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In this lecture, we will be introduce hyperbolic planes and prove a couple of results

about them and their applications. Throughout these notes, it will be assumed that

we are working over a field F with char 6= 2.

Recall from the lecture on bilinear forms, that a bilinear form B on V is a function

B : V × V 7→ F which becomes linear in one variable if the other variable is fixed.

Any bilinear form has a corresponding representational matrix B̂ relative to a basis

{vi} of V . The matrix consists of entries bij = B(vi, vj) for all i,j. Also, B is called

• symmetric if B(v, w) = B(w, v) for all v, w ∈ V ;

• alternate if B(v, v) = 0 for all v ∈ V ;

• reflexive if B(v, w) = 0 =⇒ B(w, v) = 0. (Proposition 2.7 in the text also

shows that B is reflexive iff it is either symmetric or alternate).

Hyperbolic Planes: Case of an Alternate Bilinear Form on V

Definition. Given a vector space V with an alternate bilinear form B on V , we

call a pair of vectors u, v ∈ V a hyperbolic pair if B(u, v) = 1. Consequently, the

subspace H ∈ V spanned by (u, v) will be called a hyperbolic plane.

We can construct a hyperbolic plane in V by choosing a hyperbolic pair (u, v) in

the following way: for some linearly independent û, v̂ ∈ V such that B(û, v̂) = b 6= 0,
1
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set u = b−1û, and v = v̂. Notice that B(u, u) = 0 and B(v, v) = 0 as well as

B(u, v) = B(b−1û, v̂) = b−1B(û.v̂) = b−1b = 1. Thus, (u, v) is a hyperbolic pair in V

and the space H = 〈u, v〉 is a hyperbolic plane. Moreover, as the following theorem

shows, V can be represented using a set of mutually orthogonal hyperbolic planes.

Theorem. If B is an alternating form on V , then

V = W1 � W2 � · · ·� Wr � radV,

a direct sum of mutually orthogonal subspaces with each Wi a hyperbolic plane.

Proof. The proof will proceed by induction on dimension n of the space V .

If B=0, then radV = V and we are done.

Suppose the result is true for spaces of dimension less than or equal to n. Consider

a space V with dimension n+1 and the same bilinear form B. Choose a hyperbolic

pair (u, v) in V as described above. Let the hyperbolic plane spanned by u,v be

W1. The restriction matrix of B to subspace W1, relative to the basis (u, v), is 0 1

−1 0

. Since the determinant of this matrix is 1, then discrB |W1 6= 0, and thus

W1 is a nondegenerate subspace of V relative to B. Proposition 2.9 of the text

states that for a reflexive form B on space V and nondegenerate subspace W , V

is a direct sum of W and its complement. This proposition applies to B since

alternate bilinear forms are also reflexive, and we get that V = W1 � W1
⊥. Since

dim(W⊥
1 ) = dim(V )− dim(W1) = n− 1, the subspace W⊥

1 can be represented as a

direct sum of mutually orthogonal hyperbolic planes and rad(W⊥
1 ).

Notice that, conveniently, radV = V ⊥ = (W1 � W⊥)⊥ = W⊥
1 ∩W⊥

1
⊥

= rad(W⊥
1 ).

Therefore, we now have a representation of n+1-dimensional space V as a direct sum
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of mutually orthogonal hyperbolic planes and radV . By induction, the statement of

the theorem is true.

Hyperbolic Planes: Case of a Symmetric Bilinear Form on V

Of course we can extend the definition of a hyperbolic plane to vector spaces with

bilinear forms that are not alternate. In particular, let us consider a vector space V

with a bilinear form B that is symmetric. Since having an alternate bilinear form

guaranteed that for u, v ∈ V , we have B(u, u) = B(v, v) = 0, now we will have to

impose this condition on basis vectors of a hyperbolic plane in a different way.

Definition. Given a vector space V with a symmetric bilinear form B, define qua-

dratic form Q corresponding to B as a function Q : V 7→ F with Q(v) = B(v, v).

It is easy to see that for all a ∈ F and v ∈ V , we get Q(av) = a2Q(v) - hence the

name of the form. Also, one should keep in mind that even though we define Q in as

a quadratic form associated with B, the bilinear form B is completely determined by

Q: B(u, v) = 1
2
[Q(u + v)−Q(u)−Q(v)]. (This expression is derived by evaluating

Q(u + v) using the above definition and then solving the resulting equation for

B(u, v).) Now, we are ready to give the definition of a hyperbolic plane in a space

with a symmetric form.

Definition. Given B a nondegenerate symmetric bilinear form on V , for u, v ∈ V ,

we call (u, v) a hyperbolic pair if B(u, v) = 1, and Q(u) = 0, Q(v) = 0. The subspace

of V spanned by a hyperbolic pair is a hyperbolic plane.

A space with such bilinear form, i.e. with a nondegenerate symmetric bilinear

form, is called a quadratic space. This is the terminology we will use throughout the

rest of the notes. (Note: we need the bilinear form to be nondegenerate in order to
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make sure that B(u, v) = 1. Allowing the bilinear form to have zero determinant of

the corresponding matrix B̂, would also allow B̂ to have all diagonal entries as 0.

In such case, B(vi, vi) = Q(vi) = 0 for all i, and hence B(u, v) = 0 for all u, v ∈ V .

We can also see that nondegeneracy of the form restricted to the hyperbolic plane

〈u, v〉 = H is implied from B̂H =

0 1

1 0

, whose determinant is 1.)

Witt’s Cancellation Theorem

Definition. If V is a vector space with quadratic form Q, then vector v ∈ V , v 6= 0

is called

• isotropic if Q(v) = 0;

• anisotropic if Q(v) 6= 0. (Note: v = 0 is also taken to be anisotropic.)

Space V is called isotropic if it contains at least one isotropic vector. If all vectors

in V are isotropic, we will say that V is totally isotropic.

Definition. Given V , a quadratic space with bilinear form B, an isometry of V

is defined to be any linear transformation σ : V 7→ V such that for all u, v ∈ V ,

B(σu, σv) = B(u, v).

Theorem. (Witt’s Cancellation Theorem). Suppose that U1 and U2 are nondegen-

erate subspaces of a quadratic space V and that σ : U1 7→ U2 is an isometry. Then

U⊥
1 and U⊥

2 are also isometric.

Proof. The proof will proceed by induction on the dimension of U1.

For base case, suppose that U1 = 〈u1〉, U2 = 〈u2〉, that is dimU1 = 1. Since U1

and U2 are nondegenerate subspaces, Q(u1) and Q(u2) are nonzero. Without loss

of generality, assume that σu1 = σu2. Then, Q(u1) = Q(u2). It is not difficult to

verify that the equality Q(u1 ± u2) = 2Q(u1)± 2B(u1, u2) implies that only one of
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Q(u1 + u2) and Q(u1 − u2) can be 0. Thus, at least one of them, say Q(u1 − u2) is

nonzero. (The case that is worked out in the book is Q(u1 + u2) 6= 0, and it is very

similar.)

Since Q(u1) = Q(u2), and B(u1+u2, u1−u2) = Q(u1)−Q(u2) = 0, then (u1−u2) ⊥

(u1 + u2). Hence, σu1−u2(u1 + u2) = (u1 + u2) (*). Notice that we can represent

u1 the following way: u1 = 1
2
(u1 + u2) + 1

2
(u1 − u2). Using equation (*) and this

representation of u1, we get that σu1−u2(u1) = σu1−u2([frac12(u1+u2)]+[frac12(u1−

u2)]) = [1
2
(u1 + u2)]− [1

2
(u1 − u2)] = u2. And in general, σu1−u2(〈u1〉) = 〈u2〉. Since

σ is an isometry, then by definition, B(σ(e〈u1〉), σ(〈u1〉⊥)) = B(〈u1〉, 〈u1〉⊥) = 0, i.e.

σ(〈u1〉⊥) = (σ(〈u1〉))⊥ = 〈u2〉⊥, and thus U⊥
1 and U⊥

2 are isometric for our base case

of dimU1 = 1.

Assume that the theorem is true for U1 of dimension less than or equal to n.

Consider a nondegenerate subspace U1 of V , dimU1 = n + 1. Pick u ∈ U1, an

anisotropic vector. Let the subspace of 〈u⊥〉 in U1 be W1. Since 〈u〉 is nondegenerate,

then U1 = 〈u〉 � W1. Let σu1 = u2, and σW1 = W2, then since σ is an isometry,

u2 is anisotropic and hence 〈u2〉 is nondegenerate and U2 = 〈u2〉 � W2. Thus we

can represent V in two ways: V = (〈u1〉 � W1) � U⊥
1 = 〈u2〉 � (W2 � U⊥

2 ) and

V = (〈u2〉 � W2) � U⊥
2 = 〈u2〉 � (W2 � U⊥

2 ). Using the one dimensional case, we

know that there exists some isometry, call it η, such that η : W1 � U⊥
1 7→ W2 � U⊥

2 ,

that is ηW1 � ηU⊥
1 = W2 � U⊥

2 . Since W2 = σW1, then ησ−1 : W2 7→ ηW1 is an

isometry. Notice that dimW2〈dimU1 and so the induction assumption implies that

since W2 and ηW1 are nondegenerate subspaces of W2 � U⊥
2 , and since there exists

an isometry, namely ησ−1, that maps from one subspace to the other, then their

orthogonal complements, U⊥
2 and ηU⊥

1 respectively, must be isometric. It is easy

to see that an isometry mapping U⊥
2 to ηU⊥

1 can be multiplied by η−1 to get an
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isometry from U⊥
1 to U⊥

2 . This completes the induction step and the proof of Witt’s

Cancellation Theorem.

Definition. The dimension m of a maximal totally isotropic subspace of a quadratic

space V is called the Witt index of V . (Note: Witt index is well defined since the

Corollary of Witt’s Extension Theorem presented on page 41 of the text states that

any two maximal totally isotropic subspaces of V have the same dimension, and

moreover every totally isotropic subspace is contained in one of maximal dimension.)

Definition. A subspace H of a quadratic space V is called a hyperbolic subspace if

H is a direct sum of mutually orthogonal hyperbolic planes.

Theorem. (Theorem 5.4 of the text.) If V is a quadratic space with Witt index m,

then V has a hyperbolic subspace H of dimension 2m and an anisotropic subspace

X with V = H � X. If V = H ′ � Y is any orthogonal splitting with H ′ hyperbolic

and Y anisotropic, then dimH ′ = 2m, and Y and X are isometric.

We will not present the proof of this theorem, however it is easy to see that

demonstrating Y and X are isometric will involve use of Witt’s Cancellation The-

orem. Notice also that based on this theorem we can define Witt index m as the

maximum number of mutually orthogonal hyperbolic planes in V , since if we con-

struct a basis using vectors ui taken from hyperbolic pairs (ui, vi) spanning each of

the m hyperbolic planes, then we will get a basis of size m for a maximal totally

isotropic subspace.

Corollary. If V has dimension n and Witt index m then m ≤ n/2.
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Figure 1. A crocheted model of a hyperbolic plane

Appendix

Even though we have developed some feel for the geometry of hyperbolic planes,

visualizing one might not be easy. The link included at the end of this section is a

link to a fun article about constructing physical models of a hyperbolic plane. The

article is actually an interview with Daina Taimina, a mathematician at Cornell

University, who crochets models of a hyperbolic plane, one of which is shown in

Figure 1.

〈 http://www.cabinetmagazine.org/issues/16/crocheting.php 〉


