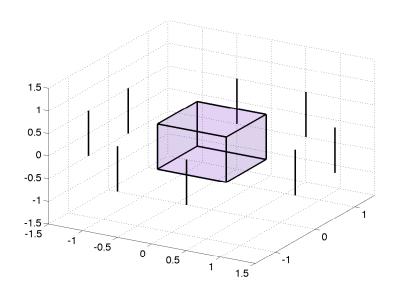
On the unitary dual of classical and exceptional real split groups.

Alessandra Pantano, University of California, Irvine MIT, March, 2010



PLAN OF THE TALK

petite K-types

 \Downarrow

unitarizability of

?

Langlands quotients

for real split groups

unitarizability of

Langlands quotients

for Hecke algebras

- Part 1. Spherical unitary dual of affine graded Hecke algebras
- Part 2. Unitary dual of real split groups
- Part 3. Petite K-types
- Part 4. Embedding of unitary duals

PART 1 Spherical unitary dual of affine graded Hecke algebras

Affine graded Hecke algebras

- $(X, \Delta, \check{X}, \check{\Delta})$: root datum, with simple roots Π and Weyl group W
- $\mathfrak{h} := X \otimes_{\mathbb{Z}} \mathbb{C}$ and $\mathbb{A} := Sym(\mathfrak{h})$.

The affine graded Hecke algebra for Δ is $\mathbb{H} := \mathbb{C}[W] \otimes \mathbb{A}$.

generators: $\{t_{s_{\alpha}} : \alpha \in \Pi\} \cup \{\omega : \omega \in \mathfrak{h}\}$

relations: $t_{s_{\alpha}}^2 = 1$; $\omega t_{s_{\alpha}} = t_{s_{\alpha}} s_{\alpha}(\omega) + \langle \omega, \check{\alpha} \rangle$ $\alpha \in \Pi, \omega \in \mathfrak{h}$

Example: type A1.

$$\diamond \ \mathbb{C}[W] = \mathbb{C}1 + \mathbb{C}t_{s_{\alpha}} \ (t_{s_{\alpha}}^2 = 1), \quad \mathbb{A} = Sym(\mathbb{C}\alpha)$$

$$\diamond \ \alpha t_{s_{\alpha}} = -t_{s_{\alpha}}\alpha + 2.$$

 \diamond Elements of $\mathbb{H} := \mathbb{C}[W] \otimes \mathbb{A}$ are of the form: $p(\alpha) + q(\alpha)t_{s_{\alpha}}$.

Spherical Unitary H-modules

The Hecke algebra $\mathbb{H} := \mathbb{C}[W] \otimes \mathbb{A}$ has a \star -operation.

Let V be an \mathbb{H} -module.

- V is **spherical** if it contains the trivial representation of W.
- V is **Hermitian** if it has a non-degenerate invariant Hermitian form:

$$\langle x \cdot v_1, v_2 \rangle + \langle v_1, x^* \cdot v_2 \rangle = 0$$
 $x \in \mathbb{H}, v_1, v_2 \in V$.

• V is unitary if \langle,\rangle is positive definite.

Spherical Langlands quotients of \mathbb{H}

- $\diamond \ \nu \in \check{\mathfrak{h}} \simeq \mathfrak{h}^* : \text{real and dominant}$
- $\diamond \mathbb{C}_{\nu}$: the corresponding character of $\mathbb{A} = Sym(\mathfrak{h})$

Spherical Principal Series $X(\nu) := \mathbb{H} \otimes_{\mathbb{A}} \mathbb{C}_{\nu}$ (\mathbb{H} acts on the left)

 $X(\nu)$ is spherical, dim $\operatorname{Hom}_W(triv, X(\nu)) = 1$.

Langlands Quotient $L(\nu) :=$ unique irreducible quotient of $X(\nu)$

Every irreducible spherical \mathbb{H} -module (with real central character) is isomorphic to $L(\nu)$ for some ν dominant.

An Hermitian form on $L(\nu)$

- $\diamond w_0$: longest Weyl group element
- $\diamond L(\nu)$ is Hermitian if and only if $w_0\nu = -\nu$.

In this case, Barbasch and Moy define a (normalized) intertwining operator

$$A(w_0,\nu)\colon X(\nu)\to X(w_0\nu)$$

such that

- $A(w_0, \nu)$ has no poles
- The image of $A(w_0, \nu)$ is $L(\nu)$, hence $L(\nu) \simeq \frac{X(\nu)}{Ker(A(w_0, \nu))}$
- $A(w_0, \nu)$ gives a non-deg. invariant Hermitian form on $L(\nu)$.

$$\forall \psi \in \widehat{W}$$
, we find an operator $A_{\psi}(w_0, \nu)$ on V_{ψ}^* . $(A_{triv}(w_0, \nu) = 1.)$

The operator $A_{\psi}(w_0, \nu)$ on the W-type ψ

 $A_{\psi}(w_0, \nu)$ decomposes a product of operators corresponding to simple reflections.

If $w_0 = s_{\alpha_1} s_{\alpha_2} \cdots s_{\alpha_n}$ is a reduced decomposition of w_0 in W, then

$$A_{\psi}(w_0, \nu) = \prod_{i=1}^{n} A_{\psi}(s_{\alpha_i}, \nu_{i-1})$$

with $\nu_i = s_{\alpha_{n+1-i}} \cdots s_{\alpha_{n-1}} s_{\alpha_n} \nu$.

Each factor acts on V_{ψ}^* , and has the form

$$A_{\psi}(s_{\alpha}, \gamma) := \frac{Id + \langle \alpha, \gamma \rangle \psi(s_{\alpha})}{1 + \langle \alpha, \gamma \rangle}$$

$$(+1)\text{-eigensp. of }\psi(s_{\alpha}) \qquad \qquad (-1)\text{-eigensp. of }\psi(s_{\alpha}) \\ \hline \\ \hline \\ 1 \\ \hline \\ (+1)\text{-eigensp. of }\psi(s_{\alpha}) \qquad \qquad (-1)\text{-eigensp. of }\psi(s_{\alpha}) \\ \hline \\ (+1)\text{-eigensp. of }\psi(s_{\alpha}) \qquad \qquad (-1)\text{-eigensp. of }\psi(s_{\alpha}) \\ \hline \\ (-1)\text{-eigensp. of }\psi(s_{\alpha}) \qquad \qquad (-1)\text{-eigensp. of }\psi(s_{\alpha}) \\ \hline \\ (-1)\text{-eigensp. of }\psi(s_{\alpha}) \qquad (-1)\text{-eigensp. of }\psi(s_{\alpha}) \\ \hline \\ (-1)\text{-eigensp. of }\psi(s_{\alpha}) \qquad (-1)\text{-eigensp. of }\psi(s_{\alpha}) \\ \hline \\ (-1)\text{-eigensp. of }\psi(s_{\alpha}) \qquad (-1)\text{-eigensp. of }\psi(s_{\alpha}) \\ \hline \\ (-1)\text{-eigensp. of }\psi(s_{\alpha}) \qquad (-1)\text{-eigensp. of }\psi(s_{\alpha}) \\ \hline \\ (-1)\text{-eigensp. of }\psi(s_{\alpha}) \qquad (-1)\text{-eigensp. of }\psi(s_{\alpha}) \\ \hline \\ (-1)\text{-eigensp. of }\psi(s_{\alpha}) \qquad (-1)\text{-eigensp. of }\psi(s_{\alpha}) \\ \hline \\ (-1)\text{-eigensp. of }\psi(s_{\alpha}) \qquad (-1)\text{-eigensp. of }\psi(s_{\alpha}) \\ \hline \\ (-1)\text{-eigensp. of }\psi(s_{\alpha}) \qquad (-1)\text{-eigensp. of }\psi(s_{\alpha}) \\ \hline \\ (-1)\text{-eigensp. of }\psi(s_{\alpha}) \qquad (-1)\text{-eigensp. of }\psi(s_{\alpha}) \\ \hline \\ (-1)\text{-eigensp. of }\psi(s_{\alpha}) \qquad (-1)\text{-eigensp. of }\psi(s_{\alpha}) \\ \hline \\ (-1)\text{-eigensp. of }\psi(s_{\alpha}) \qquad (-1)\text{-eigensp. of }\psi(s_{\alpha}) \\ \hline \\ (-1)\text{-eigensp. of }\psi(s_{\alpha}) \qquad (-1)\text{-eigensp. of }\psi(s_{\alpha}) \\ \hline \\ (-1)\text{-eigensp. of }\psi(s_{\alpha}) \qquad (-1)\text{-eigensp. of }\psi(s_{\alpha}) \\ \hline \\ (-1)\text{-eigensp. of }\psi(s_{\alpha}) \qquad (-1)\text{-eigensp. of }\psi(s_{\alpha}) \\ \hline \\ (-1)\text{-eigensp. of }\psi(s_{\alpha}) \qquad (-1)\text{-eigensp. of }\psi(s_{\alpha}) \\ \hline \\ (-1)\text{-eigensp. of }\psi(s_{\alpha}) \qquad (-1)\text{-eigensp. of }\psi(s_{\alpha}) \\ \hline \\ (-1)\text{-eigensp. of }\psi(s_{\alpha}) \qquad (-1)\text{-eigensp. of }\psi(s_{\alpha}) \\ \hline \\ (-1)\text{-eigensp. of }\psi(s_{\alpha}) \qquad (-1)\text{-eigensp. of }\psi(s_{\alpha}) \\ \hline \\ (-1)\text{-eigensp. of }\psi(s_{\alpha}) \qquad (-1)\text{-eigensp. of }\psi(s_{\alpha}) \\ \hline \\ (-1)\text{-eigensp. of }\psi(s_{\alpha}) \qquad (-1)\text{-eigensp. of }\psi(s_{\alpha}) \\ \hline \\ (-1)\text{-eigensp. of }\psi(s_{\alpha}) \qquad (-1)\text{-eigensp. of }\psi(s_{\alpha}) \\ \hline \\ (-1)\text{-eigensp. of }\psi(s_{\alpha}) \qquad (-1)\text{-eigensp. of }\psi(s_{\alpha}) \\ \hline \\ (-1)\text{-eigensp. of }\psi(s_{\alpha}) \qquad (-1)\text{-eigensp. of }\psi(s_{\alpha}) \\ \hline \\ (-1)\text{-eigensp. of }\psi(s_{\alpha}) \qquad (-1)\text{-eigensp. of }\psi(s_{\alpha}) \\ \hline \\ (-1)\text{-eigensp. of }\psi(s_{\alpha}) \qquad (-1)\text{-eigensp. of }\psi(s_{\alpha}) \\ \hline \\ (-1)\text{-eigensp. of }\psi(s_{\alpha}) \qquad (-1)\text{-eigensp. of }\psi(s_{\alpha}) \\ \hline \\ (-1)\text{-eigensp. of }\psi(s_{\alpha}) \qquad (-1)\text{-eigens$$

Untarity of a spherical Langlands Quotient

$$L(\nu)$$
 is unitary $\Leftrightarrow A_{\psi}(w_0, \nu)$ is positive semi-definite, $\forall \psi \in \widehat{W}$

Barbasch and Ciubotaru found a small subset of \widehat{W} which is sufficient to detect unitarity. These are the *relevant W-types*.

A_{n-1}	$\{(n-m,m): 0 \le m \le [n/2]\}$
B_n, C_n	$\{(n-m,m)\times(0)\colon 0\le m\le [n/2]\}$
	$\cup \{(n-m) \times (m) \colon 0 \le m \le n\}$
D_n	$\{(n-m,m)\times(0)\colon 0\le m\le [n/2]\}$
	$\cup \{(n-m)\times (m)\colon 0\leq m\leq [n/2]\}$
G_2	$\{1_1, 2_1, 2_2\}$
F_4	$\{1_1, 4_2, 2_3, 8_1, 9_1\}$
E_6	$\{1_p,6_p,20_p,30_p,15_q\}$
E_7	$\{1_a,7_a',27_a,56_a',21_b',35_b,105_b\}$
E_8	$\{1_x, 8_z, 35_x, 50_x, 84_x, 112_z, 400_z, 300_x, 210_x\}$

Spherical Unitary dual of a Hecke algebra of type A1

In type A1, there are two W-types (triv and sgn).

 $L(\nu)$ is unitary if and only if $A_{\psi}(w_0, \nu)$ is positive semidefinite for $\psi = triv$ and sgn.

Because w_0 has length one, the intertwining operator has a single factor:

$$A_{\psi}(w_0, \nu) = A_{\psi}(s_{\alpha}, \nu) := \frac{Id + \langle \alpha, \nu \rangle \psi(s_{\alpha})}{1 + \langle \alpha, \nu \rangle}.$$

$\psi \mid \psi(s_{lpha})$		$A_{\psi}(w_0,\nu)$		
triv	1	1		
sgn	-1	$\frac{1-\nu}{1+\nu}$		

 \Rightarrow $L(\nu)$ is unitary for $0 \le \nu \le 1$.

 $\mathbb{H}(A1)$

$$0 \quad 1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6 \quad 7 \qquad \chi$$

Spherical Unitary dual of a Hecke algebra of type B2

Here $w_0 = s_{e_1-e_2}s_{e_2}s_{e_1-e_2}s_{e_2}$. For $\nu = (a,b), A_{\psi}(w_0,\nu)$ factors as:

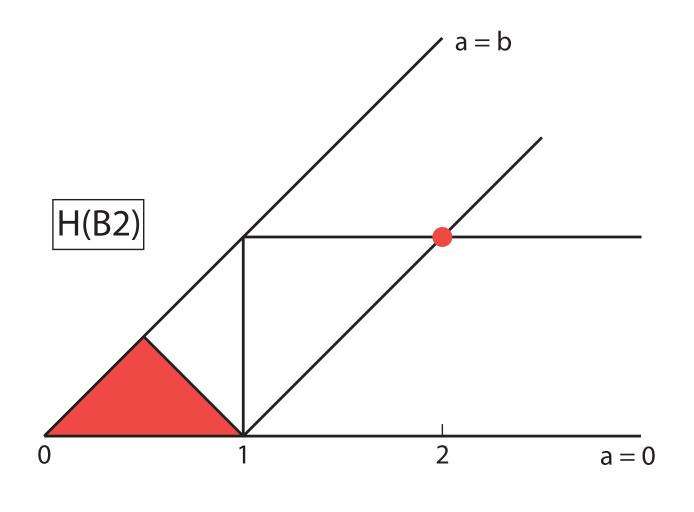
$$A_{\psi}(s_{e_1-e_2},(-b,-a))A_{\psi}(s_{e_2},(-b,a))A_{\psi}(s_{e_1-e_2},(a,-b))A_{\psi}(s_{e_2},(a,b))$$

The factors are computed using the formula:

$$A_{\psi}(s_{\alpha}, \gamma) = \frac{Id + \langle \alpha, \gamma \rangle \psi(s_{\alpha})}{1 + \langle \alpha, \gamma \rangle}.$$

$\psi \in \widehat{W}_{rel}$	$\psi(s_{e_1-e_2})$	$\psi(s_{e_2})$	the operator $A_{\psi}(w_0, \nu)$
2×0	1	1	$1 \cdot 1 \cdot 1 \cdot 1$
11×0	-1	1	$\frac{1-(a-b)}{1+(a-b)} \cdot 1 \cdot \frac{1-(a+b)}{1+(a+b)} \cdot 1$
0×2	1	-1	$1 \cdot \frac{1-a}{1+a} \cdot 1 \cdot \frac{1-b}{1+b}$
1×1	$\left(\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array}\right)$	$\left(\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array}\right)$	$tr. 2\frac{1+a^2-a^3b-b^2+ab+ab^3}{(1+a)(1+b)[1+(a-b)][1+(a+b)]}$ $det \frac{1-a}{1+a}\frac{1-b}{1+b}\frac{1-(a-b)}{1+(a-b)}\frac{1-(a+b)}{1+(a+b)}$

Spherical unitary dual of a Hecke algebra of type B2



The spherical unitary dual of a Hecke algebra

- \diamond H: affine graded Hecke algebra with root system Δ
- \diamond g: complex Lie algebra associated to Δ

The spherical unitary dual of \mathbb{H} is a union of sets (complementary series) parameterized by nilpotent orbits in \mathfrak{g} .

Fix an orbit \mathcal{O} and its Lie triple $\{e, h, f\}$. The centralizer in \mathfrak{g} of the Lie triple is a reductive Lie subalgebra, denoted $\mathcal{Z}_{\mathfrak{g}}(\mathcal{O})$. The complementary series attached to \mathcal{O} , denoted by $CS(\mathcal{O})$, is the set of all parameters ν such that

- $L(\nu)$ is unitary
- \bullet O is the maximal nilpotent orbit with the property

$$\nu = \frac{1}{2}h + \chi$$
, with $\chi \in \mathcal{Z}_{\mathfrak{g}}(\mathcal{O})$.

Complementary series attached to nilpotent orbits

Fix a Hecke algebra \mathbb{H} and an orbit \mathcal{O} . Barbasch and Ciubotaru reduce the problem of finding the complementary series $CS(\mathcal{O})$ of \mathbb{H} to the problem of detecting the zero-complementary series CS(0) of the centralizer of \mathcal{O} .

With a few exceptions (one orbit for F4 and E_7 , and 6 orbits for E8), they prove that

$$\nu = \frac{1}{2}h + \chi \in CS_{\mathbb{H}}(\mathcal{O}) \Leftrightarrow \chi \in CS_{\mathbb{H}(\mathcal{Z}(\mathcal{O}))}(0).$$

The zero-complementary series

$$CS(0) = \{\nu \colon X(\nu) \text{ is unitary and irreducible}\}\$$

is known explicitly (for all root systems). It is a union of alcoves in the complement of the reduciblity hyperplanes: $\langle \alpha, \nu \rangle = 1$, $\alpha \in \Delta^+$.

Spherical unitary dual of a Hecke algebra of type B2

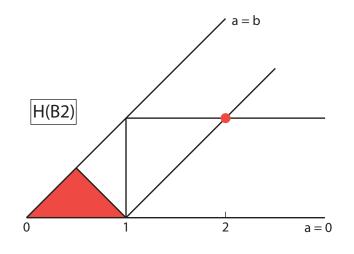
Complementary series are attached to nilpotent orbits in $\mathfrak{so}(5,\mathbb{C})$.

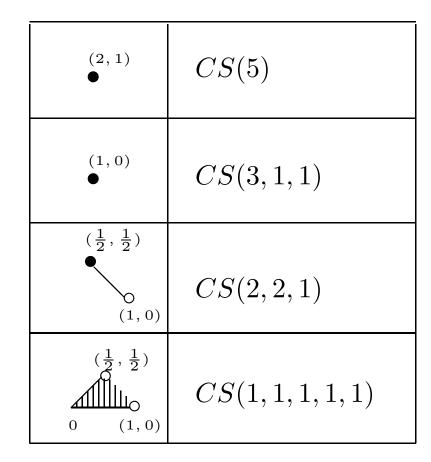
$$\nu = \frac{1}{2}h + \chi \in CS_{\mathbb{H}}(\mathcal{O}) \Leftrightarrow \chi \in CS_{\mathbb{H}(\mathcal{Z}(\mathcal{O}))}(0).$$

The zero-complementary series for the centralizers are known.

O	$\frac{1}{2}h$	$\chi \in \mathcal{Z}(\mathcal{O})$	$\frac{1}{2}h + \chi \in CS_{\mathbb{H}}(\mathcal{O})$
5	(1,2)	(0,0)	(1,2)
311	(0,1)	(a,0)	(a,1) a = 0
221	$\left(-\frac{1}{2},\frac{1}{2}\right)$	(a,a)	$\left(-\frac{1}{2} + a, \frac{1}{2} + a\right)$ $0 \le a < \frac{1}{2}$
11111	(0,0)	(a,b)	(a,b) $0 \le a \le b < 1 - a < 1$

Spherical unitary dual of a Hecke algebra of type B2





PART 2 Unitary dual of (double cover of) real split groups

Real split groups

Δ	$oldsymbol{G}$	$K \subset G$ (maximal compact)		
A_n	$SL(n+1,\mathbb{R})$	SO(n+1)		
B_n	$SO(n+1,n)_0$	$SO(n+1) \times SO(n)$		
C_n	$Sp(2n,\mathbb{R})$	U(n)		
D_n	$SO(n,n)_0$	$SO(n) \times SO(n)$		
G_2	G_2	$SU(2) \times SU(2)/\{\pm I\}$		
F_4	F_4	$Sp(1) \times Sp(3)/\{\pm I\}$		
E_6	E_6	$Sp(4)/\{\pm I\}$		
$oldsymbol{E_7}$	E_7	$SU(8)/\{\pm I\}$		
E_8	E_8	$Spin(16)/\{I,w\}$		

Fine K-types

For each root α we choose a Lie algebra homomorphism

$$\phi_{\alpha} \colon \mathfrak{sl}(2,\mathbb{R}) \to \mathfrak{g}_0$$

whose image is a subalgebra of \mathfrak{g}_0 isomorphic to $\mathfrak{sl}(2,\mathbb{R})$. Then $Z_{\alpha} := \phi_{\alpha} \left(\begin{smallmatrix} 0 & 1 \\ -1 & 0 \end{smallmatrix} \right)$ is a generator for an $\mathfrak{so}(2)$ -subalgebra of \mathfrak{k}_0 .

A K-type $\mu \in \widehat{K}$ is level k if $||\gamma|| \le k$ for every root α and every eigenvalue γ of $d\mu(Z_{\alpha})$.

K-types of level $\leq \frac{1}{2}$ are called "pseudospherical"; the ones of level ≤ 1 are "fine".

Every $\delta \in \widehat{M}$ is contained in a fine K-type μ_{δ} (maybe not unique). Every M-type in the W-orbit of δ appears in μ_{δ} with multiplicity 1.

Minimal Principal Series

 $\bullet \ \, \textbf{Parameters} \, \begin{cases} P = MAN & \text{minimal parabolic subgroup} \\ (\delta, \, V^\delta) \in \widehat{M} \\ \nu \in \widehat{A} \simeq \mathfrak{a}^* & \textit{real and weakly dominant} \end{cases}$

• Principal Series
$$X(\delta, \nu) = \operatorname{Ind}_{P=MAN}^G(\delta \otimes \nu \otimes triv)$$

 $\forall \mu \in \widehat{K}, \operatorname{mult}(\mu, X(\delta, \nu)|_K) = \operatorname{mult}(\delta, \mu|_M).$

G	P = MAN	$M \simeq \mathbb{Z}_2$	$A \simeq \mathbb{R}_{>0}$	δ	ν
$SL_2(\mathbb{R})$	$ \left(\begin{array}{cc} a & b \\ 0 & a^{-1} \end{array}\right) $	$\pm I$	$ \left(\begin{array}{cc} a & 0 \\ 0 & a ^{-1} \end{array}\right) $	$triv \\ sgn$	$\nu \geq 0$

$$\widehat{K} \simeq \mathbb{Z}, \ n|_{M} = \begin{cases} triv & if \ n \in 2\mathbb{Z} \\ sgn & if \ n \in 2\mathbb{Z} + 1 \end{cases}, \ X(\delta, \nu)|_{SO(2)} = \begin{cases} \bigoplus_{n} 2n & if \ \delta = triv \\ \bigoplus_{n} 2n + 1 & if \ \delta = sgn \end{cases}$$

The Langlands quotient $L(\delta, \nu)$

For simplicity, assume, that δ is contained in a unique fine K-type μ_{δ} .

 $L(\delta, \nu)$ =unique irreducible quotient of $X(\delta, \nu)$ containing μ_{δ}

If $w_0 \in W$ is the longest element, there is an intertwining operator

$$A(w_0, \delta, \nu) \colon X(\delta, \nu) \to X(w_0 \delta, w_0 \nu)$$

(normalized on μ_{δ}) such that

- $A(w_0, \delta, \nu)$ has no poles
- The (closure of the) image of $A(w_0, \delta, \nu)$) is $L(\delta, \nu)$. Hence

$$L(\delta, \nu) = \frac{X(\delta, \nu)}{Ker(A(w_0, \delta, \nu))}.$$

Unitarity of the Langlands quotient $L(\delta, \nu)$

 $L(\delta, \nu)$ is Hermitian if and only if

$$w_0\delta \simeq \delta$$
 and $w_0\nu = -\nu$.

In this case, the (normalized) operator

$$\mathcal{A}(w_0, \delta, \nu) := \mu_{\delta}(w_0) A(w_0, \delta, \nu) \colon X(\delta, \nu) \to X(\delta, -\nu)$$

induces a non-degenerate invariant Hermitian form on $L(\delta, \nu)$.

For every $\mu \in \widehat{K}$, there is an operator $\mathcal{A}_{\mu}(w_0, \delta, \nu)$ on $\operatorname{Hom}_{M}(\mu, \delta)$. $(\mathcal{A}_{\mu_{\delta}}(w_0, \delta, \nu) = 1.)$

 $L(\delta,
u)$ is unitary if and only if the operator $\mathcal{A}_{\mu}(w_0, \delta,
u)$ is positive semidefinite, $orall \mu \in \widehat{K}$

 \Rightarrow We should compute the signature of infinitely many operators.

The operator $\mathcal{A}_{\mu}(w_0, \delta, \nu)$ on the K-type μ

Fix a K-type μ . The operator $\mathcal{A}_{\mu}(w_0, \delta, \nu)$ can be written as a product of operators corresponding to *simple* reflections.

If $w_0 = s_{\alpha_1} s_{\alpha_2} \cdots s_{\alpha_1}$ is a reduced decomposition of w_0 in W, then

$$\mathcal{A}_{\mu}(w_0, \delta, \nu) = \prod_{i=1}^{n} \mathcal{A}_{\mu}(s_{\alpha_i}, \delta_{i-1}, \nu_{i-1})$$

with $\nu_i = s_{\alpha_{n+1-i}} \cdots s_{\alpha_{n-1}} s_{\alpha_n} \nu$, and $\delta_i = s_{\alpha_{n+1-i}} \cdots s_{\alpha_{n-1}} s_{\alpha_n} \delta$.

Note that the full operator $\mathcal{A}_{\mu}(w_0, \delta, \nu)$ acts on $\text{Hom}_M(\mu, \delta)$, but the factors might not.

[The reflections move δ around in its W-orbit.]

The "
$$\alpha$$
-factor" $\mathcal{A}_{\mu}(s_{\alpha}, \rho, \gamma)$

An " α -factor" of the full intertwining operator is a map

$$\mathcal{A}_{\mu}(s_{\alpha}, \rho, \gamma) \colon \operatorname{Hom}_{M}(\mu, \rho) \to \operatorname{Hom}_{M}(\mu, s_{\alpha}\rho).$$

Here ρ and $s_{\alpha}\rho$ are two M-types in the W-orbit of δ . They can both be realized inside μ_{δ} (our fixed fine K-type containing δ).

Let Z_{α} be a generator for the $\mathfrak{so}(2)$ -subalgebra attached to α . Then Z_{α}^2 acts on $\operatorname{Hom}_M(\mu, \rho)$; decompose $\operatorname{Hom}_M(\mu, \rho)$ in Z_{α}^2 -eigenspaces:

$$\operatorname{Hom}_M(\mu,\rho) = \bigoplus_l E^{\alpha,\rho}(-l^2)$$

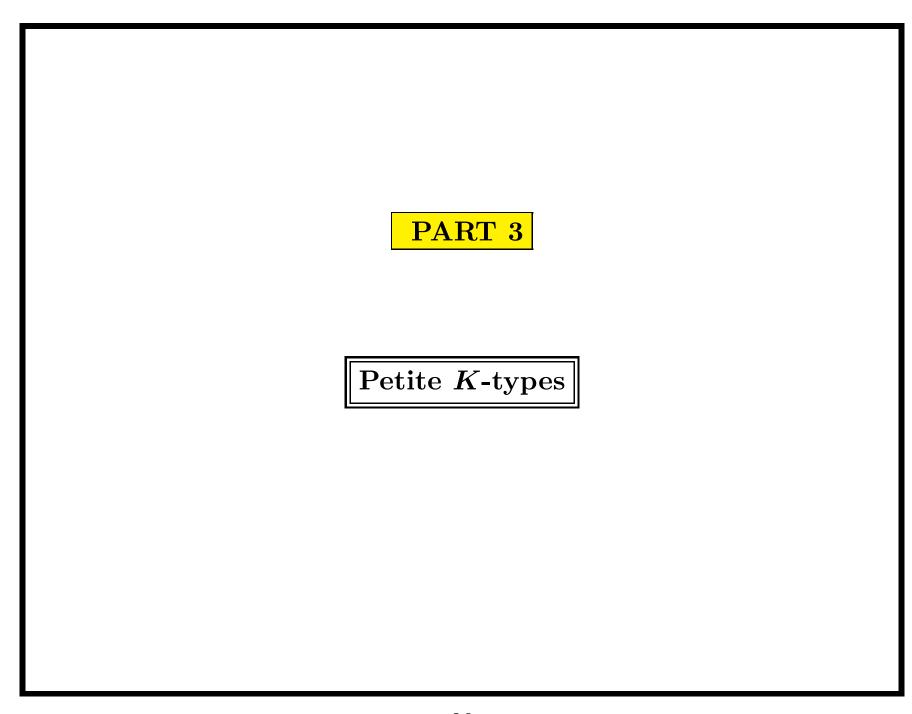
[Here $l \in \mathbb{Z} + \frac{1}{2}$ if δ is genuine and α is metaplectic; $l \in \mathbb{Z}$ otherwise.]

The operator
$$\mathcal{A}_{\mu}(s_{\alpha}, \rho, \gamma)$$
 maps $E^{\alpha, \rho}(-l^2) \to E^{\alpha, s_{\alpha} \rho}(-l^2), \forall l$, acting by:
$$T \mapsto c_l(\alpha, \gamma) \mu_{\delta}(\sigma_{\alpha}) \circ T \circ \mu(\sigma_{\alpha}^{-1}).$$

The scalars $c_l(\alpha, \gamma)$

Let $l \in \frac{1}{2}\mathbb{Z}$, $l \geq 0$. Set $\xi = \langle \gamma, \check{\alpha} \rangle$. Then $c_l(\alpha, \gamma)$ is equal to

- 1 if l = 0, 1 or $\frac{1}{2}$ (for the normalization)
- $\left| (-1)^{l/2} \frac{(1-\xi)(3-\xi)\cdots(2m-1-\xi)}{(1+\xi)(3+\xi)\cdots(l-1+\xi)} \right| \text{ if } l \in 2\mathbb{N}$
- $\left| (-1)^{(l-1)/2} \frac{(2-\xi)(4-\xi)\cdots(l-1-\xi)}{(2+\xi)(4+\xi)\cdots(l-1+\xi)} \right|$ if $l \in 2\mathbb{N}+1$
- $\left| (-1)^{(l+1/2)/2} \frac{(\frac{1}{2} \xi)(\frac{5}{2} \xi) \cdots (l-1-\xi)}{(\frac{1}{2} + \xi)(\frac{3}{2} + \xi) \cdots (l-1+\xi)} \right| \text{ if } l \in \frac{3}{2} + 2\mathbb{N}$
- $\left| (-1)^{(l-1)/2} \frac{(\frac{3}{2} \xi)(\frac{7}{2} \xi) \cdots (l-1-\xi)}{(\frac{3}{2} + \xi)(\frac{7}{2} + \xi) \cdots (l-1+\xi)} \right| \text{ if } l \in \frac{5}{2} + 2\mathbb{N}$



The idea of petite K-types

The unitarity of $L(\delta, \nu)$ is hard to detect:

- \diamond It depends on the signature of *infinitely many* operators (one for each K-type)
- \diamond The computations are hard if the K-type is "large".

To make the problem easier:

- 1. Select a small set of "petite" K-types on which the computations are easy.
- 2. Compute operators only for petite K-types, hoping that the calculation will rule out large non-unitarity regions.

This approach will provide necessary conditions for unitarity:

 $L(\delta, \nu)$ unitary $\Rightarrow \mathcal{A}_{\mu}(w_0, \delta, \nu)$ pos. semidefinite, $\forall \mu$ petite

Main feature of petite K-types

The operators $\{A_{\mu}(\delta, \nu) : \mu \ petite\}$ resemble operators for affine graded Hecke algebras.

unitarizability of unitarizability of Langlands quotients $\stackrel{relate}{\Longleftrightarrow}$ Langlands quotients for real split groups for Hecke algebras

Petite K-types

For each root α and each M-type ρ , there is an action of Z_{α}^2 on the space $\text{Hom}_M(\mu, \rho)$, defined by

$$T \to T \circ \mathrm{d}\mu(Z_{\alpha})^2$$
.

If μ_{δ} is a fine K-type containing δ , we look at the action of Z_{α}^{2} on the space

$$\operatorname{Hom}_{M}(\mu, \mu_{\delta}) = \bigoplus_{\delta_{i} \in W \text{-orbit of } \delta} \operatorname{Hom}_{M}(\mu, \delta_{i}).$$

Definition. A K-type is called "petite for δ " if the eigenvalues of Z^2_{α} on $\operatorname{Hom}_M(\mu, \mu_{\delta})$ are of the form $-k^2$ with $|k| \leq 2$, $\forall \alpha \in \Delta$.

This is a restriction on the eigenvalues of Z_{α}^2 on the isotypic component in μ of every M-type in the W-orbit of δ .

Corollary. K-types of level ≤ 2 are petite for every δ .

Main theorem

 \diamond G: real split group associated to a root system Δ

 \diamond δ : an M-type for G, with fine K-type μ_{δ}

 $\diamond W^{\delta}$: stabilizer of δ in W; Δ_{δ} : good roots for δ

 \diamond \mathbb{H} : affine graded Hecke algebra for $\begin{cases} \Delta_{\delta} & \text{if } \delta \text{ is genuine} \\ \check{\Delta_{\delta}} & \text{otherwise.} \end{cases}$

Theorem. For each K-type μ , there is a representation ψ_{μ} of the stabilizer W^{δ} on the space $\operatorname{Hom}_{M}(\mu, \delta)$. When μ is *petite*, the correspondence

$$\mu \in \widehat{K} \Longrightarrow \psi_{\mu} \in \widehat{W^{\delta}}$$

gives rise to a matching of intertwining operators:

$$\mathcal{A}_{\mu}^{G}(w_0, \, \delta, \nu) = A_{\psi_{\mu}}^{\mathbb{H}}(w_0, \tilde{\nu}) \,.$$

The spherical case: $\delta = \delta_0$ is trivial

If $\delta = \delta_0$ is trivial, every reflection stabilizes δ . So

$$\diamond W^{\delta_0} = W$$

$$\diamond \ \Delta_{\delta_0} = \Delta$$

$$\diamond \boxed{\mathbb{H}} = \boxed{\text{Hecke algebra with root system } \check{\Delta}} \leftarrow \begin{bmatrix} \delta_0 \ non\text{-}genuine \\ take \ \check{\Delta_{\delta_0}} \end{bmatrix}$$

Theorem. If μ is petite for δ_0 and ψ_{μ} is the representation of W on $\text{Hom}_M(\mu, \delta_0)$, then

$$\mathcal{A}_{\mu}^{G}(w_{0},\delta_{0},\nu) \equiv A_{\psi_{\mu}}^{\mathbb{H}}(w_{0},\tilde{\nu})$$

The spherical case: $\delta = \delta_0$ is trivial

• Decompose $\mathcal{A}_{\mu}(w_0, \delta, \nu)$ in " α -factors"

$$\mathcal{A}_{\mu}(s_{\alpha}, \rho, \lambda) \colon \operatorname{Hom}_{M}(\mu, \rho) \to \operatorname{Hom}_{M}(\mu, s_{\alpha}\rho)$$

(with ρ an M-type in the W-orbit of δ).

• If $\delta = \delta_0$, then $\rho = s_{\alpha}\rho = \delta_0$, so every factor

$$\mathcal{A}_{\mu}(s_{\alpha}, \rho, \lambda) \in \operatorname{End}(\operatorname{Hom}_{M}(\mu, \delta_{0}))$$

- Hom_M(μ, δ_0) carries a repr. ψ_{μ} of W, and an action of $d\mu(Z_{\alpha}^2)$.
- Decompose $\operatorname{Hom}_M(\mu, \delta_0)$ in eigenspaces of $d\mu(Z_\alpha^2)$:

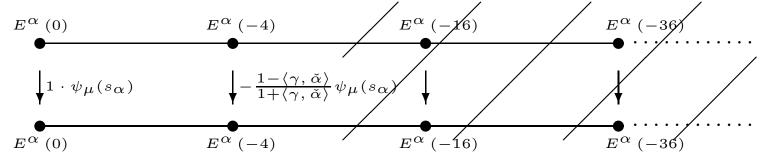
$$\operatorname{Hom}_{M}(\mu, \delta_{0}) = \bigoplus_{m \in \mathbb{N}} E^{\alpha}(-4m^{2}).$$

• $\mathcal{A}_{\mu}(s_{\alpha}, \rho, \lambda)$ acts on acts on $E^{\alpha}(-4m^2)$ by

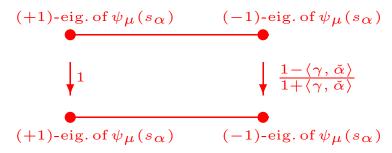
$$T \mapsto \underbrace{c(\alpha, \gamma, 2m)}_{a \, scalar} \underbrace{\mu_{\delta}(\sigma_{\alpha}) T(\mu(\sigma_{\alpha})^{-1})}_{\psi_{\mu}(s_{\alpha})T}.$$

Petite Spherical K-types

If the K-type μ is petite for δ_0 , then $(V_{\mu}^*)^M = E^{\alpha}(0) \oplus E^{\alpha}(-4)$.



The spaces $E^{\alpha}(0)$ and $E^{\alpha}(-4)$ coincide with the (+1)- and (-1)-eigenspace of $\psi_{\mu}(s_{\alpha})$, respectively.



this is an operator

Hence
$$\mathcal{A}_{\mu}(s_{\alpha}, \delta_{0}, \lambda) = \frac{I + \langle \gamma, \check{\alpha} \rangle \psi_{\mu}(s_{\alpha})}{1 + \langle \gamma, \check{\alpha} \rangle}$$
. \longleftarrow for a Hecke algebra with root system $\check{\Delta}$

The pseudospherical case

If δ is pseudospherical, every reflection stabilizes δ . So

$$\diamond \ W^{\delta} = W$$

$$\diamond \Delta_{\delta} = \Delta$$

$$\diamond \boxed{\mathbb{H}} = \boxed{\text{Hecke algebra with root system } \Delta} \leftarrow \frac{\delta \ genuine}{take \ \Delta_{\delta}}$$

If μ is petite for δ and ψ_{μ} is the representation of W on $\operatorname{Hom}_{M}(\mu, \delta)$, then

$$\mathcal{A}_{\mu}^{G}(w_{0},\delta,\nu) \equiv A_{\psi_{\mu}}^{\mathbb{H}}(w_{0},\tilde{\nu})$$

The pseudospherical case

Similar to the spherical case:

- The stabilizer of δ is W.
- Every " α -factor" is an endomorphism of $\operatorname{Hom}_M(\mu, \delta)$.
- Hom_M(μ, δ) carries a repr. ψ_{μ} of W and an action of $d\mu(Z_{\alpha})^2$.
- Decompose $\operatorname{Hom}_M(\mu, \delta)$ in \mathbb{Z}^2_{α} -eigenspaces:

$$\operatorname{Hom}_M(\mu, \delta) = \bigoplus_{l \in \mathbb{N}/2} E^{\alpha}(-l^2).$$

(Here $l \in 2\mathbb{N} + \frac{1}{2}$ if α is metaplectic, and $l \in 2\mathbb{N}$ otherwise.)

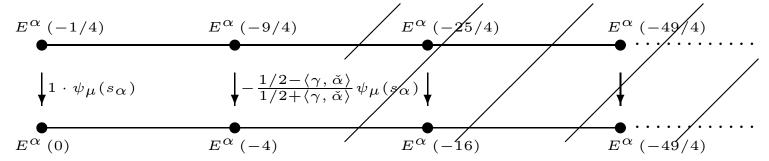
• $\mathcal{A}_{\mu}(s_{\alpha}, \rho, \lambda)$ acts on acts on $E^{\alpha}(-l^2)$ by

$$T \mapsto \underbrace{c(\alpha, \gamma, l)}_{a \, scalar} \underbrace{\mu_{\delta}(\sigma_{\alpha}) T(\mu(\sigma_{\alpha})^{-1})}_{\psi_{\mu}(s_{\alpha}) T}.$$

The scalar depends on whether α is metaplectic or not.

Petite K-types for δ pseudospherical (α metaplectic)

In this case, $(V_{\mu}^*)^M = E^{\alpha}(-1/4) \oplus E^{\alpha}(-9/4)$.



The spaces $E^{\alpha}(-1/4)$ and $E^{\alpha}(-9/4)$ coincide with the (+1)- and (-1)-eigenspace of $\psi_{\mu}(s_{\alpha})$, respectively.

$$(+1)\text{-eig. of }\psi_{\mu}(s_{\alpha}) \qquad (-1)\text{-eig. of }\psi_{\mu}(s_{\alpha})$$

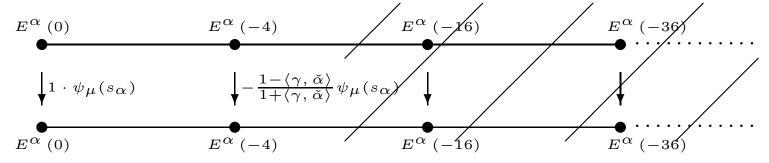
$$\downarrow 1 \qquad \qquad \qquad \frac{1/2 - \langle \gamma, \check{\alpha} \rangle}{1/2 + \langle \gamma, \check{\alpha} \rangle} = \frac{1 - \langle \gamma, \alpha \rangle}{1 + \langle \gamma, \alpha \rangle}$$

$$(+1)\text{-eig. of }\psi_{\mu}(s_{\alpha}) \qquad (-1)\text{-eig. of }\psi_{\mu}(s_{\alpha})$$

Hence
$$\mathcal{A}_{\mu}(s_{\alpha}, \delta_{0}, \lambda) = \frac{I + \langle \gamma, \alpha \rangle \psi_{\mu}(s_{\alpha})}{1 + \langle \gamma, \alpha \rangle}$$
. $\longleftarrow \frac{operator}{for \mathbb{H}(\Delta)}$

Petite K-types for δ pseudospherical (α not metaplectic)

In this case, $(V_{\mu}^*)^M = E^{\alpha}(0) \oplus E^{\alpha}(-4)$.



The spaces $E^{\alpha}(0)$ and $E^{\alpha}(-4)$ coincide with the (+1)- and (-1)-eigenspace of $\psi_{\mu}(s_{\alpha})$, respectively.

$$(+1)\text{-eig. of }\psi_{\mu}(s_{\alpha}) \qquad (-1)\text{-eig. of }\psi_{\mu}(s_{\alpha})$$

$$\downarrow 1 \qquad \qquad \qquad \frac{1-\langle \gamma, \check{\alpha} \rangle}{1+\langle \gamma, \check{\alpha} \rangle} = \frac{1-\langle \gamma, \alpha \rangle}{1+\langle \gamma, \alpha \rangle}$$

$$(+1)\text{-eig. of }\psi_{\mu}(s_{\alpha}) \qquad (-1)\text{-eig. of }\psi_{\mu}(s_{\alpha})$$

Hence
$$\mathcal{A}_{\mu}(s_{\alpha}, \delta_{0}, \lambda) = \frac{I + \langle \gamma, \alpha \rangle \psi_{\mu}(s_{\alpha})}{1 + \langle \gamma, \alpha \rangle}$$
. $\longleftarrow \frac{operator}{for \mathbb{H}(\Delta)}$

The non-spherical non-pseudospherical case

In this case, not every reflection stabilizes δ .

$$\diamond W^{\delta} \subset W \text{ and } \Delta_{\delta} \subset \Delta$$

Theorem. If μ is petite for δ and ψ_{μ} is the representation of W^{δ} on $\operatorname{Hom}_{M}(\mu, \delta)$, then

$$\mathcal{A}_{\mu}^{G}(w_{0},\delta,\nu) \equiv A_{\psi_{\mu}}^{\mathbb{H}}(w_{0},\tilde{\nu})$$

These operators decompose as a product of " α -factors", mimicking a minimal decomposition of w_0 in W and in W^{δ} respectively. Hence $\mathcal{A}_u^G(w_0, \delta, \nu)$ has more factors.

Choose a minimal decompositions of w_0 in W^{δ} :

$$w_0 = s_{\beta_1} s_{\beta_2} \cdots s_{\beta_r}.$$

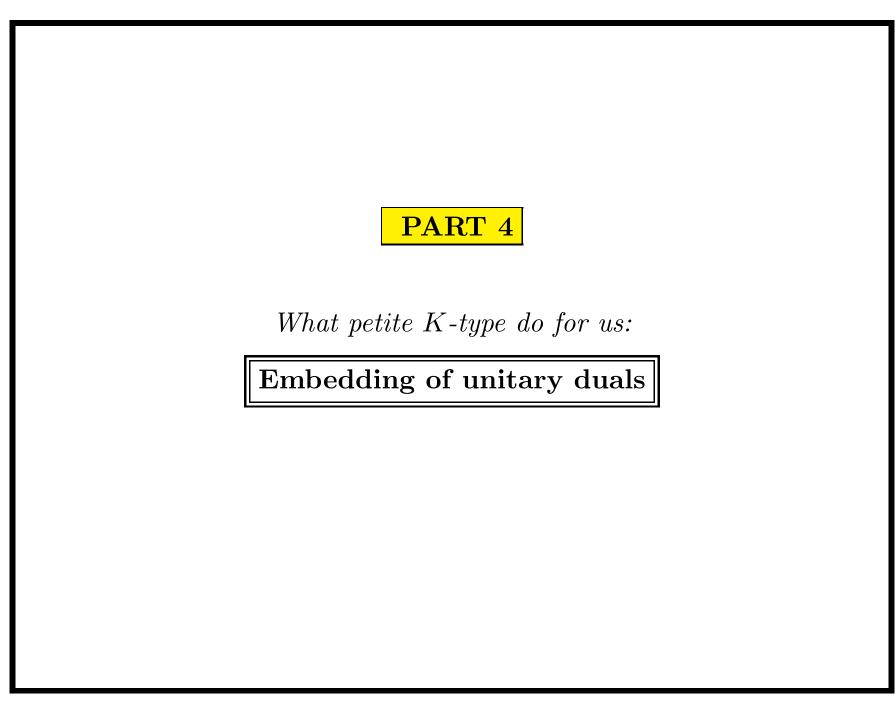
Every root s_{β} which is simple in both W^{δ} and W gives rise to

$$\begin{array}{ccc} \text{a single} & & = \begin{cases} \frac{I + \langle \gamma, \beta \rangle \psi_{\mu}(s_{\beta})}{1 + \langle \gamma, \beta \rangle} & \text{if } \delta \text{ is genuine} \\ \\ \text{of } \mathcal{A}_{\mu}^{G}(w_{0}, \delta, \nu) & & \frac{I + \langle \gamma, \check{\beta} \rangle \psi_{\mu}(s_{\beta})}{1 + \langle \gamma, \check{\beta} \rangle} & \text{otherwise.} \end{cases}$$

Every root s_{β} which is simple in W^{δ} but not simple in W gives rise to

$$\begin{array}{|c|c|c|c|}\hline \text{a product} \\ \text{of factors} \\ \text{of } \mathcal{A}_{\mu}^G(w_0,\delta,\nu) \end{array} = \begin{cases} \frac{I + \langle \gamma,\beta \rangle \psi_{\mu}(s_{\beta})}{1 + \langle \gamma,\beta \rangle} & \text{if δ is genuine} \\ \\ \frac{I + \langle \gamma,\check{\beta} \rangle \psi_{\mu}(s_{\beta})}{1 + \langle \gamma,\check{\beta} \rangle} & \text{otherwise.} \end{cases}$$

This product reflects a minimal factorization of s_{β} in W.



A matching of petite K-types with relevant W^{δ} -types

If μ is petite, the correspondence

$$\mu \in \widehat{K} \to \psi_{\mu} = \operatorname{Hom}_{M}(\mu, \delta) \in \widehat{W^{\delta}}$$

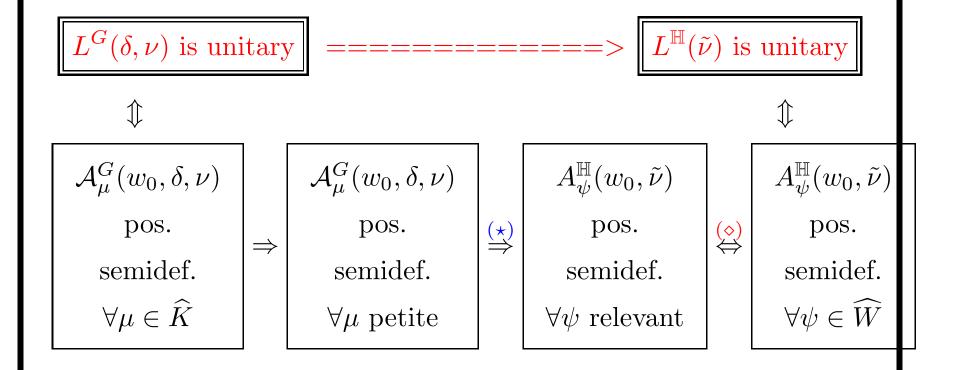
gives rise to a matching of operators:

$$\mathcal{A}_{\mu}^{G}(w_{0},\delta,\nu) \equiv A_{\psi_{\mu}}^{\mathbb{H}}(w_{0},\tilde{\nu}).$$

Theorem. If set $\{\psi_{\mu} : \mu \in \widehat{K} \text{ petite}\}$ includes all the relevant W^{δ} -types, then we obtain an embedding of unitary duals:

An embedding of unitary duals

Suppose that for each **relevant** W^{δ} -type ψ , there is a **petite** K-type μ such that $\psi_{\mu} = \psi$. (*).



(\diamond) Relevant W-types detect unitarity for \mathbb{H} . [Barbasch-Ciubotaru]

Spherical unitary duals for split groups

Theorem [Barbasch] If $\delta = \delta_0$, the matching holds for all real split groups G. Let \mathbb{H} be the affine graded Hecke algebra with root system dual to the one of G. Then

this is an equality for classical groups

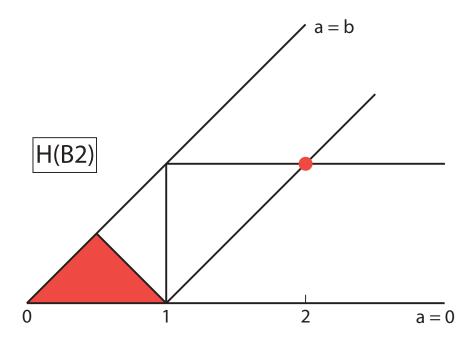
This gives us:

- the full spherical unitary dual of real split classical groups
- non-unitarity certificates for spherical representations of real split exceptional groups.

An example: the spherical unitary dual of Sp(4)

Let \mathbb{H} be an affine graded algebra of type B2.

The spherical unitary dual of Sp(4) embeds into the one of $\mathbb{H}(B2)$:



Actually, they are equal.

Pseudospherical unitary duals for split groups

Theorem [Adams, Barbasch, Paul, Trapa, Vogan] Let δ be pseudospherical. The matching holds for the double cover of every real split group of classical type. Let $\mathbb H$ be the affine graded Hecke algebra with the same root system as G. Then

pseudosph. unitary dual of G \subseteq spherical unitary dual of $\mathbb H$ \uparrow

this is an equality for Mp(2n)

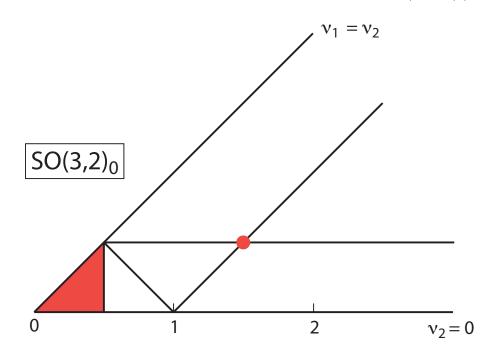
This gives us:

- the full pseudospherical unitary dual of Mp(2n)
- non-unitarity certificates for the other classical groups.

An example: the pseudospherical unitary dual of Mp(4)

Let \mathbb{H} be an affine graded algebra Hecke of type C2.

The pseudospherical unitary dual of Mp(4) coincides with the spherical unitary dual of \mathbb{H} (which, in turn, coincides with the spherical unitary dual of of SO(3,2)).



Genuine complementary series of Mp(2n)

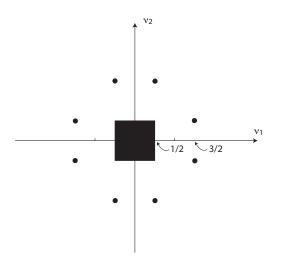
Genuine M-types of Mp(2n) are parameterized by pairs of non-negative integers (p,q) with p+q=n. If $\delta=\delta^{p,q}$, then $\Delta_{\delta}=C_p\times C_q$.

Theorem [Paul, P., Salamanca] The matching holds for every genuine M-type $\delta^{p,q}$ of Mp(2n). Let \mathbb{H} be the affine graded Hecke algebra for the root system $C_p \times C_q$. Then

an equality for $n \leq 4$ (all p, q), and for some special families of parameters (all n)

[Barbasch]: spherical unitary dual of $\mathbb{H} = spherical unitary dual of SO(p+1,p) \times SO(q+1,q)$.

$CS(Mp(6), \delta^{2,1}) = CS(SO(3, 2)_0, \delta_0) \times CS(SO(2, 1)_0, \delta_0)$



 $CS(SO(3,2)_0,\delta_0)$

 $CS(SO(2,1)_0,\delta_0)$



 $CS(Mp(6), \delta^{2,1})$ equals the product

Complementary series of $SO(n+1,n)_0$

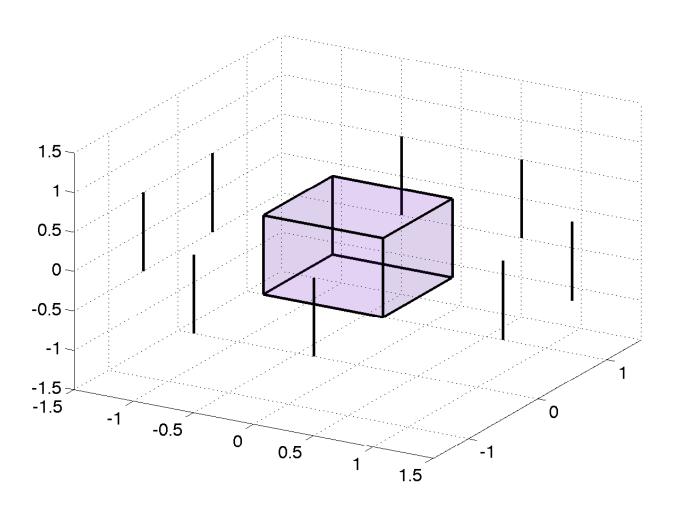
M-types of $SO(n+1,n)_0$ are parameterized by pairs of non-negative integers (p,q) with p+q=n. If $\delta=\delta^{p,q}$, then $\Delta_{\delta}=B_p\times B_q$.

Theorem [Paul, P., Salamanca] The matching holds for every M-type $\delta^{p,q}$ of $SO(n+1,n)_0$. Let \mathbb{H} be affine graded Hecke algebra for the root system $C_p \times C_q$. Then

$$CS(SO(n+1,n)_0,\delta^{p,q}) \subseteq \text{ spherical unitary dual of } \mathbb{H}$$

an equality for $n \leq 4$ (all p, q), and for some special families of parameters (all n)

[Barbasch]: spherical unitary dual of $\mathbb{H} = spherical unitary dual of SO(p+1,p) \times SO(q+1,q)$.



The double cover of split E6

joint with D.Barbasch

repr. of \tilde{M}	note	dim	Δ_{δ}	matching
δ_1	trivial	1	E6	√
δ_8	pseudosph.	8	E6	$NO\left(\star ight)$
δ_{27}	non-genuine	$27 \cdot 1$	D_5	√
δ_{36}	non-genuine	$36 \cdot 1$	A_5A_1	√

(*) One relevant W(E6)-type is missing.

The double cover of split F4

joint with D.Barbasch

$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	note	dim	Δ_{δ}	matching
δ_1	trivial	1	F4	√
δ_2	pseudosph.	2	F4	\checkmark
δ_3	non-genuine	$3 \cdot 1$	C4	$No\left(\star ight)$
δ_6	genuine	$3 \cdot 2$	B4	$No\left(\diamond ight)$
δ_{12}	non-genuine	$12 \cdot 1$	$B3 \times A_1$	√

- (*) One relevant W(C4)-type is missing.
- (\diamond) Two relevant W(B4)-types are missing.