,2), PSp(2,3), and PSp(4,2) are simple. \Box

As a final note, we must remember that Iwasawa's Theorem gives *sufficient* conditions for simplicity, not *necessary* ones, so this does not by itself prove that those three exceptions are not simple. What we find, however, is that $PSp(2,2) \cong S_3$, $PSp(2,3) \cong A_4$, and $PSp(4,2) \cong S_6$, none of which are simple. The proof of these three isomorphisms is left as an exercise to the reader.

References

- 1. Grove, L.C. Classical groups and geometric algebra, American Mathematical Society, Providence, RI, 2002.
- 2. Eric W. Weisstein. "Projective Symplectic Group." From MathWorld–A Wolfram Web Resource. http://mathworld.wolfram.com/ProjectiveSymplecticGroup.html