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1 Equivalence of Bilinear Forms

Today’s goal will be to classify all of the bilinear forms over finite fields of odd
order. In order to classify them, we need to know when we consider two bilinear
forms to be the same. We call the forms B1 and B2 on vector spaces V1 and
V2 “equivalent” if there is an isometry between V1 and V2; an isometry is an
F -isomorphism σ : V1 → V2 with B2(σv, σw) = B1(v, w) for all v, w ∈ V1. For

example, the usual dot product on R2 (with matrix
[

1 0
0 1

]
) is equivalent to

the bilinear form with matrix
[

2 0
0 2

]
, where σ : v 7→ v√

2
. Clearly V1 and V2

have to have the same dimension. One can show (Proposition 2.8) that the two
bilinear forms are equivalent iff there are bases for V1 and V2, relative to which
B1 and B2 have the same matrix.

2 Quadratic Forms

Recall that, given a symmetric bilinear form B (that is, B(u, v) = B(v, u) for all
u, v ∈ V ) we can define the quadratic form Q : V → F by Q(v) = B(v, v); and
given any quadratic form Q we can pull out a symmetric bilinear form defined
by B(u, v) = 1

2 (Q(u+v)−Q(u)−Q(v)). However, we can only do this if 1
2 exists

– that is, if the field does not have characteristic 2. For the rest of today, we
will assume that F does not have characteristic 2. (Grove assumes this for all
of chapter 4.) Thus, symmetric bilinear forms and quadratic forms are entirely
equivalent concepts; classifying one is the same as classifying the other.

Proposition 2-1. If B is a nonzero symmetric bilinear form on V with
quadratic form Q, then Q(v) 6= 0 for some v ∈ V .

Proof: If Q(u) = 0 for all u, then 0 = Q(u+ v) = Q(u) + 2B(u, v) +Q(v) =
2B(u, v); so B(u, v) = 0 for all u, v ∈ V , contrary to assumption. 2

Recall that a set of vectors {v1, . . . , vn} is said to be orthogonal if B(vi, vj) =
0 for all i 6= j.
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Theorem 2-2 (Orthogonal Basis Theorem (my name)). If B is a symmet-
ric bilinear form on V then V has an orthogonal basis {v1, . . . , vn}, relative to
which B is a diagonal matrix diag(b1, . . . , br, 0, . . . , 0) with all bi 6= 0.

Proof: Assume B 6= 0 (because the theorem is clear for B = 0) and use
induction on n. The proof is also clear for n = 1, because all 1-by-1 matrices
are diagonal. We can use the previous proposition to find a v1 ∈ V with Q(v1) =
b1 6= 0, and let W = Fv1 (that is, the 1-dimensional subspace spanned by v1).
ThenW is non-degenerate (that is, W∩W⊥ = 0); this implies that V = W⊕W⊥
with W ⊥ W⊥. By induction, there are v2, . . . , vn comprising an orthogonal
basis for W⊥ such that Q(vi) = bi 6= 0 for 2 ≤ i ≤ r and Q(vi) = 0 for
r + 1 ≤ i ≤ n for some r. The result follows. 2

Note that, for any nonzero ci ∈ F , we could have chosen civi instead of vi
and the proof would still have held, except that the bi in the matrix would have
been replaced by Q(civi) = c2i bi; in fact, bi can be made to be any element
in the image of Q. This implies, for example, that if F is a field where every
element has a square root (like C), then every diagonal element can be chosen
to be 1 or 0, so there are exactly n equivalency classes of symmetric bilinear
forms, corresponding to how many diagonal elements are nonzero. That is, given
any n-dimensional complex vector space, there is an isometry onto Cn with a
bilinear form given by projection onto the first r coordinates followed by the
standard bilinear form on Cr (though why you’re using using symmetric forms
on complex vector spaces instead of Hermitian forms may be a good question!).

3 Isotropic and Universal Forms

If B is a symmetric form on V with quadratic form Q, then we call a nonzero
v ∈ V with Q(v) = 0 isotropic and v 6= 0 with Q(v) 6= 0 anisotropic (0 is
always considered to be anisotropic). The form is called isotropic if there exists
any isotropic vector, and anisotropic otherwise. A form is called universal if
Q(V ) = F . Using the analogy with the dot product, where Q is the magnitude
squared, a vector is isotropic if it is nonzero and yet has length zero; a form is
universal if any scalar value can be the length-squared of a vector.

Proposition 3-1. If B is a nondegenerate isotropic symmetric bilinear form,
then B is universal.

Proof: Let u 6= 0 be an isotropic vector in V . Since B is nondegenerate there
is some w ∈ V with B(u,w) = b 6= 0. If we replace w with w

2b , we can assume
that B(u,w) = 1

2 . Set v = cu+ w, where c ∈ F will be determined later. Then
Q(v) = B(cu+w, cu+w) = 2cB(u,w)+B(w,w)+c2Q(u) = c+B(w,w). Given
any a ∈ F , we can set c = a−B(w,w). Then Q(v) = c−B(w,w)+B(w,w) = a.
So B is universal. 2

We need to make a quick aside into Galois theory to get a result we need
for the next proposition. Let b ∈ F ∗ be a nonsquare (half of the elements
are), and adjoin a square root of b to F to get K = F (

√
b), a splitting field
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for x2 − b; then [K : F ] = 2 and |K| = q2 (where |F | = q). Then K =
{a + c

√
b|a, c ∈ F}. The Galois group of a quadratic extension is always C2,

where the nontrivial automorphism is the Frobenius automorphism sending x 7→
xq; on the other hand, clearly the automorphism swapping

√
b and −

√
b is a

nontrivial automorphism, so it must be the same as the Frobenius map. One
defines the norm N : K → F by N(x) = πσ∈Gσ(x) where G is the Galois
group. It is clear that this is a multiplicative homomorphism, and that it is
invariant under automorphisms (which is why we know that its image is in F ).
So using our two interpretations of the Frobenius automorphism, we see that
both N(x) = xxq = xq+1 and N(a + c

√
b) = (a + c

√
b)(a − c

√
b) = a2 − bc2.

The kernel of the restriction N : K∗ → F ∗ is {d ∈ K∗|dq+1 = 1}. Because K∗ is
cyclic of order q2− 1 = (q+ 1)(q− 1), the elements of kerN are the elements of
the unique subgroup of order q+ 1. So |kerN | = q+ 1 and thus |imN | = q− 1,
so, N : K∗ → F ∗ is surjective. Because N(0) = 0, we have that N : K → F
is surjective too. The conclusion we will need later is the following: given a
2-dimensional F -vector space with basis {v1, v2}and a nonsquare b, the map
N(av1 + bv2) = a2 − bc2 is surjective.

Given a symmetric form B and a nonzero scalar a ∈ F , let Ba be a quadratic
form defined by Ba(u, v) = B(u, v)/a; this gives us Qa(u) = Q(u)/a. We call
this “scaling the form by a”. Clearly Ba is still symmetric, and is nondegenerate
iff B is. Similarly, Ba is universal iff B is.

Proposition 3-2. If F is finite, and B is a nondegenerate symmetric bilin-
ear form on a vector space V of dimension n ≥ 2 over F , then B is universal.

Proof: If B is isotropic, then we apply the previous proposition and are
done. So we assume that B is anisotropic. We first choose a basis via the
Orthogonal Basis Theorem; since B is nondegenerate, r = n. We then consider
the 2-dimensional nondegenerate subspace generated by v1 and v2 and prove
that B is universal when restricted to this 2-dimensional subspace; clearly it
is universal on the entire space too. For simplicity we simply refer to the 2-
dimensional subspace as V and the form as B and Q (that is, we assume we
started with n = 2).

We let the matrix for B with our orthogonal basis {v1, v2} be
[
a 0
0 −b

]
;

we have that a 6= 0 and b 6= 0 by nondegeneracy. Replacing B with Ba (which

is universal iff B is), we get a matrix of
[

1 0
0 −b′

]
(with b′ = b

a 6= 0). Let v

be an arbitrary nonzero vector; then v = av1 + cv2 for some a, c ∈ F . Because
B is anistropic, Q(v) = a2− b′c2 6= 0. Thus b′ is a nonsquare in F ; otherwise, if
g2 = b′, we could choose a = g and c = 1 and find that Q(gv1 +v2) = g2−b′ = 0.
But by the result from Galois theory above, V has the same structure that K
did, with Q(v) = N(v)! So Q is surjective, which implies that B is universal. 2

Theorem 3-3. If F is finite (and odd characteristic), and B is a nondegen-
erate symmetric bilinear form on an F -space V of dimensional n ≥ 2, then there
is a basis for V for which B has the matrix diag(1, . . . , 1, d) for some nonzero
d ∈ F .
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Proof: By the previous proposition, Q is universal, so we can choose the
orthogonal basis like in the Orthogonal Basis Theorem setting b1 to 1. We
can do this inductively as long as we’re guaranteed that the restriction of Q to
〈v1, . . . , vi−1〉⊥ has dimension at least 2. Once i = n, the previous proposition
no longer applies, but since B is nondegenerate we can at least guarantee that
bn = d 6= 0. 2

Thus, there are precisely two equivalence classes of nondegenerate symmetric
bilinear forms over odd finite fields: those which have a matrix as above with
d = 1, and those which have such a matrix with d = x for some nonsquare
x which depends only on F ; this is because the subgroup F×2 has index 2
in F ∗. (These two types are inequivalent — one has determinant 1, which is
in the squares coset of F×2 in F ∗, i and the other has determinant x, which
is in the nonsquares coset.) As far as degenerate forms go, Witt’s Extension
Theorem (which we have not yet covered) implies that if a form on Fn has
an m-dimensional radical, then it is equivalent the direct sum of the zero form
on Fm and a nondegenerate form on Fn−m. So the symmetric forms are in

bijection with the matrices
[
I 0
0 0

]
and

 I 0
x

0 0

 where the size of I can

vary from 0 to n; there are 2n+ 1 in total.
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