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Maximal parabolic subgroups in OV

Introduction

The general setting that we are working with in this paper is:
V  n-dimensional vector space over a field F with char F ̸ 2
B  non-degenerate orthogonal form on V

OV  g ∈ GLV ∣ Bgv,gw  Bv,w, where v,w ∈ V

Definition 1. Let G be a permutation group on a set  and x be an element of . Then
Gx  g ∈ G ∣ gx  x

is called the stabilizer of x and consists of all the permutations of G that
produce group fixed points in x.

Definition 2. A vector subspace S ⊂ V is isotropic if for any v,w ∈ S, the symmetric
bilinear form satisfies:

Bv,w  0
Definition 3. A maximal parabolic subgroup in an orthogonal group OV is the

stabilizer of an isotropic subspace S ⊂ V in OV.

We now propose the following variation of Witt’s Extension Theorem (proved in the text for
quadratic forms on page 41). Suppose that S and S′ are k-dimensional isotropic subspaces of
the orthogonal vector space V. Then there is an element g ∈ OV such that g  S  S′. The
proof of this theorem is very similar to the proof given on pages 1-2 of the supplementary
notes in "symparabolic.pdf". As a consequence of the above variation of Witt’s Extension
Theorem, any two subspaces S and S′ of the same dimension are conjugate by OV.

Definition 5. Let S be an isotropic subspace of V and k ≥ 0. The isotropic
Grassmannian of V is the collection of all k-dimensional isotropic
subspaces of V, namely:

IGk,V  S ⊂ V ∣ dimS  k



We know that the maximum possible dimension for an isotropic subspace S ⊂ V is the Witt
index m of V. Therefore, for each 0 ≤ k ≤ m, there is an isotropic Grassmannian IGk,V
consisting of all k-dimensional isotropic subspaces. If S is one such subspace and PS is its
stabilizer, then we have that:

IGk,V  OV/PS
Our goal in this paper is to work out the structure of PS precisely.

The structure of PS

In this section, we work out the structure of the stabilizer group PS for a k-dimensional
isotropic subspace S.

Let ei be a basis for S ≃ Fk. We wish to find T ≃ Fk, an isotropic subspace of basis of V
with basis fj such that

Bei, fj  1 whenever i  j, and
Bei, fj  0 whenever i ̸ j

For the purposes of this presentation, I will assume that we have T.

We now define W to be the orthogonal complement of S ⊕ T as follows:
W  S ⊕ T  w ∈ V ∣ Bw,ei  Bw, fi  0 1 ≤ i ≤ k

Then, by proposition 2.9 of the text, we have that:
V  S ⊕ T ⊕ W

Then, a typical element v ∈ V may be written as a triple, as follows:
v  s, t,w, where s, t ∈ Fk, and w ∈ W

The definition of W and
Bei, fj  1 whenever i  j, and
Bei, fj  0 whenever i ̸ j

show that the orthogonal form is:
Bs1, t1,w1, s2, t2,w2  t2

trs1  t1
trs2  Bw1,w2

(Note: ttr denotes the transpose of the k  1 column vector t, so the product ttrs is a scalar)



We will now describe an element of PS by saying first what it does to the elements of
Sei ≃ Fk, then to elements of Tfj ≃ Fk and then to elements of W  S ⊕ T. We will then
use the formula of the orthogonal form derived above to test whether the defined elements
represent the orthogonal form B.

What we will demonstrate is that any element of PS has a unique decomposition as the
element of GLk, element of OW and element of NS, where OW is an orthogonal group
(acting trivially on S and T) and GLk is an k  k invertible matrix g that

1. Preserves S (acting by the matrix g in the basis ei)
2. Preserves T (acting by the matrix g−1 tr in the basis fj), and
3. acts trivially on W.

And, NS is a normal subgroup of PS, consisting of elements which are acting trivially on S
and on S/S  W ⊕ S/S. The defined elements preserve the orthogonal form B.

Now, we wish to introduce the groups GLk, OW, and NS, and show that every element of
PS is
uniquely a product of these groups.

Defining OW:
As an example (from page 4 of the "symparabolic.pdf" notes), suppose D ∈ GLk,F is an
invertible k  k matrix. We define a linear transformation aD of V by

aDs, t,w  Ds, D−1 trt,w

Using the orthogonal form, we compute:
BaDs1, t1,w1,aDs2, t2,w2  BDs1, D−1 trt1, Ds2, D−1 trt2,w2

 t2
trD−1Ds1  t1

trD−1Ds2  Bw1,w2

 t2
trs1  t1

trs2  Bw1,w2

 Bs1, t1,w1, s2, t2,w2

Therefore, we see that aD ∈ OV. And, since aD preserves the subspace S, we have that
aD ∈ PS.

Defining GLk:
We begin with a skew-symmetric k  k matrix E. We then define

zEs, t,w  s  Et, t,w



It is clear that zE preserves S. To check that zE is orthogonal, we compute
BzEs1, t1,w1, zEs2, t2,w2  Bs1  Et1, t1,w1, s2  Et2, t2,w2

 t2
trs1  Et1  t1

trs2  Et2  Bw1,w2

 t2
trs1  t1

trs2  Bw1,w2  t2
trEt1 − t1

trEt2

Since Etr  E, the last two terms in the above expression cancel each other (since they are
1  1). And, the first three terms, t2

trs1  t1
trs2  Bw1,w2 are simply Bs1, t1,w1, s2, t2,w2.

This shows that zE is orthogonal. The collection
Z  zE ∣ E skew-symmetric k  k

is a subgroup of PS, with group law given by addition of skew-symmetric matrices.

We proceed by finding a normal subgroup NS of PS, consisting of elements which are
acting trivially on S and on S/S  W ⊕ S/S.

Defining NS:
An element of NS depends on two arbitrary choices:

- a linear map C : W  S and a linear map Q : T  S, given
- in the bases ei and fj by a skew-symmetric m  m matrix B

(Note: A bilinear form 〈 ,  on a vector space V is skew-symmetric if for all v ∈ V we have that
〈v,v  0).

Consider a linear map:
A : T  W

Let  be the corresponding orthogonal transformation in PS. The first requirement is that
s  s, where s ∈ S

We would like to define  such that it sends each element t ∈ T to t − At in W. But, a
subspace T where   t − At is not isotropic and so we cannot use it as part of an
orthogonal transformation.

To fix this, we introduce a correction in S by defining a linear map:
Q : T  S

which depends on A. Then, we have:
t  t  At  Qt



Using the identifications that S ≃ Fk and T ≃ Fk, the linear map Q can be represented by a
k  k matrix Q. Using the orthogonal form that we defined previously, we see that the
requirement that vectors in  span an isotropic space is:

t2
trQt1  t1

trQt2  BWAt1,At2, where t1, t2 ∈ T

We now define Q to be the strictly upper triangular k  k matrix satisfying
t2
trQt1  t1

trQt2  BWAt1,At2, where t1, t2 ∈ T
More specifically, Qij, the i, j-entry of Q is:

Qij  BWAfj,Afi, where 1 ≤ i ≤ j ≤ k

Now, we define  on W in such a way that it is an identity on W. However, W is not orthogonal
to T. Therefore, we introduce another correction in S by defining a linear map:

C : W  S
which depends on A. Then we have:

w  w  Cw

Again, Using the orthogonal form that we defined previously, we see that the requirement that
W be orthogonal to T can be written as:

ttrCw  BWAt,w, where t ∈ T and w ∈ W
We can now define C completely in terms of A. We note that the linear map A : T  W is
determined by the k vectors

Aei  wi, where wi ∈ W
And, each of the vectors wi define a linear function ciw  BWwi,w. Now, consider the i-th
such function (ie. ciw) to be the i-th coordinate function of C : W  S, where S ≃ Fk.
Therefore, we have:



Cw 
c1w


ckw



BWw1,w


BWwk,w



BWAe1,w


BWAek,w

Finally, having defined Q : T  S and C : W  S, we define the orthogonal map:
s, t,w  s  Cw  Qt, t,w  At


