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Maximal parabolic subgroups in OV

Introduction

The general setting that we are working with in this paper is:
V  n-dimensional vector space over a field F with char F ̸ 2
B  non-degenerate orthogonal form on V

OV  g ∈ GLV ∣ Bgv,gw  Bv,w, where v,w ∈ V

Definition 1. Let G be a permutation group on a set  and x be an element of . Then
Gx  g ∈ G ∣ gx  x

is called the stabilizer of x and consists of all the permutations of G that
produce group fixed points in x.

Definition 2. A vector subspace S ⊂ V is isotropic if for any v,w ∈ S, the symmetric
bilinear form satisfies:

Bv,w  0
Definition 3. A maximal parabolic subgroup in an orthogonal group OV is the

stabilizer of an isotropic subspace S ⊂ V in OV.

We now propose the following variation of Witt’s Extension Theorem (proved in the text for
quadratic forms on page 41). Suppose that S and S′ are k-dimensional isotropic subspaces of
the orthogonal vector space V. Then there is an element g ∈ OV such that g  S  S′. The
proof of this theorem is very similar to the proof given on pages 1-2 of the supplementary
notes in "symparabolic.pdf". As a consequence of the above variation of Witt’s Extension
Theorem, any two subspaces S and S′ of the same dimension are conjugate by OV.

Definition 5. Let S be an isotropic subspace of V and k ≥ 0. The isotropic
Grassmannian of V is the collection of all k-dimensional isotropic
subspaces of V, namely:

IGk,V  S ⊂ V ∣ dimS  k



We know that the maximum possible dimension for an isotropic subspace S ⊂ V is the Witt
index m of V. Therefore, for each 0 ≤ k ≤ m, there is an isotropic Grassmannian IGk,V
consisting of all k-dimensional isotropic subspaces. If S is one such subspace and PS is its
stabilizer, then we have that:

IGk,V  OV/PS
Our goal in this paper is to work out the structure of PS precisely.

The structure of PS

In this section, we work out the structure of the stabilizer group PS for a k-dimensional
isotropic subspace S.

Let ei be a basis for S ≃ Fk. We wish to find T ≃ Fk, an isotropic subspace of basis of V
with basis fj such that

Bei, fj  1 whenever i  j, and
Bei, fj  0 whenever i ̸ j

For the purposes of this presentation, I will assume that we have T.

We now define W to be the orthogonal complement of S ⊕ T as follows:
W  S ⊕ T  w ∈ V ∣ Bw,ei  Bw, fi  0 1 ≤ i ≤ k

Then, by proposition 2.9 of the text, we have that:
V  S ⊕ T ⊕ W

Then, a typical element v ∈ V may be written as a triple, as follows:
v  s, t,w, where s, t ∈ Fk, and w ∈ W

The definition of W and
Bei, fj  1 whenever i  j, and
Bei, fj  0 whenever i ̸ j

show that the orthogonal form is:
Bs1, t1,w1, s2, t2,w2  t2

trs1  t1
trs2  Bw1,w2

(Note: ttr denotes the transpose of the k  1 column vector t, so the product ttrs is a scalar)



We will now describe an element of PS by saying first what it does to the elements of
Sei ≃ Fk, then to elements of Tfj ≃ Fk and then to elements of W  S ⊕ T. We will then
use the formula of the orthogonal form derived above to test whether the defined elements
represent the orthogonal form B.

What we will demonstrate is that any element of PS has a unique decomposition as the
element of GLk, element of OW and element of NS, where OW is an orthogonal group
(acting trivially on S and T) and GLk is an k  k invertible matrix g that

1. Preserves S (acting by the matrix g in the basis ei)
2. Preserves T (acting by the matrix g−1 tr in the basis fj), and
3. acts trivially on W.

And, NS is a normal subgroup of PS, consisting of elements which are acting trivially on S
and on S/S  W ⊕ S/S. The defined elements preserve the orthogonal form B.

Now, we wish to introduce the groups GLk, OW, and NS, and show that every element of
PS is
uniquely a product of these groups.

Defining OW:
As an example (from page 4 of the "symparabolic.pdf" notes), suppose D ∈ GLk,F is an
invertible k  k matrix. We define a linear transformation aD of V by

aDs, t,w  Ds, D−1 trt,w

Using the orthogonal form, we compute:
BaDs1, t1,w1,aDs2, t2,w2  BDs1, D−1 trt1, Ds2, D−1 trt2,w2

 t2
trD−1Ds1  t1

trD−1Ds2  Bw1,w2

 t2
trs1  t1

trs2  Bw1,w2

 Bs1, t1,w1, s2, t2,w2

Therefore, we see that aD ∈ OV. And, since aD preserves the subspace S, we have that
aD ∈ PS.

Defining GLk:
We begin with a skew-symmetric k  k matrix E. We then define

zEs, t,w  s  Et, t,w



It is clear that zE preserves S. To check that zE is orthogonal, we compute
BzEs1, t1,w1, zEs2, t2,w2  Bs1  Et1, t1,w1, s2  Et2, t2,w2

 t2
trs1  Et1  t1

trs2  Et2  Bw1,w2

 t2
trs1  t1

trs2  Bw1,w2  t2
trEt1 − t1

trEt2

Since Etr  E, the last two terms in the above expression cancel each other (since they are
1  1). And, the first three terms, t2

trs1  t1
trs2  Bw1,w2 are simply Bs1, t1,w1, s2, t2,w2.

This shows that zE is orthogonal. The collection
Z  zE ∣ E skew-symmetric k  k

is a subgroup of PS, with group law given by addition of skew-symmetric matrices.

We proceed by finding a normal subgroup NS of PS, consisting of elements which are
acting trivially on S and on S/S  W ⊕ S/S.

Defining NS:
An element of NS depends on two arbitrary choices:

- a linear map C : W  S and a linear map Q : T  S, given
- in the bases ei and fj by a skew-symmetric m  m matrix B

(Note: A bilinear form 〈 ,  on a vector space V is skew-symmetric if for all v ∈ V we have that
〈v,v  0).

Consider a linear map:
A : T  W

Let  be the corresponding orthogonal transformation in PS. The first requirement is that
s  s, where s ∈ S

We would like to define  such that it sends each element t ∈ T to t − At in W. But, a
subspace T where   t − At is not isotropic and so we cannot use it as part of an
orthogonal transformation.

To fix this, we introduce a correction in S by defining a linear map:
Q : T  S

which depends on A. Then, we have:
t  t  At  Qt



Using the identifications that S ≃ Fk and T ≃ Fk, the linear map Q can be represented by a
k  k matrix Q. Using the orthogonal form that we defined previously, we see that the
requirement that vectors in  span an isotropic space is:

t2
trQt1  t1

trQt2  BWAt1,At2, where t1, t2 ∈ T

We now define Q to be the strictly upper triangular k  k matrix satisfying
t2
trQt1  t1

trQt2  BWAt1,At2, where t1, t2 ∈ T
More specifically, Qij, the i, j-entry of Q is:

Qij  BWAfj,Afi, where 1 ≤ i ≤ j ≤ k

Now, we define  on W in such a way that it is an identity on W. However, W is not orthogonal
to T. Therefore, we introduce another correction in S by defining a linear map:

C : W  S
which depends on A. Then we have:

w  w  Cw

Again, Using the orthogonal form that we defined previously, we see that the requirement that
W be orthogonal to T can be written as:

ttrCw  BWAt,w, where t ∈ T and w ∈ W
We can now define C completely in terms of A. We note that the linear map A : T  W is
determined by the k vectors

Aei  wi, where wi ∈ W
And, each of the vectors wi define a linear function ciw  BWwi,w. Now, consider the i-th
such function (ie. ciw) to be the i-th coordinate function of C : W  S, where S ≃ Fk.
Therefore, we have:



Cw 
c1w


ckw



BWw1,w


BWwk,w



BWAe1,w


BWAek,w

Finally, having defined Q : T  S and C : W  S, we define the orthogonal map:
s, t,w  s  Cw  Qt, t,w  At


